- University of Liège
- Aerospace & Mechanical Engineering

Alternative numerical methods in continuum mechanics Summary of the Finite Element method

Ludovic Noels

LTAS-Milieux Continus et Thermomécanique Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Aerospace & Mechanical engineering

• Definition

- Materials are modeled as a continuum
- Matter
 - Is continuously distributed &
 - Fills the entire region of space the body occupies
- Consequences
 - The body can be continually sub-divided into infinitesimal elements
 - Kinematics and material behavior laws are deduced from these infinitesimal elements analysis
 - Kinematics and material behavior obey to
 - Constitutive equations
 - Elasticity
 - Elasto-plasticity
 - Conservation laws
 - Conservation of mass
 - Conservation of linear momentum
 - Conservation of angular momentum
 - Conservation of energy

Continuum mechanics

• Idea

- A real material is
 - Heterogeneous
 - Grains
 - Inclusions
 - Made of discontinuities
 - Cracks
 - Grain-boundaries
 - Plastic dislocations
 - Composed of molecules/atoms
 - Fluids, Solids
- Instead of studying the motion of every atoms, continuum mechanics models these
 - Heterogeneities
 - Discontinuities
 - ...

at the macroscopic level through

Material laws

• Examples

- Dislocation motions are modeled using an elasto-plastic material law
 - Grain sizes, inclusions, ... are accounted for through the hardening law

- Each grain can also be modeled by continuum mechanics
 - A crystal plasticity model is used in each grain

2009-2010

• Limitations

- The model should be able to capture the physics
- Example
 - Tensile test with an homogeneous elasto-plastic material

- Deformations (plastic & elastic) will be uniform in the central zone
- This can be a good model as long as grain size is small compared to the macroscopic characteristic length
- Real structure with grain size comparable to the macroscopic length
 - Plastic deformations at the surface are not uniform

- Limitations (2)
 - Example (2)
 - Real structure with grains size comparable to the macroscopic length

- Plastic deformations at the surface are not uniform

- Application to solid mechanics
 - Strong form of continuum mechanics
 - Equations that are satisfied
 - At every point *x* of body *B* in its deformed configuration
 - At every point X of body B_0 in its initial configuration
 - Static assumption
 - Linear momentum conservation
 - Angular momentum conservation
 - Neumann BC on surface traction
 - Remark, B is an open manifold of boundary ∂B

$$\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^T + \boldsymbol{b} = 0 \ \forall \ \boldsymbol{X} \in B_0$$

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}^T \;\; \forall \; \boldsymbol{X} \in B_0$$

$$\boldsymbol{\sigma}\cdot\boldsymbol{n}=ar{\boldsymbol{T}}~~orall~ \boldsymbol{X}\in\partial_NB_0$$

• Deformations & strains

- Deformation (or motion) mapping
 - Current position *x* of the material point *X* is obtained

from a mapping $\pmb{\varphi} \colon \, \pmb{x} = \pmb{\varphi} \left(\pmb{X}
ight) \ : \ B_0 o B$

- Two-point (non symmetrical) deformation gradient

•
$$\mathbf{F} = \nabla_0 \boldsymbol{\varphi} = \frac{\partial \boldsymbol{\varphi}}{\partial \boldsymbol{X}}$$
 : $B_0 \to \operatorname{GL}_+(3, \mathbb{R})$ or $\mathbf{F}_{ij} = \frac{\partial \boldsymbol{\varphi}_i}{\partial \boldsymbol{X}_j}$

- Where the Lie group $\mathrm{GL}_+\left(3,\,\mathbb{R}\right)$
 - Is the smooth manifold in the Euclidean space,
 - in which matrix can be inverted (as smooth)

- + means the determinant is positive: $J = \det(\mathbf{F}) > 0$

- F is non-symmetrical
- Jacobian $J = \det(\mathbf{F}) > 0$
 - Corresponds to the change of (infinitesimal) volume
 - Using mass conservation leads to $\frac{dB}{dB_0} = J = \frac{\rho_0}{\rho}$ for any material point *X* in *B*₀

8

R

r

 E_{Y}

 $x = \varphi(X)$

 E_{Z}

 B_0

X

 \mathbf{E}_X

- Deformations & strains (2)
 - In terms of displacements

•
$$\boldsymbol{\varphi}\left(\boldsymbol{X}\right) = \boldsymbol{X} + \boldsymbol{u}\left(\boldsymbol{X}\right) : B_0 \to B$$

The deformation gradient is rewritten

$$\mathbf{F} = \frac{\partial \boldsymbol{\varphi}}{\partial \boldsymbol{X}} = \frac{\partial \boldsymbol{X}}{\partial \boldsymbol{X}} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} = \mathbf{I} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}$$

- The symmetrical part
 - Which corresponds to material deformations
 - Which removes rotation
 - Is obtained from the (symmetrical) right Cauchy tensor

$$\mathbf{C} = \mathbf{F}^T \mathbf{F} = \left(\mathbf{I} + \left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} \right)^T \right) \left(\mathbf{I} + \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} \right)$$

• Small deformations

- Small displacements (including rotations) assumption
 - Satisfied if $\|\boldsymbol{u}\| << |B|$
 - Implies
 - Integration can be performed on the current or on the initial configuration: $\int_B \simeq \int_{B_0}$

- Differentiation can be performed with respect to the current or initial configuration: $\nabla = \frac{\partial}{\partial x} \simeq \nabla_0 = \frac{\partial}{\partial X}$

Definition of the small-deformation tensor

» From
$$\mathbf{C} = \mathbf{F}^T \mathbf{F} = \left(\mathbf{I} + \left(\frac{\partial u}{\partial X} \right)^T \right) \left(\mathbf{I} + \frac{\partial u}{\partial X} \right)$$

 $\implies \mathbf{C} \simeq \mathbf{I} + \left(\frac{\partial u}{\partial x} \right)^T + \frac{\partial u}{\partial x} \implies \varepsilon = \frac{1}{2} \left(\nabla \otimes u + u \otimes \nabla \right) \simeq \frac{1}{2} \left(\mathbf{C} - \mathbf{I} \right)$

- Other notations:
$$\boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial \boldsymbol{x}_i} \boldsymbol{u}_j + \frac{\partial}{\partial \boldsymbol{x}_j} \boldsymbol{u}_i \right)$$
 or again $\boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\boldsymbol{u}_{j,i} + \boldsymbol{u}_{i,j} \right)$

 $\overline{E_{Y}}$

 B_0

 $\mathbf{T}_{\mathbf{v}}$

Material law

- We have the governing equations in the strong form,
- What is still missing is the stress-strain relationship
- Linear elasticity for small deformations

•
$$\sigma = \mathcal{H} : \varepsilon$$
 or $\sigma_{ij} = \mathcal{H}_{ijkl} \varepsilon_{kl}$ for any material point X in B_0
with $\mathcal{H}_{ijkl} = \underbrace{\frac{E\nu}{(1+\nu)(1-2\nu)}}_{\lambda = K - 2\mu/3} \delta_{ij} \delta_{kl} + \underbrace{\frac{E}{1+\nu}}_{2\mu} \left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$

• Which can be inverted into $\ oldsymbol{arepsilon} = \mathcal{G}: oldsymbol{\sigma}$

with
$$\mathcal{G}_{ijkl} = \frac{1+\nu}{E} \left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right) - \frac{\nu}{E}\delta_{ij}\delta_{kl}$$

• An internal potential U can be defined at each material point X in B_0

$$- U = \frac{1}{2}\varepsilon : \mathcal{H} : \varepsilon \ B_0 \to \mathbb{R}^+$$

– Stress tensor derives from the internal potential: $\sigma = \partial_{m{arepsilon}} U = \mathcal{H}:m{arepsilon}$

Continuum solid mechanics

• 1-D pure bending

- Assumptions
 - Symmetrical beam
 - Filled cross-section
 - Cross-section remains plane (Bernoulli or Kirchhoff-Love)
 - Only for thin structures (h/L << 1)
 - Limited bending: $\kappa L << 1$
- Curvature radius

•
$$\kappa = -\frac{\partial^2 \boldsymbol{u}_z}{\partial x^2}$$

Continuum solid mechanics applied to beams

- 1-D pure bending (2)
 - Kinematics
 - $\boldsymbol{u}_x = \kappa x z$

- 1-D pure bending (3)
 - Kinematics (2)

•
$$\boldsymbol{u}_x = \kappa xz$$

• $\boldsymbol{u}_z = -\frac{\kappa}{2}x^2 + ?$

Section remains plane, but the shape can change

$$\Longrightarrow \begin{cases} \boldsymbol{u}_z = -\frac{\kappa}{2}x^2 + f\left(?\right) \\ \boldsymbol{u}_y = g\left(?\right) \end{cases}$$

Continuum solid mechanics applied to beams

Ζ. 1-D pure bending (4) Ζ. - Kinematics (3) х y h • $\boldsymbol{u}_r = \kappa x z$ • $u_z = -\frac{\kappa}{2}x^2 + f(?)$ • $\boldsymbol{u}_{y} = g\left(?\right)$ • f & g should Involve quadratic terms - Be independent of x \implies terms in y^2 , y_z , z^2 κ terms in y^2 , z^2 • f(-y) should be equal to f(y)• g(-y) should be equal to $-g(y) \implies \text{terms in } yz$ • No shearing $\Longrightarrow \varepsilon_{yz} = \frac{1}{2} \left(2y \partial_{y^2} f + y \partial_{yz} g \right) = 0 \& \varepsilon_{xz} = 0$, $\varepsilon_{xy} = 0$ (OK) For linear elasticity there is a Poisson's effect $\begin{aligned} \mathbf{u}_z &= -\frac{\kappa}{2} \left[x^2 + \nu \left(\alpha z^2 - \beta y^2 \right) \right] \\ \mathbf{u}_y &= -\kappa \nu \beta yz \end{aligned}$ A solution satisfying these constraints

Continuum solid mechanics applied to beams

- 1-D pure bending (5)
 - Small deformations $\begin{cases}
 \boldsymbol{u}_{x} = \kappa xz \\
 \boldsymbol{u}_{y} = -\kappa \nu \beta yz \\
 \boldsymbol{u}_{z} = -\frac{\kappa}{2} \left[x^{2} + \nu \left(\alpha z^{2} - \beta y^{2} \right) \right]
 \end{cases}
 \Rightarrow
 \begin{cases}
 \varepsilon_{xx} = \kappa z \\
 \varepsilon_{yy} = -\kappa \beta \nu z \\
 \varepsilon_{zz} = -\kappa \alpha \nu z \\
 \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0
 \end{cases}$
 - For linear elasticity

•
$$\boldsymbol{\sigma} = \mathcal{H} : \boldsymbol{\varepsilon}$$
 with $\mathcal{H}_{ijkl} = \frac{E\nu}{(1+\nu)(1-2\nu)} \delta_{ij} \delta_{kl} + \frac{E}{1+\nu} \left(\frac{1}{2} \delta_{ik} \delta_{jl} + \frac{1}{2} \delta_{il} \delta_{jk}\right)$

$$\implies \begin{cases} \boldsymbol{\sigma}_{xx} = \frac{\kappa E z}{(1+\nu)(1-2\nu)} \left[1-\nu-(\alpha+\beta)\nu^{2}\right] \\ \boldsymbol{\sigma}_{yy} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\beta+\nu(\beta-\alpha)\right] \\ \boldsymbol{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta)\right] \end{cases}$$

• Balance equation:
$$\nabla \cdot \boldsymbol{\sigma} = 0$$

 $\implies \partial_z \boldsymbol{\sigma}_{zz} = 0 \implies \alpha = \frac{1 - \beta \nu}{1 - \nu} \text{ or } \nu = 0$

