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Continuum mechanics

• Definition
– Materials are modeled as a continuum
– Matter 

• Is continuously distributed &
• Fills the entire region of space the body occupies

• Consequences
– The body can be continually sub-divided into infinitesimal elements

• Kinematics and material behavior laws are deduced from these infinitesimal 
elements analysis 

– Kinematics and material behavior obey to
• Constitutive equations

– Elasticity
– Elasto-plasticity

• Conservation laws
– Conservation of mass
– Conservation of linear momentum
– Conservation of angular momentum
– Conservation of energy
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Continuum mechanics

• Idea
– A real material is

• Heterogeneous
– Grains
– Inclusions

• Made of discontinuities
– Cracks 
– Grain-boundaries
– Plastic dislocations

• Composed of molecules/atoms
– Fluids, Solids

– Instead of studying the motion of every atoms,
continuum mechanics models these

• Heterogeneities
• Discontinuities
• …

at the macroscopic level through 
• Material laws
• ….



2009-2010 Alternative numerical methods: FE summary          4

Continuum mechanics

• Examples
– Dislocation motions are modeled using an elasto-plastic material law

• Grain sizes, inclusions, … are accounted for through the hardening law

– Each grain can also be modeled by continuum mechanics
• A crystal plasticity model is used in each grain
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Continuum mechanics

• Limitations
– The model should be able to capture the physics
– Example

• Tensile test with an homogeneous elasto-plastic material

– Deformations (plastic & elastic) will be uniform in the central zone

– This can be a good model as long as grain size is small compared to the 
macroscopic characteristic length

• Real structure with grain size comparable to the macroscopic length
– Plastic deformations at the surface are not uniform

PP

PP
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Continuum mechanics

• Limitations (2)
– Example (2)

• Real structure with grains size comparable to the macroscopic length

– Plastic deformations at the surface are not uniform

• It does not mean continuum mechanics cannot be assumed, but the model should 
be enhanced to consider crystal plasticity

P
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Continuum solid mechanics

• Application to solid mechanics
– Strong form of continuum mechanics

• Equations that are satisfied 
– At every point x of  

body B in its deformed 
configuration

– At every point X of  
body B0 in its initial 
configuration

– Static assumption
• Linear momentum conservation 

• Angular momentum conservation

• Neumann BC on surface traction

• Dirichlet BC on surface displacement

– Remark, B is an open manifold of boundary ∂B

b

T

n
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Continuum solid mechanics

• Deformations & strains
– Deformation (or motion) mapping

• Current position x of the material point X is obtained 

from a mapping ϕ : 

– Two-point (non symmetrical) deformation gradient

• or 

• Where the Lie group                         
– Is the smooth manifold in the Euclidean space,

in which matrix can be inverted (as smooth)
– + means the determinant is positive:

• F is non-symmetrical 

– Jacobian
• Corresponds to the change of (infinitesimal) volume

• Using mass conservation leads to                               for any material point X in B0
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Continuum solid mechanics

• Deformations & strains (2)
– In terms of displacements

•

• The deformation gradient is rewritten

• The symmetrical part 

– Which corresponds to material deformations 

– Which removes rotation 

– Is obtained from the (symmetrical) right Cauchy tensor
EX
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Continuum solid mechanics

• Small deformations
– Small displacements (including rotations) assumption

• Satisfied if 

• Implies

– Integration can be performed on the current or

on the initial configuration:

– Differentiation can be performed with respect to the

current or initial configuration:

– Definition of the small-deformation tensor

» From

– Other notations:                                                or again
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Continuum solid mechanics

• Material law
– We have the governing equations in the strong form, 

– What is still missing is the stress-strain relationship

– Linear elasticity for small deformations 
• or                                 for any material point X in B0

with

• Which can be inverted into

with

• An internal potential U can be defined at each material point X in B0

–

– Stress tensor derives from the internal potential:

2µλ = Κ − 2µ/3
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• Elasto-plasticity
– Yield surface

f < 0: elastic region
f = 0: plasticity

– Plastic flow
• Assumption: deformations can be added

• Normal plastic flow

• Von Mises surface with isotropic plastic flow (J2-plasticity)

– Deviatoric part of the stress tensor

– Yield surface

– Normality:  since

– Then the plastic flow becomes

– Path dependency (incremental equations in d )         no internal energy 

Continuum solid mechanics
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• 1-D pure bending
– Assumptions