- 1-D pure bending of beams
 - Small deformations

$$\begin{cases} \varepsilon_{xx} = \kappa z \\ \varepsilon_{yy} = -\kappa \beta \nu z \\ \varepsilon_{zz} = -\kappa \alpha \nu z \\ \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0 \end{cases}$$

- Beam
 - Stress-free on all cross-section edges

$$- \boldsymbol{\sigma}_{yy} = \boldsymbol{\sigma}_{zz} = 0$$
$$\implies \alpha = \beta = 1$$

Balance equation

& linear elasticity $\boldsymbol{\sigma}_{xx} = \frac{\kappa E z}{(1+\nu)(1-2\nu)} \left[1-\nu-(\alpha+\beta)\nu^2\right]$ $\boldsymbol{\sigma}_{yy} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1 - \beta + \nu \left(\beta - \alpha\right)\right]$ $\sigma_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\alpha+\nu(\alpha-\beta) \end{bmatrix}$ Ζ. х y h κ

Continuum solid mechanics applied to beams

- 1-D pure bending of beams (2) z
 - Equations

$$\begin{cases} \boldsymbol{\sigma}_{xx} = \kappa Ez \\ \boldsymbol{\sigma}_{yy} = \boldsymbol{\sigma}_{zz} = 0 \end{cases}$$

Momentum

$$M_{xx} = \int_A \kappa E z^2 dy dz = \kappa E I$$

• Inertia

$$I = \int_{A} z^{2} dy dz$$
- Rigorously we should call it I_{yy}

• For a rectangular cross-section
$$I = \frac{bh^3}{12}$$

Continuum solid mechanics applied to beams

- 1-D pure bending of plates
 - Small deformations

$$\begin{cases} \varepsilon_{xx} = \kappa z \\ \varepsilon_{yy} = -\kappa \beta \nu z \\ \varepsilon_{zz} = -\kappa \alpha \nu z \\ \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0 \end{cases}$$

- Plate (plane σ state)
 - No deformation along y

 $\implies \beta = 0$

• Stress-free on upper and lower sides $\Longrightarrow \sigma_{zz} = 0$

$$\implies \alpha = 1 / (1-v)$$

Balance equation

 $\alpha = \frac{1-\beta\nu}{1-\nu} \text{ satisfied }$

& linear elasticity $\int \boldsymbol{\sigma}_{xx} = \frac{\kappa E z}{(1+\nu)(1-2\nu)} \left[1 - \nu - (\alpha+\beta)\nu^2 \right]$ $\boldsymbol{\sigma}_{yy} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1 - \beta + \nu \left(\beta - \alpha\right)\right]$ $\sigma_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\alpha+\nu(\alpha-\beta) \end{bmatrix}$ Ζ. V h κ

- 1-D pure bending of plates (2)
 - Small deformations

$$\begin{cases} \varepsilon_{xx} = \kappa z \\ \varepsilon_{yy} = -\kappa \beta \nu z \\ \varepsilon_{zz} = -\kappa \alpha \nu z \\ \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0 \end{cases}$$

- Plate (plane ε state)
 - No deformation along y

 $\implies \beta = 0$

• No deformation along z

 $\implies \alpha = 0$

Balance equation

$$\alpha = \frac{1-\beta\nu}{1-\nu} \quad \text{NOT satisfied}$$

• This state actually requires v = 0

& linear elasticity $\boldsymbol{\sigma}_{xx} = \frac{\kappa E z}{(1+\nu)(1-2\nu)} \left[1-\nu-(\alpha+\beta)\nu^2\right]$ $\boldsymbol{\sigma}_{yy} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1 - \beta + \nu \left(\beta - \alpha\right)\right]$ $\sigma_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\alpha+\nu(\alpha-\beta) \end{bmatrix}$ Ζ. y h κ

Continuum solid mechanics applied to beams

- 1-D pure bending of plates (3) z
 - Back to plane σ state
 - Equations

$$\begin{cases} \boldsymbol{\sigma}_{xx} = \frac{\kappa E z}{1 - \nu^2} \\ \boldsymbol{\sigma}_{zz} = 0 \\ \boldsymbol{\sigma}_{yy} = \frac{\nu \kappa E z}{1 - \nu^2} \end{cases}$$

$$\frac{1}{\kappa}$$

• Momentum

$$m_{xx} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\kappa E}{1 - \nu^2} z^2 dz = D\kappa$$

• Flexural rigidity

$$D = \frac{Eh^3}{12\,(1-\nu^2)}$$

- Strong form of pure-bending beam
 - Equations

$$\begin{cases} M_{xx} = \int_{A} \kappa E z^{2} dy dz = \kappa E I \\ \kappa = -\frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \quad \boldsymbol{\&} \quad \boldsymbol{\sigma}_{xx} = \kappa E z \end{cases}$$

- Concentrated load
 - For a uniform cross-section hxb: $I = \frac{bh^3}{12}$

$$P(L-x) = \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} EI \implies \boldsymbol{u}_z = \frac{P}{EI} \left(\frac{Lx^2}{2} - \frac{x^3}{6}\right)$$

Stress

$$\sigma_{xx}|_{z=-\frac{h}{2}} = -\kappa E \frac{h}{2} = \frac{Ph}{2I} (L-x) = \frac{6P}{bh^2} (L-x)$$

- Shearing – There is a shearing $T_z = P$: $T_z = \frac{\partial M_{xx}}{\partial x} = \frac{\partial P (x - L)}{\partial x} = P$
 - Its effect on shearing stress can be neglected if $h/L \ll$ as

$$\boldsymbol{\sigma}_{xy} = \mathcal{O}\left(\frac{P}{bh}\right) = \mathcal{O}\left(\frac{h}{L}\boldsymbol{\sigma}_{xx}\left(x=0,\ z=-\frac{h}{2}\right)\right)$$

- Strong form of pure-bending beam (2)
 - Equations

$$\begin{cases} M_{xx} = \int_{A} \kappa E z^{2} dy dz = \kappa E I \\ \kappa = -\frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \quad \& \quad \boldsymbol{\sigma}_{xx} = \kappa E z \end{cases}$$

- Non-uniform loading
 - Internal energy variation

$$\delta E_{\rm int} = \int_0^L \int_A \boldsymbol{\sigma}_{xx} \delta \boldsymbol{\varepsilon}_{xx} dA dx = \int_0^L \int_A E \kappa \delta \kappa z^2 dA dx = \int_0^L \int_A E \delta \frac{\kappa^2}{2} z^2 dA dx = \delta \int_0^L \frac{M_{xx} \kappa}{2} dx$$

• Work variation of external forces

$$\delta W_{\text{ext}} = \int_{0}^{L} f(x) \,\delta \boldsymbol{u}_{z} dx + \bar{T}_{z} \delta \boldsymbol{u}_{z} \Big]_{0}^{L} - \bar{M}_{xx} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \Big|_{0}^{L}$$

$$\Rightarrow \int_0^L \frac{1}{2} EI\left(\frac{\partial^2 \boldsymbol{u}_z}{\partial x^2}\right)^2 dx = \int_0^L f(x) \, \boldsymbol{u}_z dx + \bar{T}_z \boldsymbol{u}_z \Big]_0^L - \bar{M}_{xx} \frac{\partial \boldsymbol{u}_z}{\partial x} \Big|_0^L$$

• Strong form of pure-bending beam (3)

• Integration by parts of the internal energy variation

$$\delta E_{\text{int}} = \int_{0}^{L} EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2} \delta \boldsymbol{u}_{z}}{\partial x^{2}} dx = \left[EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \right]_{0}^{L} - \int_{0}^{L} \frac{\partial}{\partial x} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} dx$$
$$\delta E_{\text{int}} = \left[EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \right]_{0}^{L} - \left[\frac{\partial}{\partial x} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \delta \boldsymbol{u}_{z} \right]_{0}^{L} + \int_{0}^{L} \frac{\partial^{2}}{\partial x^{2}} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \delta \boldsymbol{u}_{z} dx$$

• Work variation of external forces

$$\delta W_{\text{ext}} = \int_{0}^{L} f(x) \,\delta \boldsymbol{u}_{z} dx + \bar{T}_{z} \delta \boldsymbol{u}_{z} \Big]_{0}^{L} - \bar{M}_{xx} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \Big]_{0}^{L}$$

- Elastic pure-bending beam (4)
 - Energy conservation (2)
 - As δu_z is arbitrary:

Euler-Bernoulli equations

•
$$\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = f(x) \quad \text{on [0, L] } \delta$$
•
$$\begin{cases} -\frac{\partial}{\partial x} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) \Big|_{0, L} = \bar{T}_z \Big|_{0, L} \\ -EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \Big|_{0, L} = \bar{M}_{xx} \Big|_{0, L} \end{cases}$$

Introduction to Hilbert space

- When writing weak formulations of the continuum equations, solutions in usual Cⁿ manifolds do not always exist
 - Because derivative is not always defined/continuous everywhere
 - However sometimes a numerical solution can be found
 - C^n manifolds are not the correct ones to be considered
- Instead it is more convenient to consider manifolds where
 - Derivatives are understood in a weak sense: For non-differentiable functions, if they exist, the generalized derivatives are defined as

$$- f^{(k)}(x) \in \mathcal{L}^{p}([a, b]) : \int_{a}^{b} f \partial^{k} \phi dx = (-1)^{k} \int_{a}^{b} f^{(k)} \phi dx$$

-
$$\forall \phi \in C^{\infty}([a, b]) \& \phi(a) = \phi(b) = 0$$

- For differentiable functions, application of Greens' formula leads to classical derivatives
- A norm can be defined
- Sobolev spaces are the modern replacements for *C*^{*n*} manifolds
 - Hilbert spaces are particular cases of Sobolev spaces

- Introduction to Hilbert space (2)
 - 1-D Sobolev space W^{m, p}
 - For a function f(x): $f(x) \in W^{m, p}([a, b])$ if the function and its generalized derivatives up to order *m* have a finite *p*-norm on [*a*, *b*]

• *p*-norm is define as
$$\|g\|_{L^p([a, b])} = \left(\int_a^b \sum_i |g_i|^p dx\right)^{\frac{1}{p}}$$

- For p = 2 & for tensors, we have the Euclidean norm and $\mathbf{H}^m = \mathbf{W}^{m, 2}$

• As the *p*-norms of the derivatives are finite, the Sobolev norm is also finite:

-
$$||f||_{\mathbf{W}^{m,p}([a, b])} = \sum_{k=0}^{m} \left\| f^{(k)} \right\|_{\mathbf{L}^{p}([a, b])}$$

- Sobolev space and continuity
 - If a function belongs to W^{1,p} then almost every line parallel to the coordinates is absolutely continuous

Weak form of the continuum equations

- 1-D exemple in Hilbert space
 - Considering the function f(x) on [-1, 1] $f(x) = 1 - |x| \quad \forall x \in [-1, 1]$
 - Useful in FE methods
 - Derivative is not defined in [-1, 1]
 - $f \notin C^1\left([-1,\,1]\right)$
 - But we still want to use this function

- 1-D exemple in Hilbert space (2)
 - Derivative in a weak sense of $f(x) = 1 |x| \quad \forall x \in [-1, 1]$
 - Considering $\phi(x) \in C^{\infty}\left([-1, 1]\right)$ arbitrary, but with $\phi(-1) = \phi(1) = 0$

$$\int_{-1}^{1} f(x)\phi'(x)dx = \int_{-1}^{0} f(x)\phi'(x)dx + \int_{0}^{1} f(x)\phi'dx$$
$$\int_{-1}^{1} f(x)\phi'(x)dx = f\phi|_{-1}^{0^{-}} + f\phi|_{0^{+}}^{1} - \int_{-1}^{0} f'(x)\phi(x)dx - \int_{0}^{1} f'(x)\phi(x)dx$$