• Symmetrical beam
• Filled cross-section
• Cross-section remains plane 

(Bernoulli or Kirchhoff-Love)
• Only for thin structures (h/L << 1)
• Limited bending: κL << 1

– Curvature radius

•

Continuum solid mechanics applied to beams
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• 1-D pure bending (2)
– Kinematics

•

Continuum solid mechanics applied to beams
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• 1-D pure bending (3)
– Kinematics (2)

•

•

Continuum solid mechanics applied to beams

Section remains plane, 
but the shape can change
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• 1-D pure bending (4)
– Kinematics (3)

•

•

•

• f & g should 
– Involve quadratic terms
– Be independent of x

terms in y2, yz, z2

• f(-y) should be equal to f(y)       terms in y2, z2

• g(-y) should be equal to -g(y) terms in yz

• No shearing                                                     &                ,                 (OK)

• For linear elasticity there is a Poisson’s effect

– A solution satisfying these constraints 

Continuum solid mechanics applied to beams

x

z

h
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• 1-D pure bending (5)
– Small deformations

– For linear elasticity

• with

• Balance equation:

or

Continuum solid mechanics applied to beams
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• 1-D pure bending of beams
– Small deformations                      &  linear elasticity

– Beam
• Stress-free on all 

cross-section edges
–

α = β = 1
• Balance equation

satisfied

Continuum solid mechanics applied to beams
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• 1-D pure bending of beams (2)
– Equations

– Momentum 

• Inertia

– Rigorously we should call it Iyy

• For a rectangular cross-section

Continuum solid mechanics applied to beams
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• 1-D pure bending of plates
– Small deformations                      &  linear elasticity

– Plate (plane - σ state)
• No deformation along y

β = 0
• Stress-free on upper and lower

sides 
α = 1 / (1-ν) 

• Balance equation

satisfied

Continuum solid mechanics applied to beams
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• 1-D pure bending of plates (2)
– Small deformations                      &  linear elasticity

– Plate (plane - ε state)
• No deformation along y

β = 0
• No deformation along z

α = 0 
• Balance equation

NOT satisfied

• This state actually requires ν = 0

Continuum solid mechanics applied to beams
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• 1-D pure bending of plates (3)
– Back to plane - σ state

• Equations

• Momentum

• Flexural rigidity

Continuum solid mechanics applied to beams
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• Strong form of pure-bending beam

– Equations

&

– Concentrated load
• For a uniform cross-section hxb:

• Stress

• Shearing
– There is a shearing Tz = P:

– Its effect on shearing stress can be neglected if h/L << as

Continuum solid mechanics applied to beams

x

z
P

uz =0
duz /dx =0

M>0

L
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• Strong form of pure-bending beam (2)

– Equations

&

– Non-uniform loading
• Internal energy variation

• Work variation of external forces

Continuum solid mechanics applied to beams

x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

L
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• Strong form of pure-bending beam (3)
– Energy conservation

• Integration by parts of the internal energy variation

• Work variation of external forces 

Continuum solid mechanics applied to beams

x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

L
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• Elastic pure-bending beam (4)
– Energy conservation (2)

• As δuz is arbitrary: 
Euler-Bernoulli equations

• on [0, L] &   

• , 

Continuum solid mechanics applied to beams

x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

L
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Weak form of the continuum equations

• Introduction to Hilbert space 
– When writing weak formulations of the continuum equations, solutions in 

usual Cn manifolds do not always exist
• Because derivative is not always defined/continuous everywhere

• However sometimes a numerical solution can be found 

• Cn manifolds are not the correct ones to be considered

– Instead it is more convenient to consider manifolds where
• Derivatives are understood in a weak sense: For non-differentiable functions, if 

they exist, the generalized derivatives are defined as

–

–

– For differentiable functions, application of Greens’ formula leads to classical 
derivatives

• A norm can be defined 
– Sobolev spaces are the modern replacements for Cn manifolds

• Hilbert spaces are particular cases of Sobolev spaces
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Weak form of the continuum equations

• Introduction to Hilbert space (2)
– 1-D Sobolev space W m, p

• For a function f(x) :                                         if the function and its generalized 

derivatives up to order m have a finite p-norm on [a, b] 

• p-norm is define as

– For p = 2 & for tensors, we have the Euclidean norm and 

• As the p-norms of the derivatives are finite, the Sobolev norm is also finite:

–

– Sobolev space and continuity

• If a function belongs to W1,p then almost every line parallel to the coordinates is 

absolutely continuous
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Weak form of the continuum equations

• 1-D exemple in Hilbert space

– Considering the function f(x) on [-1, 1]

• Useful in FE methods
• Derivative is not defined in [-1, 1]

– But we still want to use this function

X0 X1 X2    X3 X4 X5 X   

u

ξ

uh
u1

u4

N0 N1 N2 N3 N4 N5
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Weak form of the continuum equations

• 1-D exemple in Hilbert space (2)

– Derivative in a weak sense of
• Considering                                      arbitrary, but with

• As
– f is continuous at 0 (this is also the case for                                    ) &

–

where f’ is the usual derivative of f , and which is not defined at 0

• So weak derivative
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Weak form of the continuum equations

• 1-D exemple in Hilbert space (3)

– Function

– Derivative in a weak sense

– Norms
• L2 norm of the function 

• L2 norm of the weak derivative

– As these norms are finite 
• The function                                     but  

• With
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Weak form of the continuum equations

• Linear elasticity: Equations
– Linear momentum equation becomes

•

– Boundary conditions

•

•

– It is assumed that 
• Boundary conditions & 
• Loadings 

are smooth enough, so

•

where               is 
• The exact solution 

• Satisfying these equations (in the strong form) 

b
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n
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Weak form of the continuum equations

• Linear elasticity: Virtual displacement

– Let us defined an admissible virtual displacement (not infinitesimal)
• Displacements are known on Dirichlet boundary

•

– Which multiplies the linear momentum equation

•

– As this equation is satisfied at any material point of B0, we can integrate it 

• We choose the actual configuration B, as gradient are related to this one

• But in small deformations: B~B0 (we assume that for the following)

• For large deformations, we could write down everything on B0

•
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Weak form of the continuum equations

• Linear elasticity: Volume integration

– Integrating by parts, and using Gauss theorem:

•
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Weak form of the continuum equations

• Linear elasticity: Volume integration (2)

– As   

•

•

• Hooke’s tensor is symmetrical:

– Equation can be simplified

•
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Weak form of the continuum equations

• Linear elasticity: Weak formulation

– Existence of solution 

•

• It can be shown that 
– A solution in C2(B0)∩C1(B0) does not always exist BUT
– For adequate boundary conditions (such as                       ), 

a solution                                  always exists*

– This explains why we are looking for a solution (with virtual displacements 
defined) in the Sobolev spaces instead of looking in usual C spaces 

– Weak form is stated as 
• Finding

• Such that 

*Finite elements: theory, fast solvers, and applications in solid mechanics, Dietrich Braess, Cambridge Press, 
2001, ISBN 0521 011957
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Weak form of the continuum equations

• Linear elasticity: Bilinear form
– Bilinear form 

• Let us define the bilinear form                                 :

– Which is symmetrical                                    &

– Positive 

• Let us define the linear form                             :

– Weak form of the problem can be stated as finding               

such that
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Weak form of the continuum equations

• Linear elasticity: Weak form & consistency
– Weak form of the problem can be stated as finding               

such that
– Remarks

• This weak form is written 
– As δu is arbitrary in H1

c, it can be shown* that 
» If the exact solution uexact of the strong form exists in C2(B0)∩C1(B0)
» The solution                                 of the weak form corresponds to the 

exact solution uexact

– Reciprocally, the exact solution satisfies the weak form 
» Directly obtained by integration by parts

• For a general weak formulation
– A solution of a weak form is sought in a particularized subspace of H1 

for δu arbitrary in this subspace (see finite-element method)
– In that case, the solution of the weak form does not verify the strong form at 

each material point X of B0

– This solution verifies the strong form equations on average

*Finite elements: theory, fast solvers, and applications in solid mechanics, Dietrich Braess, Cambridge Press, 
2001, ISBN 0521 011957 – chapter 3, boundary-value problems



2009-2010 Alternative numerical methods: FE summary          39

Weak form of the continuum equations

• Linear elasticity: One-field functional

– Weak form of the problem can be stated as finding               

such that

– In Hilbert spaces, the directional Gâteaux derivative can be used:

• For a functional

• The Gâteaux derivative 

– In the direction v-u

– (v-u is not necessarily infinitesimal)

– Reads
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Weak form of the continuum equations

• Linear elasticity: One-field functional (2)

– In linear elasticity the stress tensor derives from an internal potential

•

• As B ~ B0 we can write

• Internal energy of the body is defined by

• The bilinear term is the directional derivative of the internal energy with respect to 

the displacements                                             , with δu = v-u (not infinitesimal)

– Similarly

•

• With the work of the external forces
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Weak form of the continuum equations

• Linear elasticity: One-field functional (3)

– Starting from 

– We can define the one-field functional I (u):                        

– Functional extremum
• As u is known on Dirichlet boundary, v-u = 0 on ∂DB

• Gâteaux derivatives are valid                                   

in expression                                        , δu is arbitrary in

• At the extremum of the functional

• So the functional extremum corresponds to 

such that

– The functional extremum corresponds to the solution of the weak form 
• Which corresponds to the exact solution uexact of the strong form in C2(B0)∩C1(B0), 

if it exists
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Weak form of the continuum equations

• Linear elasticity: Two-field functional

– Weak form of the problem can be stated as finding               

such that

– The solution corresponds to the extremum

• Of the two-field functional 

• With the internal potential



2009-2010 Alternative numerical methods: FE summary          43

Weak form of the continuum equations

• Linear elasticity: Two-field functional (2)

– Functional

– Directional derivative with respect to σ

•

• As on Neumann boundary σ is known, this equation holds for

• As δσ is arbitrary in B0 and on ∂DB, equaling the derivative to zero leads to

– on ∂DB

– in B

• Extremum of the functional satisfies the material behavior and Dirichlet BC
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Weak form of the continuum equations

• Linear elasticity: Two-field functional (3)

– Functional

– Directional derivative with respect to δu

•

•

• Applying integration by parts and Gauss theorem 

• As δu is arbitrary in B and on ∂NB, equaling the derivative to zero leads to

– in B

– on ∂NB
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Weak form of the continuum equations

• Linear elasticity: Two-field functional (4)

– Extremum of functional

• Satisfies

– in B

– in B

– on ∂NB

– on ∂DB

• So the extremum satisfies the equations 

– Weak form is the stationary point of the functional in 
– Corresponds to the exact solution uexact of the strong form in C2(B0)∩C1(B0), if 

it exists
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Weak form of the continuum equations

• Linear elasticity: Three-field functional

– Weak form of the problem can be stated as finding               

such that

– The solution corresponds to the extremum

• Of the three-field functional 

• With the internal potential
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Weak form of the continuum equations

• Linear elasticity: Three-field functional (2)

– Functional 

• Directional derivative with respect to σ

• As on Neumann boundary σ is known, this equation holds for

• As δσ is arbitrary in B0 and on ∂DB, equaling the derivative to zero leads to

– on ∂DB

– in B

• Extremum of the functional satisfies the compatibility and Dirichlet BC
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Weak form of the continuum equations

• Linear elasticity: Three-field functional (3)

– Functional 

• Directional derivative with respect to ε

• As δε is arbitrary in B0, equaling the derivative to zero leads to

in B

• As on Neumann boundary σ, and so ε, are known validity is ensured                        

• Extremum of the functional satisfies the material behavior
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Weak form of the continuum equations

• Linear elasticity: Three-field functional (4)

– Functional 

• Directional derivative with respect to u

•

• Applying integration by parts and Gauss theorem
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Weak form of the continuum equations

• Linear elasticity: Three-field functional (5)

– Functional 

• Directional derivative with respect to u , integration by parts and Gauss theorem

• As δu is arbitrary in B0 and on ∂NB, equaling the derivative to zero leads to

– on ∂NB

– in B
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Weak form of the continuum equations

• Linear elasticity: Three-field functional (6)

– Extremum of functional

• Satisfies

– in B

– in B

– in B

– on ∂NB

– on ∂DB

• So the extremum satisfies the equations 
– Weak form is the stationary point of the functional in 

– Corresponds to the exact solution uexact of the strong form in C2(B0)∩C1(B0), if 
it exists
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• Euler-Bernoulli beam equations