• As

- f is continuous at 0 (this is also the case for $\phi(x) \in C^{\infty}([-1, 1])$) &

$$- \phi(-1) = \phi(1) = 0$$

$$\implies \int_{-1}^{1} f(x)\phi'(x)dx = -\int_{-1}^{1} f'(x)\phi(x)dx$$

where f is the usual derivative of f, and which is not defined at 0

• So weak derivative $f^{(1)}(x) = f'(x) \ \forall x \in [-1, 0[\cup]0, 1]$

$$\Rightarrow f^{(1)}(x) = \begin{cases} 1, & \text{if } -1 \le x < 0 \\ -1, & \text{if } 1 \ge x > 0 \end{cases}$$

- 1-D exemple in Hilbert space (3)
 - Function

Function
$$f(x) = 1 - |x| \quad \forall x \in [-1, 1]$$
Derivative in a weak sense $f^{(1)}(x) = \begin{cases} 1, & \text{if } -1 \le x < 0 \\ -1, & \text{if } 1 \ge x > 0 \end{cases}$

- Norms
 - L² norm of the function

$$\|f(x)\|_{L^{2}([-1,1])} = \sqrt{\int_{-1}^{1} (1-|x|)^{2} dx}$$
$$= \sqrt{\frac{1}{3} (1+x)^{3}} \Big|_{-1}^{0} - \frac{1}{3} (1-x)^{3} \Big|_{0}^{1} = \sqrt{\frac{2}{3}}$$

L² norm of the weak derivative

$$\left\|f(x)^{(1)}\right\|_{L^2([-1,1])} = \sqrt{\int_{-1}^0 1dx + \int_0^1 1dx} = \sqrt{2}$$

- As these norms are finite
 - The function $f \in H^1([-1, 1])$ but $f \notin C^1([-1, 1])$
 - With $\|f(x)\|_{\mathrm{H}^{1}([-1,1])} = \|f(x)\|_{L^{2}([-1,1])} + \left\|f(x)^{(1)}\right\|_{L^{2}([-1,1])} = \sqrt{\frac{2}{3}} + \sqrt{2}$

- Linear elasticity: Equations
 - Linear momentum equation becomes

•
$$\nabla \cdot \left[\frac{1}{2}\mathcal{H}: (\nabla \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla})\right] + \boldsymbol{b} = 0 \; \forall \boldsymbol{X} \in B_0$$

- Boundary conditions

•
$$\boldsymbol{n} \cdot \left[\frac{1}{2}\mathcal{H}: (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla})\right] = \bar{\boldsymbol{T}} \ \forall \boldsymbol{X} \in \partial_N B_0$$

•
$$\boldsymbol{u} = \bar{\boldsymbol{u}} \ \forall \boldsymbol{X} \in \partial_D B_0$$

- The exact solution
- Satisfying these equations (in the strong form)

- Linear elasticity: Virtual displacement
 - Let us defined an admissible virtual displacement (not infinitesimal)
 - Displacements are known on Dirichlet boundary

•
$$\delta \boldsymbol{u} \in \mathbf{H}_{c}^{1}\left(B_{0}\right) = \left\{\delta \boldsymbol{u} \in \mathbf{H}^{1}\left(B_{0}\right) : \delta \boldsymbol{u}\left(\partial_{D}B_{0}\right) = 0\right\}$$

Which multiplies the linear momentum equation

•
$$\nabla \cdot \left[\frac{1}{2}\mathcal{H}: (\nabla \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla})\right] + \boldsymbol{b} = 0 \ \forall \boldsymbol{X} \in B_0$$

 $\implies \nabla \cdot \left[\frac{1}{2}\mathcal{H}: (\nabla \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla})\right] \cdot \delta \boldsymbol{u} + \boldsymbol{b} \cdot \delta \boldsymbol{u} = 0 \ \forall \boldsymbol{X} \in B_0 \ \forall \delta \boldsymbol{u} \in \mathbf{H}_c^1(B_0)$

- As this equation is satisfied at any material point of B_0 , we can integrate it

- We choose the actual configuration B, as gradient are related to this one
- But in small deformations: $B \sim B_0$ (we assume that for the following)
- For large deformations, we could write down everything on B_0

•
$$\int_{B} \boldsymbol{\nabla} \cdot \left[\frac{1}{2} \mathcal{H} : (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla}) \right] \cdot \delta \boldsymbol{u} dV + \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} dV = 0 \quad \forall \delta \boldsymbol{u} \in \mathbf{H}_{c}^{1} \left(B_{0} \right)$$

- Linear elasticity: Volume integration
 - Integrating by parts, and using Gauss theorem:

•
$$\int_{B} \boldsymbol{\nabla} \cdot \left[\frac{1}{2} \mathcal{H} : (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla}) \right] \cdot \delta \boldsymbol{u} dV + \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} dV = 0 \quad \forall \delta \boldsymbol{u} \in \mathbf{H}_{c}^{1}(B_{0})$$

$$\Longrightarrow \int_{B} \boldsymbol{\nabla} \cdot \left\{ \begin{bmatrix} \frac{1}{2} \mathcal{H} : (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla}) \end{bmatrix} \cdot \delta \boldsymbol{u} \right\} dV - \\ \int_{B} \begin{bmatrix} \frac{1}{2} \mathcal{H} : (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla}) \end{bmatrix} : \boldsymbol{\nabla} \otimes \delta \boldsymbol{u} dV + \\ \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} dV = 0 \quad \forall \delta \boldsymbol{u} \in \mathbf{H}_{c}^{1} \left(B_{0} \right)$$

$$\implies \int_{\partial B} \boldsymbol{n} \cdot \left\{ \begin{bmatrix} \frac{1}{2} \mathcal{H} : (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla}) \end{bmatrix} \cdot \delta \boldsymbol{u} \right\} dS - \\ \int_{B} \begin{bmatrix} \frac{1}{2} \mathcal{H} : (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla}) \end{bmatrix} : \boldsymbol{\nabla} \otimes \delta \boldsymbol{u} dV + \\ \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} dV = 0 \quad \forall \delta \boldsymbol{u} \in \mathbf{H}_{c}^{1} \left(B_{0} \right)$$

Linear elasticity: Volume integration (2)

– As

• $\delta \boldsymbol{u} \left(\partial_D B_0 \right) = 0$

•
$$\boldsymbol{n} \cdot \left[\frac{1}{2}\mathcal{H}: (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla})\right] = \bar{\boldsymbol{T}} \ \forall \boldsymbol{X} \in \partial_N B_0$$

Hooke's tensor is symmetrical: $\mathcal{H}_{ijkl} = \mathcal{H}_{klij} = \mathcal{H}_{jikl} = \mathcal{H}_{ijlk}$

Equation can be simplified _

•
$$\int_{\partial B} \boldsymbol{n} \cdot \left\{ \begin{bmatrix} \frac{1}{2} \mathcal{H} : (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla}) \end{bmatrix} \cdot \delta \boldsymbol{u} \right\} dS - \int_{B} \begin{bmatrix} \frac{1}{2} \mathcal{H} : (\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla}) \end{bmatrix} : \boldsymbol{\nabla} \otimes \delta \boldsymbol{u} dV + \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} dV = 0 \quad \forall \delta \boldsymbol{u} \in \mathbf{H}_{c}^{1} (B_{0})$$

$$\implies \int_{B} \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \delta \boldsymbol{u} + \delta \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) : \mathcal{H} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) dV = \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \delta \boldsymbol{u} dS + \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} dV = 0 \quad \forall \delta \boldsymbol{u} \in \mathbf{H}_{c}^{1} \left(B_{0} \right)$$

- Linear elasticity: Weak formulation
 - Existence of solution

•
$$\int_{B} \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \delta \boldsymbol{u} + \delta \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) : \mathcal{H} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) dV = \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \delta \boldsymbol{u} dS + \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} dV = 0 \quad \forall \delta \boldsymbol{u} \in \mathbf{H}_{c}^{1} \left(B_{0} \right)$$

- It can be shown that
 - − A solution in $C^2(B_0) \cap C^1(\overline{B_0})$ does not always exist BUT
 - For adequate boundary conditions (such as $\ ar{m{u}}\left(m{X}
 ight)\in\mathbf{H}^{1}$),

a solution $\boldsymbol{u}\left(\boldsymbol{X}
ight)\in\mathbf{H}^{1}\left(B_{0}
ight)$ always exists*

- This explains why we are looking for a solution (with virtual displacements defined) in the Sobolev spaces instead of looking in usual *C* spaces
- Weak form is stated as
 - Finding $\boldsymbol{u}\left(\boldsymbol{X}\right)\in\mathbf{H}^{1}\left(B_{0}
 ight)$
 - Such that
 $$\begin{split} \int_{B} \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \delta \boldsymbol{u} + \delta \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) : \mathcal{H} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) dV = \\ \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \delta \boldsymbol{u} dS + \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} dV = 0 \quad \forall \delta \boldsymbol{u} \in \mathbf{H}_{c}^{1} \left(B_{0} \right) \end{split}$$

*Finite elements: theory, fast solvers, and applications in solid mechanics, Dietrich Braess, Cambridge Press, 2001, ISBN 0521 011957

- Linear elasticity: Bilinear form
 - Bilinear form
 - Let us define the bilinear form $\mathbf{H}^{1}(B_{0}) \times \mathbf{H}^{1}(B_{0}) \to \mathbb{R}$:

$$a\left(\boldsymbol{u},\,\boldsymbol{v}\right) = \int_{B} \frac{1}{2}\left(\boldsymbol{\nabla}\otimes\boldsymbol{v} + \boldsymbol{v}\otimes\boldsymbol{\nabla}\right) : \mathcal{H}: \frac{1}{2}\left(\boldsymbol{\nabla}\otimes\boldsymbol{u} + \boldsymbol{u}\otimes\boldsymbol{\nabla}\right)dV$$

- Which is symmetrical $a\left(oldsymbol{u},\,oldsymbol{v}
ight) =a\left(oldsymbol{v},\,oldsymbol{u}
ight)$ &

- Positive $a(\boldsymbol{u}, \boldsymbol{u}) > 0 \quad \forall \boldsymbol{u} \in \mathbf{H}^{1}(B_{0}), \ \boldsymbol{u} \neq 0$
- Let us define the linear form $\mathbf{H}^{1}\left(B_{0}\right)
 ightarrow \mathbb{R}$:

$$b(\boldsymbol{v}) = \int_{\partial_N B} \bar{\boldsymbol{T}} \cdot \boldsymbol{v} \, dS + \int_B \boldsymbol{b} \cdot \boldsymbol{v} \, dV$$

- Weak form of the problem can be stated as finding $\boldsymbol{u}(\boldsymbol{X}) \in \mathbf{H}^{1}(B_{0})$ such that $a(\boldsymbol{u}, \delta \boldsymbol{u}) = b(\delta \boldsymbol{u}) \quad \forall \delta \boldsymbol{u} \in \mathbf{H}^{1}_{c}(B_{0}) \subset \mathbf{H}^{1}(B_{0})$

- Linear elasticity: Weak form & consistency
 - Weak form of the problem can be stated as finding $\boldsymbol{u}(\boldsymbol{X}) \in \mathbf{H}^{1}(B_{0})$ such that $a(\boldsymbol{u}, \delta \boldsymbol{u}) = b(\delta \boldsymbol{u}) \quad \forall \delta \boldsymbol{u} \in \mathbf{H}^{1}_{c}(B_{0}) \subset \mathbf{H}^{1}(B_{0})$
 - Remarks
 - This weak form is written $\forall \delta \boldsymbol{u} \in \mathbf{H}_{c}^{1}\left(B_{0}
 ight) \subset \mathbf{H}^{1}\left(B_{0}
 ight)$
 - As $\delta \boldsymbol{u}$ is arbitrary in \mathbf{H}_{c}^{1} , it can be shown* that
 - » If the exact solution u^{exact} of the strong form exists in $C^2(B_0) \cap C^1(B_0)$
 - » The solution $u(X) \in \mathbf{H}^1(B_0)$ of the weak form corresponds to the exact solution u^{exact}
 - Reciprocally, the exact solution satisfies the weak form
 - » Directly obtained by integration by parts
 - For a general weak formulation