– for x in ]0 L[ 

– Boundary conditions 

• or    

• or

• Let us define the boundaries such that  

– Displacement constrained on ∂UL & vertical load known on ∂NL = ∂L \ ∂UL 

– Rotation constrained on ∂TL & momentum known on ∂ML = ∂L \ ∂TL 

– Exact solution can be found as 

Weak form of the continuum equations for beams

x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

L
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• Weak form

– For x in ]0 L[ 

• Multiply the equation by 

and integrate the product on the beam length 

• Integrations by parts

Weak form of the continuum equations for beams

x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

L
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• Weak form (2)

– Starting from 

• With

on ∂NB

on ∂MB

Weak form of the continuum equations for beams
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• Weak form (3)

– Combining previous expressions leads to the weak form statement:
• Finding                             - and not in H4 - such that

•

– Remarks

• For small deflections 

• For sufficiently smooth loadings and boundary conditions

– A solution in H2(]0 L[) can be found 

– A solution in C4(]0 L[) cannot always by found

Weak form of the continuum equations for beams

x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

L
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Weak form of the continuum equations for beams

• Bilinear form
– Let us define the bilinear form:

• Which is symmetrical                                            &

• Positive 

• Let us define the linear form                             :

– Weak form of the problem can be stated as finding               

such that
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Weak form of the continuum equations for beams

• One-field functional
– Solution                            of the bilinear form        :

• With 

– Is the extremum of the one-field functional

• Indeed 

• As uz is known on ∂NL & ∂xuz on ∂ML

– δuz belongs to Hc
2 x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

L
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Weak form of the continuum equations for beams

• Two-field functional
– Functional                                                

• With the internal energy

– Bending moment                                                  (obtained at the extremum)

– Solution of the weak form corresponds to the stationary point of the 

functional
• See annex I
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Weak form of the continuum equations for beams

• Three-field functional
– Functional                                                

• With the internal energy

– Solution of the weak form corresponds to the stationary point of the 

functional
• See annex II
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Finite element discretization of the weak form

• General weak form of linear elasticity

– Weak form of the problem can be stated as finding               

such that

• With

• Finite-element method
– Instead of seeking                                , 
– We are particularizing 

• The solution u → uh : test functions  
• The virtual displacements δu → δuh : trial functions  

in a manifold which is 
• A polynomial approximation
• The same for test and trial functions: Galerkin method
• Built on an approximation Bh of the body B: The finite-element discretization
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Finite element discretization of the weak form

• Finite-element discretization

– Approximation of the body

• Reference configuration

• Similar in configuration B

– With
• Interior of one element            with 

• Boundary of one element

•

• Dirichlet boundary of an element (can be empty): 

• Neumann boundary of an element (can be empty): 

– Characteristic size 
• Size of an element

• Size of the mesh 

B

T

∂NB
∂DBBh

∂NBh

∂DBh
Ω1

Ω2

Ωe
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Finite element discretization of the weak form

• Polynomial approximation
– The approximation should be

• In                    on the 

whole body (due to the weak 

form statement)

– Meaning (absolute) continuity should be  

ensured 

– Meaning (absolute) continuity of the derivative is not always ensured

• A polynomial approximation                  of degree up to k on each element

– Eventually
• Test functions 

with

• Trial functions 

with

B

T

∂NB
∂DBBh

∂NBh

∂DBh
Ω1

Ω2

Ωe
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Finite element discretization of the weak form

• New weak form of the FE method
– Using the new manifolds

• The problem can be restated 

as finding                       

such that

• With

– Remark
• Solution of the strong form:              uexact in C2(B0)∩C1(B0), if it exists
• Solution of the general weak form:

– Corresponds to uexact in C2(B0)∩C1(B0), if it exists
• Solution of the FE-approximation:

– Verifies the strong form only on average

B

T

∂NB
∂DB

Bh

∂NBh

∂DBhΩ1

Ω2

Ωe
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Finite element discretization of the weak form

• Does the FE weak form converge toward the exact solution?
– First mandatory property: consistency

• The exact solution of the problem  uexact in C2(B0)∩C1(B0), which satisfies the 

strong form, should also satisfy 
• Proof

–

– As for the exact solution

– As                      ,                                       & 
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Finite element discretization of the weak form