2001, ISBN 0521 011957 - chapter 3, boundary-value problems

- A solution of a weak form is sought in a particularized subspace of \mathbf{H}^1 for $\delta \boldsymbol{u}$ arbitrary in this subspace (see finite-element method)
- In that case, the solution of the weak form does not verify the strong form at each material point X of B_0
- This solution verifies the strong form equations on average

*Finite elements: theory, fast solvers, and applications in solid mechanics, Dietrich Braess, Cambridge Press,

- Linear elasticity: One-field functional
 - Weak form of the problem can be stated as finding $\boldsymbol{u}(\boldsymbol{X}) \in \mathbf{H}^{1}(B_{0})$ such that $a(\boldsymbol{u}, \delta \boldsymbol{u}) = b(\delta \boldsymbol{u}) \quad \forall \delta \boldsymbol{u} \in \mathbf{H}^{1}_{c}(B_{0}) \subset \mathbf{H}^{1}(B_{0})$
 - In Hilbert spaces, the directional Gâteaux derivative can be used:

• For a functional
$$I(\boldsymbol{u}) = \int_{B} f(\boldsymbol{u}) \, dV$$

- The Gâteaux derivative
 - In the direction *v*-*u*
 - $\forall \boldsymbol{u}, \ \boldsymbol{v} \in \mathbf{H}^{1}\left(B_{0}\right)$ (*v*-*u* is not necessarily infinitesimal)
 - Reads

$$I'(\boldsymbol{u};\boldsymbol{v}-\boldsymbol{u}) = \int_{B} f'(\boldsymbol{u}) \cdot (\boldsymbol{v}-\boldsymbol{u}) \, dV = \lim_{\epsilon \to 0} \frac{I(\boldsymbol{u}+\epsilon(\boldsymbol{v}-\boldsymbol{u})) - I(\boldsymbol{u})}{\epsilon}$$

- Linear elasticity: One-field functional (2)
 - In linear elasticity the stress tensor derives from an internal potential

•
$$U = \frac{1}{2} \boldsymbol{\varepsilon} : \mathcal{H} : \boldsymbol{\varepsilon} \ B_0 \to \mathbb{R}^+$$

• As $B \sim B_0$ we can write

$$\begin{aligned} a\left(\boldsymbol{u},\,\delta\boldsymbol{u}\right) &= \int_{B} \frac{1}{2} \left(\boldsymbol{\nabla}\otimes\delta\boldsymbol{u} + \delta\boldsymbol{u}\otimes\boldsymbol{\nabla}\right) : \mathcal{H} : \frac{1}{2} \left(\boldsymbol{\nabla}\otimes\boldsymbol{u} + \boldsymbol{u}\otimes\boldsymbol{\nabla}\right) dV \\ &= \int_{B} \delta\boldsymbol{\varepsilon} : \mathcal{H} : \boldsymbol{\varepsilon} dV = \int_{B} \partial_{\boldsymbol{\varepsilon}} U\left(\boldsymbol{\varepsilon}\right) : \left[\left(\frac{1}{2}\boldsymbol{\nabla}\otimes + \frac{1}{2}\otimes\boldsymbol{\nabla}\right)\delta\boldsymbol{u}\right] dV \end{aligned}$$

- Internal energy of the body is defined by $E_{\text{int}} = \int_{B} U(\boldsymbol{\varepsilon}) \, dV$
- The bilinear term is the directional derivative of the internal energy with respect to the displacements $a(u, \delta u) = E'_{int}(u; \delta u)$, with $\delta u = v u$ (not infinitesimal)
- Similarly

2009-2010

•
$$b(\delta \boldsymbol{u}) = \int_{\partial_N B} \bar{\boldsymbol{T}} \cdot \delta \boldsymbol{u} \, dS + \int_B \boldsymbol{b} \cdot \delta \boldsymbol{u} \, dV = W'_{\text{ext}}(\boldsymbol{u}; \, \delta \boldsymbol{u})$$

• With the work of the external forces $W_{\text{ext}}(\boldsymbol{u}) = \int_{\partial_N B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS + \int_B \boldsymbol{b} \cdot \boldsymbol{u} \, dV$

Linear elasticity: One-field functional (3)

$$- \text{ Starting from } \begin{cases} a\left(\boldsymbol{u},\,\delta\boldsymbol{u}\right) = E'_{\text{int}}\left(\boldsymbol{u};\,\delta\boldsymbol{u}\right) \\ b\left(\delta\boldsymbol{u}\right) = W'_{\text{ext}}\left(\boldsymbol{u};\,\delta\boldsymbol{u}\right) \end{cases}$$

- We can define the one-field functional I(u): $\mathbf{H}^{1}(B_{0}) \rightarrow \mathbb{R}$

$$I(\boldsymbol{u}) = E_{\text{int}}(\boldsymbol{u}) - W_{\text{ext}}(\boldsymbol{u}) = \int_{B} U(\boldsymbol{\varepsilon}(\boldsymbol{u})) \, dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$
$$\implies I'(\boldsymbol{u}; \, \delta \boldsymbol{u}) = a(\boldsymbol{u}, \, \delta \boldsymbol{u}) - b(\delta \boldsymbol{u})$$

- Functional extremum
 - As u is known on Dirichlet boundary, v u = 0 on $\partial_D B \implies \delta u \in \mathbf{H}_c^1(B_0)$
 - Gâteaux derivatives are valid $orall oldsymbol{u}, \ oldsymbol{v} \in \mathbf{H}^{1}\left(B_{0}
 ight)$

 \implies in expression $I'(\boldsymbol{u}; \, \delta \boldsymbol{u}) = a(\boldsymbol{u}, \, \delta \boldsymbol{u}) - b(\delta \boldsymbol{u})$, $\delta \boldsymbol{u}$ is arbitrary in $\mathbf{H}_{c}^{1}(B_{0})$

- At the extremum of the functional $a\left(oldsymbol{u},\,\delta oldsymbol{u}
 ight) =b\left(\delta oldsymbol{u}
 ight)$
- So the functional extremum corresponds to $\boldsymbol{u}(\boldsymbol{X}) \in \mathbf{H}^{1}(B_{0})$ such that $a(\boldsymbol{u}, \, \delta \boldsymbol{u}) = b(\delta \boldsymbol{u}) \quad \forall \delta \boldsymbol{u} \in \mathbf{H}^{1}_{c}(B_{0}) \subset \mathbf{H}^{1}(B_{0})$
- The functional extremum corresponds to the solution of the weak form
 - Which corresponds to the exact solution u^{exact} of the strong form in $C^2(B_0) \cap C^1(B_0)$, if it exists

2009-2010

- Linear elasticity: Two-field functional
 - Weak form of the problem can be stated as finding $\boldsymbol{u}(\boldsymbol{X}) \in \mathbf{H}^{1}(B_{0})$ such that $a(\boldsymbol{u}, \delta \boldsymbol{u}) = b(\delta \boldsymbol{u}) \quad \forall \delta \boldsymbol{u} \in \mathbf{H}^{1}_{c}(B_{0}) \subset \mathbf{H}^{1}(B_{0})$
 - The solution corresponds to the extremum
 - Of the two-field functional $I(\boldsymbol{u}, \boldsymbol{\sigma}) : \mathbf{H}^{1}(B_{0}) \times \mathbf{H}^{0}(B_{0}) \rightarrow \mathbb{R}$

$$I(\boldsymbol{u}, \boldsymbol{\sigma}) = \int_{B} \left[\boldsymbol{\sigma} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - U(\boldsymbol{\sigma}) \right] dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

• With the internal potential
$$U(\sigma) = \frac{1}{2}\sigma : \mathcal{H}^{-1} : \sigma = \frac{1}{2}\sigma : \mathcal{G} : \sigma$$

2009-2010

Linear elasticity: Two-field functional (2)

- Functional
$$I(\boldsymbol{u}, \boldsymbol{\sigma}) = \int_{B} \left[\boldsymbol{\sigma} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - U(\boldsymbol{\sigma}) \right] dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

Directional derivative with respect to σ _

•
$$I'(\boldsymbol{u}, \boldsymbol{\sigma}; \boldsymbol{\delta}\boldsymbol{\sigma}) = \int_{B} \left[\frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - \partial_{\boldsymbol{\sigma}} U(\boldsymbol{\sigma}) \right] \boldsymbol{\delta}\boldsymbol{\sigma} dV - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\delta}\boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS$$

- As on Neumann boundary σ is known, this equation holds for $\forall \delta \boldsymbol{\sigma} \in \mathbf{H}_{s}^{0}(B_{0}) = \{ \delta \boldsymbol{\sigma} \in \mathbf{H}^{0}(B_{0}) : \delta \boldsymbol{\sigma}(\partial_{N}B_{0}) = 0 \}$
- As $\delta \sigma$ is arbitrary in B_0 and on $\partial_D B$, equaling the derivative to zero leads to

$$- u = \bar{u} \quad \text{on } \partial_D B$$
$$- \partial_{\sigma} U(\sigma) = \mathcal{H}^{-1} : \sigma = \frac{1}{2} \left(\nabla \otimes u + u \otimes \nabla \right) \quad \text{in } B$$

Extremum of the functional satisfies the material behavior and Dirichlet BC 2009-2010

• Linear elasticity: Two-field functional (3)

- Functional
$$I(\boldsymbol{u}, \boldsymbol{\sigma}) = \int_{B} \left[\boldsymbol{\sigma} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - U(\boldsymbol{\sigma}) \right] dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

- Directional derivative with respect to δu

•
$$I'(\boldsymbol{u}, \boldsymbol{\sigma}; \delta \boldsymbol{u}) = \int_{B} \left[\boldsymbol{\sigma} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \delta \boldsymbol{u} + \delta \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) \right] dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \delta \boldsymbol{u} \, dS - \int_{\partial_{D}B} \delta \boldsymbol{u} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} \, dV$$

• $\delta \boldsymbol{u} \in \mathbf{H}_{c}^{1}(B_{0}) = \left\{ \delta \boldsymbol{u} \in \mathbf{H}^{1}(B_{0}) : \delta \boldsymbol{u} \left(\partial_{D} B_{0} \right) = 0 \right\}$

Applying integration by parts and Gauss theorem

$$I'(\boldsymbol{u}, \boldsymbol{\sigma}; \boldsymbol{\delta}\boldsymbol{u}) = \int_{\partial_N B} \boldsymbol{\delta}\boldsymbol{u} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} dV - \int_B \left[\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^T\right] \cdot \boldsymbol{\delta}\boldsymbol{u} \, dV - \int_{\partial_N B} \bar{\boldsymbol{T}} \cdot \boldsymbol{\delta}\boldsymbol{u} \, dV - \int_B \boldsymbol{b} \cdot \boldsymbol{\delta}\boldsymbol{u} \, dV$$

• As δu is arbitrary in *B* and on $\partial_N B$, equaling the derivative to zero leads to

-
$$\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^T + \boldsymbol{b} = 0$$
 in \boldsymbol{B}