• Does the FE weak form converge toward the exact solution (2)?
– Second mandatory property: stability 

• The deformation energy should be bounded by (half) the work of external forces

• For a conservative formulation the equality should be obtained 

• Proof

– Let us assume constrained displacements (on ∂DB) equal to zero, so 

– The energy norm (twice the internal energy) :                   

is defined as 

» This is a norm as it is equal to zero only if u=0 on B0h (in                   ) 

– Considering                                        a particular choice for                      

– The bilinear form allows to write
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Finite element discretization of the weak form

• Does the FE weak form converge toward the exact solution (3)?
– Third property: what is the convergence rate toward the exact solution?

• Some preliminary results

– Energy norm                                                     : 

– Upper bound of the bilinear form in

» Using the Cauchy-Swartz inequality
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Finite element discretization of the weak form

• Does the FE weak form converge toward the exact solution (4)?
– Third property: what is the convergence rate toward the exact solution (2)?

• Some preliminary results (2)

– Orthogonality relation

» By linearity:

» Using consistency & weak form statement leads to

– Interpolation                     of the exact solution

in the FE representation is defined such that

– Interpolation theory: for                          interpolating

it can be shown* that 

with C independent on the element size he and 

*Ciarlet PG. The Finite Element Method for Elliptic Problems. North-Holland: Amsterdam, 1978, ISBN 0 4448 5028 7 
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Finite element discretization of the weak form

• Does the FE weak form converge toward the exact solution (5)?
– Third property: what is the convergence rate toward the exact solution (3)?

• Some preliminary results: Summary

– Energy norm                                                     : 

– Upper bound of the bilinear form in                            :

– Orthogonality 

– Interpolation theory: for                          interpolating

one has                                                         , q ≤ k+1

• If the method converges

– The interpolated error                          should converge toward zero 

– With an optimal rate with the mesh size 

• Analyzing                                                       & using the preliminary results

– Annex III: 
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Finite element discretization of the weak form

• Does the FE weak form converge toward the exact solution (6)?
– Third property: what is the convergence rate toward the exact solution (4)?

• Convergence rate in the energy norm 
– With respect to the mesh size 
– Is equal to the polynomial order

Log hmax

Log |Eint – Eint
exact| 

1

1

k = 1

1

2

k = 2
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Finite element discretization of the weak form

• Does the FE weak form converge toward the exact solution (7)?
– Fourth property: what is the convergence rate of the displacement?

• For the problem under consideration

–

– With

• Let us consider a dual problem governed by loadings (      ,    ), with

–

– With        the FE solution satisfying

– With          the interpolation in          of the exact solution                

of the dual problem

• Let us consider the error of the initial problem:
– e is a possible particular choice as virtual displacement 
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Finite element discretization of the weak form

• Does the FE weak form converge toward the exact solution (8)?
– Fourth property: what is the convergence rate of the displacement (2)?

• Starting from

– Particularize the loading of the dual problem                & 

– Developing              , annex IV
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Finite element discretization of the weak form

• Does the FE weak form converge toward the exact solution (9)?
– Fourth property: what is the convergence rate of the displacement (3)?

• Convergence rate in the L2-norm 
– With respect to the mesh size 
– Is equal to the polynomial order+1

Log hmax

Log |u – uexact| 

1

2

k = 1

1

3

k = 2
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Implementation of the finite element discretization

• Shape functions
– In order to define

• The test functions 

with

• The trial functions 

with

– Polynomial shape functions Na(ξ) are defined, with
• a the node number 

• ξ the coordinates in the element basis

– On one element Ωe

• &                   for X in Ωe

• With ne the number of nodes of the element

• With ua the nodal displacements at node a

– For adequate shape functions satisfying

– Where ξb are the coordinates of node b
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Implementation of the finite element discretization

• 1-D shape functions
– On one element  from Xe-1 to Xe

• for X in [Xe-1, Xe] 

Linear approximation                         Quadratic approximation

Xe-1 Xe X

u

-1                           1            ξ

uh
u1

u2

1 N1 = (1-ξ)/2 N2 = (ξ+1)/2

Xe-1 Xm Xe X

u

-1            0             1            ξ

uh
u1

u2

1 N1 N2N3

u3
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Implementation of the finite element discretization