 $\pmb{\sigma}\cdot \pmb{n}=ar{T}$

on $\partial_N B$

- Linear elasticity: Two-field functional (4)
 - Extremum of functional $I(\boldsymbol{u}, \boldsymbol{\sigma}) : \mathbf{H}^{1}(B_{0}) \times \mathbf{H}^{0}(B_{0}) \rightarrow \mathbb{R}$

$$I(\boldsymbol{u}, \boldsymbol{\sigma}) = \int_{B} \left[\boldsymbol{\sigma} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - U(\boldsymbol{\sigma}) \right] dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

Satisfies

$$\nabla \cdot \boldsymbol{\sigma}^{T} + \boldsymbol{b} = 0 \quad \text{in } \boldsymbol{B} \\ - \partial_{\boldsymbol{\sigma}} U(\boldsymbol{\sigma}) = \mathcal{H}^{-1} : \boldsymbol{\sigma} = \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) \text{ in } \boldsymbol{B} \\ - \boldsymbol{\sigma} \cdot \boldsymbol{n} = \bar{\boldsymbol{T}} \quad \text{on } \partial_{N} \boldsymbol{B} \\ - \boldsymbol{u} = \bar{\boldsymbol{u}} \quad \text{on } \partial_{D} \boldsymbol{B}$$

- So the extremum satisfies the equations
 - Weak form is the stationary point of the functional in $\mathbf{H}^{1}(B_{0}) \times \mathbf{H}^{0}(B_{0})$
 - Corresponds to the exact solution u^{exact} of the strong form in $C^2(B_0) \cap C^1(B_0)$, if it exists

- Linear elasticity: Three-field functional
 - Weak form of the problem can be stated as finding $\boldsymbol{u}(\boldsymbol{X}) \in \mathbf{H}^{1}(B_{0})$ such that $a(\boldsymbol{u}, \delta \boldsymbol{u}) = b(\delta \boldsymbol{u}) \quad \forall \delta \boldsymbol{u} \in \mathbf{H}^{1}_{c}(B_{0}) \subset \mathbf{H}^{1}(B_{0})$
 - The solution corresponds to the extremum
 - Of the three-field functional $I(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon})$: $\mathbf{H}^{1}(B_{0}) \times \mathbf{H}^{0}(B_{0}) \times \mathbf{H}^{0}(B_{0}) \to \mathbb{R}$

$$I(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}) = \int_{B} \left\{ U(\boldsymbol{\varepsilon}) + \boldsymbol{\sigma} : \left[\frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - \boldsymbol{\varepsilon} \right] \right\} dV - \int_{\partial_{D}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

• With the internal potential $U(\boldsymbol{\varepsilon}) = \frac{1}{2}\boldsymbol{\varepsilon}: \mathcal{H}: \boldsymbol{\varepsilon}$

• Linear elasticity: Three-field functional (2)

- Functional
$$I(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}) = \int_{B} \left\{ U(\boldsymbol{\varepsilon}) + \boldsymbol{\sigma} : \left[\frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - \boldsymbol{\varepsilon} \right] \right\} dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

• Directional derivative with respect to $\boldsymbol{\sigma}$

$$I'(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}; \boldsymbol{\delta}\boldsymbol{\sigma}) = \int_{B} \boldsymbol{\delta}\boldsymbol{\sigma} : \left[\frac{1}{2}\left(\boldsymbol{\nabla}\otimes\boldsymbol{u} + \boldsymbol{u}\otimes\boldsymbol{\nabla}\right) - \boldsymbol{\varepsilon}\right] \, dV - \int_{\partial_{D}B} [\boldsymbol{u} - \bar{\boldsymbol{u}}] \cdot \boldsymbol{\delta}\boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS$$

- As on Neumann boundary σ is known, this equation holds for $\forall \delta \boldsymbol{\sigma} \in \mathbf{H}_{s}^{0}(B_{0}) = \{\delta \boldsymbol{\sigma} \in \mathbf{H}^{0}(B_{0}) : \delta \boldsymbol{\sigma}(\partial_{N}B_{0}) = 0\}$
- As $\delta \sigma$ is arbitrary in B_0 and on $\partial_D B$, equaling the derivative to zero leads to

$$\begin{array}{ll} - \ \boldsymbol{u} = \bar{\boldsymbol{u}} & \text{on } \partial_D \boldsymbol{B} \\ - \ \boldsymbol{\varepsilon} = \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) & \text{ in } \boldsymbol{B} \end{array}$$

• Extremum of the functional satisfies the compatibility and Dirichlet BC

• Linear elasticity: Three-field functional (3)

- Functional
$$I(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}) = \int_{B} \left\{ U(\boldsymbol{\varepsilon}) + \boldsymbol{\sigma} : \left[\frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - \boldsymbol{\varepsilon} \right] \right\} dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

• Directional derivative with respect to ε

$$I'(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}; \boldsymbol{\delta\varepsilon}) = \int_{B} \left[\partial_{\boldsymbol{\varepsilon}} U(\boldsymbol{\varepsilon}) - \boldsymbol{\sigma}\right] : \boldsymbol{\delta\varepsilon} \ dV$$

• As $\delta \varepsilon$ is arbitrary in B_0 , equaling the derivative to zero leads to

$$\boldsymbol{\sigma}=\partial_{\boldsymbol{\varepsilon}}U\left(\boldsymbol{\varepsilon}
ight)=\mathcal{H}:\boldsymbol{\varepsilon}\quad\text{in }\boldsymbol{B}$$

- As on Neumann boundary σ , and so ε , are known validity is ensured $\forall \delta \varepsilon \in \mathbf{H}_{s}^{0}(B_{0}) = \{\delta \varepsilon \in \mathbf{H}^{0}(B_{0}) : \delta \varepsilon (\partial_{N}B_{0}) = 0\}$
- Extremum of the functional satisfies the material behavior

• Linear elasticity: Three-field functional (4)

- Functional
$$I(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}) = \int_{B} \left\{ U(\boldsymbol{\varepsilon}) + \boldsymbol{\sigma} : \left[\frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - \boldsymbol{\varepsilon} \right] \right\} dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

• Directional derivative with respect to *u*

$$I'(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}; \boldsymbol{\delta}\boldsymbol{u}) = \int_{B} \boldsymbol{\sigma} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{\delta}\boldsymbol{u} + \boldsymbol{\delta}\boldsymbol{u} \otimes \boldsymbol{\nabla} \right) dV - \int_{\partial_{D}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{\delta}\boldsymbol{u} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{\delta}\boldsymbol{u} \, dV - \int_{\partial_{D}B} \boldsymbol{\delta}\boldsymbol{u} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS$$

- $\delta \boldsymbol{u} \in \mathbf{H}_{c}^{1}(B_{0}) = \left\{ \delta \boldsymbol{u} \in \mathbf{H}^{1}(B_{0}) : \delta \boldsymbol{u}(\partial_{D}B_{0}) = 0 \right\}$
- Applying integration by parts and Gauss theorem

$$\begin{split} I'\left(\boldsymbol{u}, \ \boldsymbol{\sigma}, \ \boldsymbol{\varepsilon}; \ \delta \boldsymbol{u}\right) &= -\int_{B} \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^{T} \cdot \delta \boldsymbol{u} \, dV + \int_{\partial_{N}B} \delta \boldsymbol{u} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dV - \\ \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \delta \boldsymbol{u} \, dS - \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} \, dV \end{split}$$

• Linear elasticity: Three-field functional (5)

- Functional
$$I(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}) = \int_{B} \left\{ U(\boldsymbol{\varepsilon}) + \boldsymbol{\sigma} : \left[\frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - \boldsymbol{\varepsilon} \right] \right\} dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

• Directional derivative with respect to u, integration by parts and Gauss theorem

$$I'(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}; \boldsymbol{\delta u}) = -\int_{B} \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^{T} \cdot \boldsymbol{\delta u} \, dV + \int_{\partial_{N}B} \boldsymbol{\delta u} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dV - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{\delta u} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{\delta u} \, dV$$

• As δu is arbitrary in B_0 and on $\partial_N B$, equaling the derivative to zero leads to

–
$$\pmb{\sigma}\cdot \pmb{n}=ar{\pmb{T}}$$
 on $\partial_{_N\!\pmb{B}}$

$$oldsymbol{-} oldsymbol{
abla} \cdot oldsymbol{\sigma}^T + oldsymbol{b} = 0 \quad ext{in } oldsymbol{B}$$

- Linear elasticity: Three-field functional (6)
 - Extremum of functional $I(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}) : \mathbf{H}^{1}(B_{0}) \times \mathbf{H}^{0}(B_{0}) \times \mathbf{H}^{0}(B_{0}) \to \mathbb{R}$

$$I(\boldsymbol{u}, \boldsymbol{\sigma}, \boldsymbol{\varepsilon}) = \int_{B} \left\{ U(\boldsymbol{\varepsilon}) + \boldsymbol{\sigma} : \left[\frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) - \boldsymbol{\varepsilon} \right] \right\} dV - \int_{\partial_{D}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} \, dS - \int_{\partial_{D}B} \left[\boldsymbol{u} - \bar{\boldsymbol{u}} \right] \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} \, dS - \int_{B} \boldsymbol{b} \cdot \boldsymbol{u} \, dV$$

Satisfies

-
$$\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^T + \boldsymbol{b} = 0$$
 in \boldsymbol{B}

$$- \sigma = \partial_{\boldsymbol{\varepsilon}} U(\boldsymbol{\varepsilon}) = \mathcal{H} : \boldsymbol{\varepsilon} \text{ in } \boldsymbol{B}$$
$$- \boldsymbol{\varepsilon} = \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) \text{ in } \boldsymbol{B}$$

- $u = ar{u}$ on $\partial_D B$
- So the extremum satisfies the equations
 - Weak form is the stationary point of the functional in $\mathbf{H}^{1}(B_{0}) \times \mathbf{H}^{0}(B_{0}) \times \mathbf{H}^{0}(B_{0})$
 - Corresponds to the exact solution u^{exact} of the strong form in $C^2(B_0) \cap C^1(B_0)$, if it exists

Weak form of the continuum equations for beams

• Euler-Bernoulli beam equations

$$- \frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = f(x) \text{ for } x \text{ in }]0 L[$$

- Boundary conditions

•
$$-\frac{\partial}{\partial x} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) \Big|_{0,L} = \bar{T}_z \Big|_{0,L}$$
 or $\boldsymbol{u}_z \Big|_{0,L} = \bar{\boldsymbol{u}}_z \Big|_{0,L}$
• $-EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \Big|_{0,L} = \bar{M}_{xx} \Big|_{0,L}$ or $\partial_x \boldsymbol{u}_z \Big|_{0,L} = \bar{\theta} \Big|_{0,L}$

- Let us define the boundaries such that
 - Displacement constrained on $\partial_U L$ & vertical load known on $\partial_N L = \partial L \setminus \partial_U L$
 - Rotation constrained on $\partial_T L$ & momentum known on $\partial_M L = \partial L \setminus \partial_T L$
- Exact solution can be found as $oldsymbol{u}_z^{ ext{exact}} \in \mathrm{H}^4\left(\left] 0 \; L \right[
 ight)$

Weak form of the continuum equations for beams

- Weak form
 - For x in]0 L[$\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = f(x)$

 $u_{z} = 0$ $du_{z}/dx = 0$ L T_{z} M > 0

Multiply the equation by

$$\delta \boldsymbol{u}_{z} \in \mathbf{H}_{c}^{2}\left(\left]0\;L\right[\right) = \left\{\delta \boldsymbol{u}_{z} \in \mathbf{H}^{2}\left(\left]0\;L\right[\right)\;:\; \left.\delta \boldsymbol{u}_{z}\right|_{\partial_{U}L} = \left.\partial_{x}\delta \boldsymbol{u}_{z}\right|_{\partial_{T}L} = 0\right\}$$

and integrate the product on the beam length

$$\Longrightarrow \int_{0}^{L} \frac{\partial^{2} u_{z}}{\partial x^{2}} \left(EI \frac{\partial^{2} u_{z}}{\partial x^{2}} \right) \delta u_{z} \, dx - \int_{0}^{L} f(x) \, \delta u_{z} \, dx = 0 \ \forall \delta u_{z} \in \mathbf{H}_{c}^{2} \left(\left] 0 \ L \right[\right)$$