• Shape functions on the mesh
– On Body B

• &                   for X in B

• With n the number of nodes of the mesh

• With ua the nodal displacements at node a

– For adequate shape functions satisfying

– Where ξb are the coordinates of node b

– 1-D linear example

X0 X1 X2    X3 X4 X5 X   

u

ξ

uh
u1

u4

N0 N1 N2 N3 N4 N5
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Implementation of the finite element discretization

• Finite-element equations
– FE formulation of the problem can be stated as finding          

such that                                                       ,with

•

– Using                                            &              for X in B

– This is restated as finding ua in        such that

•

• With
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Implementation of the finite element discretization

• Finite-element equations (2)
– FE formulation of the problem can be stated as finding ua in        such that

•

• With             (using symmetrical properties of H)

– This can be reformulated

• Using                                                           & 

• As δub is arbitrary, except for the n’ values constrained on ∂DB, the problem

is finding ua in                  such that

• Remarks: 
– This corresponds to solving a system of 3n-n’ equations with 3n-n’ unknowns 
– n’ should be large enough so the system is not singular
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Implementation of the finite element discretization

• Elementary stiffness matrix
– For one element, the second-order tensor related to nodes a and b reads

•

– Curvilinear coordinates
• Element and shape functions are defined in the ξ-space 

• Changing frame using mapping                       of Jacobian determinant J

ξ1

ξ2

−1 1

1

−1

x

y

Vξ

X=Φ(ξ)
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Implementation of the finite element discretization

• Elementary stiffness matrix (2)
– Elementary second-order tensor related to nodes a and b

•

• Curvilinear coordinates

•

– Integrating this term is not always possible in closed form

• Complex element shapes

• For non-linear elements, the expression is more complex

– This integration is performed considering evaluation points
• Gauss points

• Lobatto

• ……..
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Implementation of the finite element discretization

• Gauss integration
– 1-D example 

• Depending on the element shape, dimension, polynomial approximation, … there 
is an optimal number of Gauss points npg to capture the field

– ξn is the location of the nth Gauss point
– wn is the weight of the nth Gauss point

• What is the optimal number?
– Too many: computational cost
– Not enough: hourglass modes

-1             0            1            ξ

f

fh
f 1
f 2

1

-1   -0.578     0.578 1          ξ

f

fh
f 1
f 2

1
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Implementation of the finite element discretization

• Gauss integration (2)
– Hourglass modes

• Correspond to deformation modes leading to a zero-internal energy
• 1D-example

– Assume 
» Linear strain approximation
» Antisymmetrical deformation

– For one Gauss-point the stiffness
matrix will be equal to zero

– So two Gauss points are required
• 2D-example

– Assume linear square element
– With a single Gauss-point integration
– For some deformation modes

» Deformation gradient at the center is zero
» Zero internal energy (zero stiffness)

– At least 4 Gauss points are required
» Or hourglass control

-1             0            1            ξ

∂ξu

ξ1

ξ2

−1 1

1

−1

Vξ
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Implementation of the finite element discretization

• Gauss integration (3)
– Locking

• Elementary stiffness matrix reads

• 2D-example
– Assume linear square element
– At least 4 Gauss points are required to avoid 

hourglass modes
– If a constrain is added to the system

» Incompressibility (rubber, plasticity)
there are more equations than unknowns and
the solution of the system is zero deformation

• Solutions
– Linear element with 1 Gauss point & hourglass control
– Linear element with Selected Reduced Integration
– Higher polynomial approximation
– Internal degrees of freedom (Enhanced Assumed Strain elements)

ξ1

ξ2

−1 1

1

−1

Vξ
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Finite element discretization of the weak form for beams

• FE weak form for beams
– The problem is finding                           such that 

• With

– Finite element approximation
• Let us try to write a displacement 

FE formulation, with

• Is it possible?

x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

0    L1 L2 L3 L4 L
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Finite element discretization of the weak form for beams

• FE weak form for beams (2)
– Finite element approximation (2)

• Let us try to write a displacement 

FE formulation, with

• The problem is that, even for quadratic shape functions in each element, the H2

condition is not ensured at inter-element boundaries

• Solution?

x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

0    L1 L2 L3 L4 L

Le-2 Lm Le-1 Lm+1 Le

uz

ue
zh

ue
zh
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Finite element discretization of the weak form for beams

• FE weak form for beams (3)
– Solutions 

• Special shape functions C1]0 L[ 

– Shell in 3D ?