• Integrations by parts

$$\implies \int_{0}^{L} EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2} \delta \boldsymbol{u}_{z}}{\partial x^{2}} dx + \frac{\partial}{\partial x} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \delta \boldsymbol{u}_{z} \Big|_{0}^{L} - \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \Big|_{0}^{L} - \int_{0}^{L} f(x) \,\delta \boldsymbol{u}_{z} \, dx = 0 \quad \forall \delta \boldsymbol{u}_{z} \in \mathbf{H}_{c}^{2}(]0 \ L[)$$

2009-2010

- Weak form (2)
 - Starting from

$$\int_{0}^{L} EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2} \delta \boldsymbol{u}_{z}}{\partial x^{2}} dx + \frac{\partial}{\partial x} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \delta \boldsymbol{u}_{z} \Big|_{0}^{L} - \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \Big|_{0}^{L} - \int_{0}^{L} f(x) \,\delta \boldsymbol{u}_{z} \, dx = 0 \quad \forall \delta \boldsymbol{u}_{z} \in \mathbf{H}_{c}^{2} \left(\left] 0 \ L \right[\right)$$

$$\implies \int_{0}^{L} EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2} \delta \boldsymbol{u}_{z}}{\partial x^{2}} dx = \int_{0}^{L} f(x) \,\delta \boldsymbol{u}_{z} \,dx - \frac{\partial}{\partial x} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) n_{x} \delta \boldsymbol{u}_{z} \Big|_{\partial_{N}L} + \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} n_{x} \Big|_{\partial_{M}L} \quad \forall \delta \boldsymbol{u}_{z} \in \mathbf{H}_{c}^{2} \left(\left[0 \right] L \right] \right)$$

• With

$$\begin{pmatrix} -\frac{\partial}{\partial x} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = \bar{T}_z \quad \text{on } \partial_N \boldsymbol{B} \\ -EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} = \bar{M}_{xx} \text{ on } \partial_M \boldsymbol{B} \end{pmatrix}$$

• Weak form (3)

- Combining previous expressions leads to the weak form statement:
 - Finding $oldsymbol{u}_z\in\mathrm{H}^2\left(\left]0\;L[
 ight)$ and not in H^4 such that

•
$$\int_{0}^{L} EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2} \delta \boldsymbol{u}_{z}}{\partial x^{2}} dx = \int_{0}^{L} f(x) \,\delta \boldsymbol{u}_{z} \,dx + n_{x} \bar{T}_{z} \,\delta \boldsymbol{u}_{z} \big|_{\partial_{N}L} + n_{x} \bar{M}_{xx} \frac{\partial \left(-\delta \boldsymbol{u}_{z}\right)}{\partial x} \Big|_{\partial_{M}L} \quad \forall \delta \boldsymbol{u}_{z} \in \mathbf{H}_{c}^{2}\left(\left[0 \ L\right]\right)$$

- Remarks
• For small deflections
$$\theta_y = -\frac{\partial u_z}{\partial x}$$
 $u_z = 0$
 $du_z/dx = 0$

- For sufficiently smooth loadings and boundary conditions
 - A solution in $H^2(]0 L[)$ can be found
 - A solution in $C^4(]0 L[)$ cannot always by found

55

L

• Bilinear form

Let us define the bilinear form:

$$a\left(\boldsymbol{u}_{z},\,\boldsymbol{v}_{z}\right) = \int_{0}^{L} EI \frac{\partial^{2}\boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2}\boldsymbol{v}_{z}}{\partial x^{2}} \, dx \quad : \mathbf{H}^{2}\left(\left[0\,L\right]\right) \times \mathbf{H}^{2}\left(\left[0\,L\right]\right) \to \mathbb{R}$$

• Which is symmetrical $a\left(\boldsymbol{u}_{z},\,\boldsymbol{v}_{z}
ight)=a\left(\boldsymbol{v}_{z},\,\boldsymbol{u}_{z}
ight)$ &

- Positive $a(\boldsymbol{u}_z, \, \boldsymbol{u}_z) > 0 \; \forall \boldsymbol{u}_z \in \mathrm{H}^2(]0 \; L[), \; \boldsymbol{u}_z \neq 0$
- Let us define the linear form $\mathrm{H}^2\left(\left]0\;L[\right)
 ightarrow\mathbb{R}$:

$$b(\boldsymbol{v}_{z}) = \int_{0}^{L} f(x) \boldsymbol{v}_{z} dx + n_{x} \bar{T}_{z} \boldsymbol{v}_{z} \big|_{\partial_{N}L} + n_{x} \bar{M}_{xx} \frac{\partial(-\boldsymbol{v}_{z})}{\partial x} \Big|_{\partial_{M}L}$$

- Weak form of the problem can be stated as finding $u_z \in H^2(]0 L[)$ such that $a(u_z, \delta u_z) = b(\delta u_z) \quad \forall \delta u_z \in H^2_c(]0 L[) \subset H^2(]0 L[)$

Weak form of the continuum equations for beams

One-field functional

$$- \text{ Solution } \boldsymbol{u}_{z} \in \mathrm{H}^{2}\left(\left]0\ L\right[\right) \text{ of the bilinear form} \\ a\left(\boldsymbol{u}_{z},\ \delta\boldsymbol{u}_{z}\right) = b\left(\delta\boldsymbol{u}_{z}\right) \quad \forall \delta\boldsymbol{u}_{z} \in \mathrm{H}^{2}_{c}\left(\left]0\ L\right[\right) \subset \mathrm{H}^{2}\left(\left]0\ L\right[\right) \\ \left\{ \begin{array}{l} a\left(\boldsymbol{u}_{z},\ \boldsymbol{v}_{z}\right) = \int_{0}^{L} EI \frac{\partial^{2}\boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2}\boldsymbol{v}_{z}}{\partial x^{2}} \, dx \\ b\left(\boldsymbol{v}_{z}\right) = \int_{0}^{L} f\left(x\right) \boldsymbol{v}_{z} \, dx + n_{x} \bar{T}_{z} \boldsymbol{v}_{z} \right|_{\partial_{N}L} + n_{x} \bar{M}_{xx} \frac{\partial\left(-\boldsymbol{v}_{z}\right)}{\partial x} \right|_{\partial_{M}L} \end{array} \right\}$$

- Is the extremum of the one-field functional

$$I(\boldsymbol{u}_{z}) = \int_{0}^{L} \frac{EI}{2} \left(\frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right)^{2} dx - \int_{0}^{L} f(x) \boldsymbol{u}_{z} dx - n_{x} \bar{T}_{z} \boldsymbol{u}_{z} \Big|_{\partial_{N}L} - n_{x} \bar{M}_{xx} \frac{\partial (-\boldsymbol{u}_{z})}{\partial x} \Big|_{\partial_{M}L} : \mathrm{H}^{2}(]0 \ L[) \to \mathbb{R}$$

- Indeed $I'(\boldsymbol{u}_z; \, \delta \boldsymbol{u}_z) = a(\boldsymbol{u}_z, \, \delta \boldsymbol{u}_z) b(\delta \boldsymbol{u}_z) = 0$
- As u_z is known on $\partial_N L \& \partial_x u_z$ on $\partial_M L$

- δu_z belongs to H_c^2

Two-field functional

- Functional $I(\boldsymbol{u}_z, M_{xx})$: $\mathrm{H}^2(]0 L[) \times \mathrm{H}^0(]0 L[) \to \mathbb{R}$

$$I(\boldsymbol{u}_{z}, M_{xx}) = \int_{0}^{L} \left[M_{xx} \frac{\partial^{2} (-\boldsymbol{u}_{z})}{\partial x^{2}} - U(M_{xx}) \right] dx - \int_{0}^{L} f(x) \boldsymbol{u}_{z} dx - n_{x} \bar{T}_{z} \boldsymbol{u}_{z} \big|_{\partial_{N}L} - n_{x} \bar{M}_{xx} \frac{\partial (-\boldsymbol{u}_{z})}{\partial x} \Big|_{\partial_{M}L} + n_{x} \partial_{x} M_{xx} (\boldsymbol{u}_{z} - \bar{\boldsymbol{u}}_{z}) \big|_{\partial_{U}L} - n_{x} M_{xx} \left[\frac{\partial (-\boldsymbol{u}_{z})}{\partial x} - \bar{\theta}_{y} \right] \Big|_{\partial_{T}L}$$

- With the internal energy $U(M_{xx}) = \frac{M_{xx}^2}{2EI}$ - Bending moment $M_{xx} = EI\kappa = EI\frac{\partial^2(-\boldsymbol{u}_z)}{\partial x^2}$ (obtained at the extremum)
- Solution of the weak form corresponds to the stationary point of the functional
 - See annex I

- Three-field functional
 - Functional $I(\boldsymbol{u}_z, M_{xx}, \kappa)$: $\mathrm{H}^2(]0 L[) \times \mathrm{H}^0(]0 L[) \times \mathrm{H}^0(]0 L[) \to \mathbb{R}$

$$I(\boldsymbol{u}_{z}, M_{xx}, \kappa) = \int_{0}^{L} \left[U(\kappa) - M_{xx} \left(\kappa + \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \right] dx - \int_{0}^{L} f(x) \boldsymbol{u}_{z} dx - n_{x} \bar{T}_{z} \boldsymbol{u}_{z} \big|_{\partial_{N}L} - n_{x} \bar{M}_{xx} \frac{\partial (-\boldsymbol{u}_{z})}{\partial x} \big|_{\partial_{M}L} + n_{x} \partial_{x} M_{xx} (\boldsymbol{u}_{z} - \bar{\boldsymbol{u}}_{z}) \big|_{\partial_{U}L} - n_{x} M_{xx} \left[\frac{\partial (-\boldsymbol{u}_{z})}{\partial x} - \bar{\theta}_{y} \right] \Big|_{\partial_{T}L}$$

- With the internal energy $U(\kappa) = \frac{EI}{2}\kappa^2$
- Solution of the weak form corresponds to the stationary point of the functional
 - See annex II

- General weak form of linear elasticity
 - Weak form of the problem can be stated as finding $\boldsymbol{u}(\boldsymbol{X}) \in \mathbf{H}^{1}(B_{0})$ such that $a(\boldsymbol{u}, \delta \boldsymbol{u}) = b(\delta \boldsymbol{u}) \quad \forall \delta \boldsymbol{u} \in \mathbf{H}^{1}_{c}(B_{0}) \subset \mathbf{H}^{1}(B_{0})$

$$\text{With} \begin{cases} a\left(\boldsymbol{u},\,\boldsymbol{v}\right) = \int_{B} \frac{1}{2}\left(\boldsymbol{\nabla}\otimes\boldsymbol{v} + \boldsymbol{v}\otimes\boldsymbol{\nabla}\right) : \mathcal{H}: \frac{1}{2}\left(\boldsymbol{\nabla}\otimes\boldsymbol{u} + \boldsymbol{u}\otimes\boldsymbol{\nabla}\right) dV \\ b\left(\boldsymbol{v}\right) = \int_{\partial_{N}B} \bar{\boldsymbol{T}}\cdot\boldsymbol{v}\,dS + \int_{B} \boldsymbol{b}\cdot\boldsymbol{v}\,dV \end{cases}$$