• Considering formulation with

displacement & rotation degrees 

of freedom

– Requires shearing

– More degrees of freedom

x

z f(x) Tz Mxxuz =0
duz /dx =0 M>0

0    L1 L2 L3 L4 L

Le-2 Xm Le-1 Lm+1 Le

uz

ue
zh

ue
zh
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Limitations of the FE methods

• High order equations
– C1 is difficult to enforce strongly

– Solutions
• Discontinuous Galerkin methods

• Meshless methods

• Mesh compatibility
– Problem of mesh definition: crack propagation, at material boundaries

– Solutions
• XFEM

• Smooth Particles Hydrodynamics

• Mesh deformation
– For large deformations

– Solution
• Smooth Particles Hydrodynamics

• …
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Annex I: Weak form of the continuum equations for beams

• Two-field functional for beams 
– Extremum with respect to Mxx

•

•

• Due to the arbitrary nature of δMxx

– on ]0 L[, satisfying bending law 

– on ∂T L, satisfying constrained rotations

– on ∂U L, satisfying constrained displacements
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Annex I: Weak form of the continuum equations for beams

• Two-field functional for beams (2)
– Extremum with respect to uz

•

•

• Integration by parts
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Annex I: Weak form of the continuum equations for beams

• Two-field functional for beams (3)
– Extremum with respect to uz (2)                                               

•

• With  

• Due to the arbitrary nature of δuz

– on ]0 L[, satisfying linear momentum

– on ∂N L, satisfying shear loading BC

– on ∂M L, satisfying momentum loading BC
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Annex II: Weak form of the continuum equations for beams

• Three-field functional for beams
– Extremum with respect to Mxx

•

•

• Due to the arbitrary nature of δΜxx

– on ]0 L[, satisfying bending compatibility  

– on ∂T L, satisfying constrained rotations

– on ∂N L, satisfying constrained displacements
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Annex II: Weak form of the continuum equations for beams

• Three-field functional for beams (2)
– Extremum with respect to κ

•

•

• Due to the arbitrary nature of δκ

– on ]0 L[, satisfying bending law
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Annex II: Weak form of the continuum equations for beams

• Three-field functional for beams (3)
– Extremum with respect to uz

•

•

• Integration by parts
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Annex II: Weak form of the continuum equations for beams

• Three-field functional for beams (4)
– Extremum with respect to uz (2)                                               

•

• With 

–

–

• Due to the arbitrary nature of δuz

– on ]0 L[, satisfying linear momentum

– on ∂N L, satisfying shear loading BC

– on ∂M L, satisfying momentum loading BC
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Annex III: Finite element discretization of the weak form

• Convergence rate in the energy norm
– Starting from  

• Using linearity of a

• Using orthogonality relation (                                  )

• Using upper bound (                                             )
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Annex III: Finite element discretization of the weak form

• Convergence rate in the energy norm (2)
– Starting from

• Using Sobolov norm definition  (                                             )

• As                          , assuming                          using the interpolation

theory (                                                        ), with q = 1 

• Using similar argumentation for

• As                                                    , using the 2 error estimates
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Annex IV: Finite element discretization of the weak form

• Convergence rate in the L2-norm
– Starting from

• As a is symmetrical 

• Using orthogonality relation (                                  )

• Let us particularize the loading of the dual problem            & 

• Using upper bound (                                             )
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Annex IV: Finite element discretization of the weak form

• Convergence rate in the L2-norm (2) 
– Starting from

• Assuming the problem is elliptic with

–

with                                                            the elliptic operator 

» m=1 in elasticity

» m=2 for beams

–

– If the exact solution                               , then* 

• Using m=1, p=2, as                  this theorem applied to the dual problem leads to

• Using                                                           for the dual problem

*J. Lions, E. Magenes, Problèmes aux limites non homogènes, Dunod, Paris, France, 1968.
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Annex IV: Finite element discretization of the weak form

• Convergence rate in the L2-norm (3) 
– Starting from

• As 

• Using                                                           

*J. Lions, E. Magenes, Problèmes aux limites non homogènes, Dunod, Paris, France, 1968.