- Finite-element method
 - Instead of seeking $\boldsymbol{u}(\boldsymbol{X}) \in \mathbf{H}^{1}(B_{0})$, $\forall \delta \boldsymbol{u} \in \mathbf{H}^{1}_{c}(B_{0})$
 - We are particularizing
 - The solution $u \rightarrow u_h$: test functions
 - The virtual displacements $\delta u \rightarrow \delta u_h$: trial functions
 - in a manifold which is
 - A polynomial approximation
 - The same for test and trial functions: Galerkin method
 - Built on an approximation B_h of the body B: The finite-element discretization

Finite element discretization of the weak form

- Finite-element discretization
 - Approximation of the body
 - Reference configuration $B_{0h} = \bigcup_{1}^{E} \bar{\Omega}_{0}^{e}$
 - Similar in configuration *B*

– With

- Interior of one element $\ \Omega_0^e$ with $\ \Omega_0^e \cap_{\forall e' \neq e} \ \Omega_0^{e'} = 0$
- Boundary of one element $\partial\Omega_0^e$
- $\bar{\Omega}_0^e = \Omega_0^e \cap \partial \Omega_0^e$
- Dirichlet boundary of an element (can be empty): $\partial_D \Omega_0^e = \partial \Omega_0^e \cap \partial_D B_{0h} = 0$

 Ω^{l}

 $\partial_N B$

 Ω^2

 B_h

R

Oe

- Neumann boundary of an element (can be empty): $\partial_N \Omega_0^e = \partial \Omega_0^e \cap \partial_N B_{0h} = 0$
- Characteristic size
 - Size of an element $h_e = \frac{\Omega_0^e}{\partial \Omega_0^e}$

• Size of the mesh
$$h_{\max} = \max_{e} \left(h_e = \frac{\Omega_0^e}{\partial \Omega_0^e} \right)$$

61

 $u = ar{u}$

 $\partial_D B$

Finite element discretization of the weak form

T $\partial_N b$

 Ω^e

- Polynomial approximation
 - The approximation should be
 - In $\mathbf{H}^{1}(B_{0h})$ on the whole body (due to the weak form statement)
 - Meaning (absolute) continuity should be

ensured

- Meaning (absolute) continuity of the derivative is not always ensured

 $\partial_N B$

 Ω^{I}

 Ω^2

 \boldsymbol{B}_h

B

- A polynomial approximation $\mathbb{P}^{k}(\Omega_{0}^{e})$ of degree up to k on each element
- Eventually
 - Test functions $\boldsymbol{u}_h \in X_h^k$ with $X_h^k = \left\{ \boldsymbol{u}_h \in \mathbf{H}^1(B_{0h}) : \boldsymbol{u}_h|_{\Omega_0^e} \in \mathbb{P}^k(\Omega_0^e) \ \forall \Omega_0^e \in B_{0h} \right\} \subset \mathbf{H}^1(B_{0h})$ • Trial functions $\delta \boldsymbol{u}_h \in X_h^k$

with
$$X_c^k = \left\{ \delta \boldsymbol{u}_h \in X_h^k : \delta \boldsymbol{u}_h |_{\partial_D \Omega_0^e} = 0 \ \forall \Omega_0^e \in B_{0h} \right\} \subset \mathbf{H}_c^1 \left(B_{0h} \right)$$

62

 $\partial_D B$

 $u = ar{u}$

Finite element discretization of the weak form

- Remark
 - Solution of the strong form: u^{exact} in $C^2(B_0) \cap C^1(B_0)$, if it exists
 - Solution of the general weak form: $oldsymbol{u}\left(oldsymbol{X}
 ight)\in\mathbf{H}^{1}\left(B_{0}
 ight)$
 - Corresponds to u^{exact} in $C^2(B_0) \cap C^1(B_0)$, if it exists
 - Solution of the FE-approximation: $oldsymbol{u}_{h}\left(oldsymbol{x}
 ight)\in X_{h}^{k}$
 - Verifies the strong form only on average

- Does the FE weak form converge toward the exact solution?
 - First mandatory property: consistency
 - The exact solution of the problem u^{exact} in $C^2(B_0)\cap C^1(B_0)$, which satisfies the strong form, should also satisfy $a(u_h, \delta u_h) = b(\delta u_h) \quad \forall \delta u_h \in X_c^k$
 - Proof

-
$$a\left(\boldsymbol{u}^{\text{exact}}, \, \delta \boldsymbol{u}_{h}\right) = \sum_{e} \int_{\Omega^{e}} \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \delta \boldsymbol{u}_{h} + \delta \boldsymbol{u}_{h} \otimes \boldsymbol{\nabla}\right) : \mathcal{H} :$$

 $\frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u}^{\text{exact}} + \boldsymbol{u}^{\text{exact}} \otimes \boldsymbol{\nabla}\right) dV$
- As for the exact solution $\mathcal{H} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u}^{\text{exact}} + \boldsymbol{u}^{\text{exact}} \otimes \boldsymbol{\nabla}\right) = \boldsymbol{\sigma}$
 $\implies a\left(\boldsymbol{u}^{\text{exact}}, \, \delta \boldsymbol{u}_{h}\right) = \int_{B_{h}} \boldsymbol{\nabla} \otimes \delta \boldsymbol{u}_{h} : \boldsymbol{\sigma}^{T} dV$
 $= -\int_{B_{h}} \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^{T} \cdot \delta \boldsymbol{u}_{h} + \int_{\partial B_{h}} \delta \boldsymbol{u}_{h} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{n} dS$
- As $\delta \boldsymbol{u}_{h} \in X_{c}^{k}$, $\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^{T} + \boldsymbol{b} = 0 \ \forall \boldsymbol{X} \in B_{0}$ & $\boldsymbol{\sigma} \cdot \boldsymbol{n} = \bar{T} \ \forall \boldsymbol{X} \in \partial_{N} B_{0}$
 $\implies a\left(\boldsymbol{u}^{\text{exact}}, \, \delta \boldsymbol{u}_{h}\right) = \int_{B_{h}} \boldsymbol{b} \cdot \delta \boldsymbol{u}_{h} + \int_{\partial_{N} B_{h}} \delta \boldsymbol{u}_{h} \cdot \bar{T} dS = b\left(\delta \boldsymbol{u}_{h}\right)$

2009-2010

- Does the FE weak form converge toward the exact solution (2)?
 - Second mandatory property: stability
 - The deformation energy should be bounded by (half) the work of external forces
 - For a conservative formulation the equality should be obtained
 - Proof
 - Let us assume constrained displacements (on $\partial_D B$) equal to zero, so $oldsymbol{u}_h \in X^k_c$
 - The energy norm (twice the internal energy) : $\mathbf{H}_{c}^{1}(B_{0h}) \to \mathbb{R}^{+}$ is defined as $\||\boldsymbol{u}\||^{2} = \sum_{e} \left\|\sqrt{\mathcal{H}}: \boldsymbol{\nabla} \otimes \boldsymbol{u}\right\|_{\mathbf{L}^{2}(\Omega^{e})}^{2}$

» This is a norm as it is equal to zero only if u=0 on B_{0h} (in $\mathrm{H}^{1}_{c}\left(B_{0h}\right)$)

- Considering $\boldsymbol{u}_h \in X_c^k \subset \mathbf{H}_c^1(B_{0h})$ a particular choice for $\delta \boldsymbol{u}_h \in X_c^k$

$$W_{\text{ext}} = \int_{B_h} \boldsymbol{b} \cdot \boldsymbol{u}_h + \int_{\partial_N B_h} \boldsymbol{u}_h \cdot \bar{\boldsymbol{T}} dS = b\left(\boldsymbol{u}_h\right)$$

- The bilinear form allows to write

$$W_{\text{ext}} = b(\boldsymbol{u}_h) = a(\boldsymbol{u}_h, \, \boldsymbol{u}_h) = \||\boldsymbol{u}_h\||^2$$

- Does the FE weak form converge toward the exact solution (3)?
 - Third property: what is the convergence rate toward the exact solution?
 - Some preliminary results

- Energy norm
$$\||\boldsymbol{u}\||^2 = \sum_e \left\|\sqrt{\mathcal{H}}: \boldsymbol{\nabla} \otimes \boldsymbol{u}\right\|_{\mathbf{L}^2(\Omega^e)}^2 : \mathbf{H}_c^1(B_{0h}) \to \mathbb{R}^+$$

– Upper bound of the bilinear form in $\mathbf{H}^1_c imes \mathbf{H}^1_c o \mathbb{R}$

$$|a(\boldsymbol{u},\,\boldsymbol{v})| = \left|\sum_{e} \int_{\Omega^{e}} \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{v} + \boldsymbol{v} \otimes \boldsymbol{\nabla}\right) : \mathcal{H} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla}\right) dV$$

$$\implies |a(\boldsymbol{u}, \boldsymbol{v})| \leq \sum_{e} \left| \int_{\Omega^{e}} \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{v} + \boldsymbol{v} \otimes \boldsymbol{\nabla} \right) : \mathcal{H} : \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right) dV$$
$$\implies |a(\boldsymbol{u}, \boldsymbol{v})| \leq \sum_{e} \left\| \sqrt{\mathcal{H}} : \boldsymbol{\nabla} \otimes \boldsymbol{u} \right\|_{\mathbf{L}^{2}(\Omega^{e})} \left\| \sqrt{\mathcal{H}} : \boldsymbol{\nabla} \otimes \boldsymbol{v} \right\|_{\mathbf{L}^{2}(\Omega^{e})}$$

» Using the Cauchy-Swartz inequality

$$|a(\boldsymbol{u}, \boldsymbol{v})| \leq \sqrt{\sum_{e} \left\| \sqrt{\mathcal{H}} : \boldsymbol{\nabla} \otimes \boldsymbol{u} \right\|_{\mathbf{L}^{2}(\Omega^{e})}^{2} \sum_{e'} \left\| \sqrt{\mathcal{H}} : \boldsymbol{\nabla} \otimes \boldsymbol{v} \right\|_{\mathbf{L}^{2}(\Omega^{e'})}^{2}}$$

 $\implies |a\left(oldsymbol{u}, \, oldsymbol{v}
ight)| \leq \||oldsymbol{u}|\|\, \||oldsymbol{v}|\|$

- Does the FE weak form converge toward the exact solution (4)?
 - Third property: what is the convergence rate toward the exact solution (2)?
 - Some preliminary results (2)
 - Orthogonality relation
 - » By linearity: $a\left(\boldsymbol{u}_{h}-\boldsymbol{u}^{\mathrm{exact}},\,\boldsymbol{v}_{h}\right)=a\left(\boldsymbol{u}_{h},\,\boldsymbol{v}_{h}\right)-a\left(\boldsymbol{u}^{\mathrm{exact}},\,\boldsymbol{v}_{h}\right)$
 - » Using consistency & weak form statement leads to

$$a\left(\boldsymbol{u}_{h}-\boldsymbol{u}^{\mathrm{exact}},\,\boldsymbol{v}_{h}\right)=b\left(\boldsymbol{v}_{h}\right)-b\left(\boldsymbol{v}_{h}\right)=0\;\;\forall\boldsymbol{u}_{h},\;\boldsymbol{v}_{h}\in X_{c}^{k}$$

- Interpolation $\boldsymbol{u}^{k}\in X_{c}^{k}$ of the exact solution $\boldsymbol{u}^{\mathrm{exact}}\left(\boldsymbol{X}
ight)\in\mathbf{H}_{c}^{2}\left(B_{0}
ight)$

in the FE representation is defined such that

$$\int_{B_h} \left(\boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^k \right) \cdot \boldsymbol{v} \, dV = 0 \; \forall \boldsymbol{v} \in X_c^k$$

- Interpolation theory: for $\boldsymbol{u}^k \in \mathbb{P}^k (\Omega_0^e)$ interpolating $\boldsymbol{u}^{\text{exact}} \in \mathbf{H}^{k+1} (\Omega_0^e)$ it can be shown* that $\|\boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^k\|_{\mathbf{H}^q (\Omega_0^e)} \leq Ch_e^{k+1-q} \|\boldsymbol{u}^{\text{exact}}\|_{\mathbf{H}^{k+1} (\Omega_0^e)}$ with *C* independent on the element size h_e and $\forall 0 \leq q \leq k+1$

*Ciarlet PG. The Finite Element Method for Elliptic Problems. North-Holland: Amsterdam, 1978, ISBN 0 4448 5028 7

- Does the FE weak form converge toward the exact solution (5)?
 - Third property: what is the convergence rate toward the exact solution (3)?
 - Some preliminary results: Summary

- Energy norm
$$\||\boldsymbol{u}\||^2 = \sum_{e} \left\|\sqrt{\mathcal{H}}: \boldsymbol{\nabla} \otimes \boldsymbol{u}\right\|_{\mathbf{L}^2(\Omega^e)}^2 : \mathbf{H}_c^1(B_{0h}) \to \mathbb{R}^+$$

– Upper bound of the bilinear form in $\mathbf{H}_{c}^{1} imes \mathbf{H}_{c}^{1}
ightarrow \mathbb{R}$: $|a\left(oldsymbol{u}, oldsymbol{v}
ight)| \leq \||oldsymbol{u}|\| \, \||oldsymbol{v}|\|$

- Orthogonality $a\left(\boldsymbol{u}_{h}-\boldsymbol{u}^{\mathrm{exact}},\,\boldsymbol{v}_{h}
 ight)=0 \;\;\forall \boldsymbol{u}_{h},\; \boldsymbol{v}_{h}\in X_{c}^{k}$
- Interpolation theory: for $\boldsymbol{u}^{k} \in \mathbb{P}^{k}\left(\Omega_{0}^{e}\right)$ interpolating $\boldsymbol{u}^{\mathrm{exact}} \in \mathbf{H}^{k+1}\left(\Omega_{0}^{e}\right)$

one has
$$\left\| \boldsymbol{u}^{\mathrm{exact}} - \boldsymbol{u}^k \right\|_{\mathbf{H}^q\left(\Omega_0^e\right)} \leq Ch_e^{k+1-q} \left\| \boldsymbol{u}^{\mathrm{exact}} \right\|_{\mathbf{H}^{k+1}\left(\Omega_0^e\right)}$$
, $q \leq k+1$

• If the method converges

- The interpolated error $oldsymbol{e}^k = oldsymbol{u}_h - oldsymbol{u}^k$ should converge toward zero

- With an optimal rate with the mesh size
- Analyzing $\left\| \left| \boldsymbol{e}^k \right| \right\|^2 = a \left(\boldsymbol{u}_h \boldsymbol{u}^k, \, \boldsymbol{u}_h \boldsymbol{u}^k \right)$ & using the preliminary results

- Annex III: $\implies \||\boldsymbol{e}^k\|\| \leq Ch_{\max}^k |\boldsymbol{u}^{\operatorname{exact}}|_{\mathbf{H}^{k+1}(B_h)}$

- Does the FE weak form converge toward the exact solution (6)?
 - Third property: what is the convergence rate toward the exact solution (4)?
 - Convergence rate in the energy norm
 - With respect to the mesh size $\left\| \left\| \boldsymbol{e}^k \right\| \right\| \leq Ch_{\max}^k \left\| \boldsymbol{u}^{\mathrm{exact}} \right\|_{\mathbf{H}^{k+1}(B_h)}$
 - Is equal to the polynomial order

- Does the FE weak form converge toward the exact solution (7)?
 - Fourth property: what is the convergence rate of the displacement?
 - For the problem under consideration

$$- a (\boldsymbol{u}_h, \, \delta \boldsymbol{u}_h) = b (\delta \boldsymbol{u}_h) \quad \forall \delta \boldsymbol{u}_h \in X_c^k$$

- With $b (\boldsymbol{v}_h) = \sum_e \int_{\partial_N \Omega^e} \bar{\boldsymbol{T}} \cdot \boldsymbol{v}_h \, dS + \sum_e \int_{\Omega^e} \boldsymbol{b} \cdot \boldsymbol{v}_h \, dV$

• Let us consider a dual problem governed by loadings ($ar{m{T}}^d$, $m{b}^d$), with

$$- b^{d}(\boldsymbol{v}_{h}) = \sum_{e} \int_{\partial_{N}\Omega^{e}} \bar{\boldsymbol{T}}^{d} \cdot \boldsymbol{v}_{h} \, dS + \sum_{e} \int_{\Omega^{e}} \boldsymbol{b}^{d} \cdot \boldsymbol{v}_{h} \, dV$$

- With \boldsymbol{u}_h^d the FE solution satisfying $a\left(\boldsymbol{u}_h^d,\,\delta\boldsymbol{u}_h\right)=b^d\left(\delta\boldsymbol{u}_h\right)$ $\forall\delta\boldsymbol{u}_h\in X_c^k$

– With $oldsymbol{u}^{d,\,k}$ the interpolation in X^k_c of the exact solution $oldsymbol{u}^{d,\,\mathrm{exact}}\in\mathbf{H}^2_c\left(B_0
ight)$

of the dual problem

- Let us consider the error of the initial problem: $m{e}=m{u}_h-m{u}^{ ext{exact}}$
 - e is a possible particular choice as virtual displacement

$$\implies b^{d}\left(\boldsymbol{e}\right) = a\left(\boldsymbol{u}^{d,\,\mathrm{exact}},\,\boldsymbol{e}\right)$$

- Does the FE weak form converge toward the exact solution (8)?
 - Fourth property: what is the convergence rate of the displacement (2)?
 - Starting from $b^{d}\left(\boldsymbol{e}\right)=a\left(\boldsymbol{u}^{d,\,\mathrm{exact}},\,\boldsymbol{e}\right)$
 - Particularize the loading of the dual problem $m{b}^d = m{e}$ & $ar{m{T}} = 0$

$$b^{d}(\boldsymbol{v}_{h}) = \sum_{e} \int_{\Omega^{e}} \boldsymbol{e} \cdot \boldsymbol{v}_{h} \, dV \implies b^{d}(\boldsymbol{e}) = \|\boldsymbol{e}\|_{\mathbf{L}^{2}(B_{0h})}^{2}$$

- Developing $~b^{d}\left(oldsymbol{e}
ight)$, annex IV

$$\implies \|\boldsymbol{e}\|_{\mathbf{L}^{2}(B_{0h})} \leq Ch_{\max}^{k+1} \left|\boldsymbol{u}^{\mathrm{exact}}\right|_{\mathbf{H}^{k+1}(B_{h})}$$

- Does the FE weak form converge toward the exact solution (9)?
 - Fourth property: what is the convergence rate of the displacement (3)?
 - Convergence rate in the L²-norm
 - With respect to the mesh size
- $\left\|\boldsymbol{e}\right\|_{\mathbf{L}^{2}(B_{0h})} \leq Ch_{\max}^{k+1} \left\|\boldsymbol{u}^{\mathrm{exact}}\right\|_{\mathbf{H}^{k+1}(B_{h})}$
- Is equal to the polynomial order+1

• Shape functions

- In order to define
 - The test functions $oldsymbol{u}_h \in X_h^k$

with $X_h^k = \left\{ \boldsymbol{u}_h \in \mathbf{H}^1\left(B_{0h}\right) : \boldsymbol{u}_h|_{\Omega_0^e} \in \mathbb{P}^k\left(\Omega_0^e\right) \ \forall \Omega_0^e \in B_{0h} \right\} \subset \mathbf{H}^1\left(B_{0h}\right)$

• The trial functions
$$\delta oldsymbol{u}_h \in X^k_c$$

with
$$X_c^k = \left\{ \delta \boldsymbol{u}_h \in X_h^k : \delta \boldsymbol{u}_h |_{\partial_D \Omega_0^e} = 0 \ \forall \Omega_0^e \in B_{0h} \right\} \subset \mathbf{H}_c^1 \left(B_{0h} \right)$$

- Polynomial shape functions $N^a(\xi)$ are defined, with
 - *a* the node number
 - ξ the coordinates in the element basis
- On one element Ω^e

•
$$\boldsymbol{u}_{h}^{e}\left(\boldsymbol{X}\right) = \sum_{a}^{n^{e}} N^{a}\left(\boldsymbol{\xi}\right) \boldsymbol{u}^{a}$$
 & $\delta \boldsymbol{u}_{h}^{e}\left(\boldsymbol{X}\right) = \sum_{a}^{n^{e}} N^{a}\left(\boldsymbol{\xi}\right) \delta \boldsymbol{u}^{a}$ for \boldsymbol{X} in Ω^{e}

- With *n^e* the number of nodes of the element
- With *u^a* the nodal displacements at node *a*
 - For adequate shape functions satisfying $N^a\left(\boldsymbol{\xi}^b\right) = \delta_{ab}$
 - Where ξ^b are the coordinates of node b

• 1-D shape functions

- Shape functions on the mesh
 - On Body B

•
$$\boldsymbol{u}_{h}(\boldsymbol{X}) = \sum_{a}^{n} N^{a}(\boldsymbol{\xi}) \boldsymbol{u}^{a}$$
 & $\delta \boldsymbol{u}_{h}(\boldsymbol{X}) = \sum_{a}^{n} N^{a}(\boldsymbol{\xi}) \delta \boldsymbol{u}^{a}$ for \boldsymbol{X} in \boldsymbol{B}

- With *n* the number of nodes of the mesh
- With *u^a* the nodal displacements at node *a*
 - For adequate shape functions satisfying $N^{a}\left(\boldsymbol{\xi}^{b}\right) = \delta_{ab}$
 - Where ξ^b are the coordinates of node *b*
- 1-D linear example

2009-2010

- Finite-element equations
 - FE formulation of the problem can be stated as finding $u_h \in X_h^k$ such that $a(u_h, \delta u_h) = b(\delta u_h) \quad \forall \delta u_h \in X_c^k$, with

•
$$\begin{cases} a\left(\boldsymbol{u}_{h},\,\boldsymbol{v}_{h}\right) = \sum_{e} \int_{\Omega^{e}} \frac{1}{2}\left(\boldsymbol{\nabla}\otimes\boldsymbol{v}_{h} + \boldsymbol{v}_{h}\otimes\boldsymbol{\nabla}\right) : \mathcal{H} : \frac{1}{2}\left(\boldsymbol{\nabla}\otimes\boldsymbol{u}_{h} + \boldsymbol{u}_{h}\otimes\boldsymbol{\nabla}\right) dV \\ b\left(\boldsymbol{v}_{h}\right) = \sum_{e} \int_{\partial_{N}\Omega^{e}} \bar{\boldsymbol{T}} \cdot \boldsymbol{v}_{h} \, dS + \sum_{e} \int_{\Omega^{e}} \boldsymbol{b} \cdot \boldsymbol{v}_{h} \, dV \\ - \text{ Using } \boldsymbol{u}_{h}\left(\boldsymbol{X}\right) = \sum_{e}^{n} N^{a}\left(\boldsymbol{\xi}\right) \boldsymbol{u}^{a} \quad \boldsymbol{\&} \quad \delta \boldsymbol{u}_{h}\left(\boldsymbol{X}\right) = \sum_{e}^{n} N^{a}\left(\boldsymbol{\xi}\right) \delta \boldsymbol{u}^{a} \quad \text{for } \boldsymbol{X} \text{ in } \boldsymbol{B} \end{cases}$$

- This is restated as finding u^a in \mathbb{R}^{3n} such that

•
$$a\left(\boldsymbol{u}^{a},\,\delta\boldsymbol{u}^{b}\right) = b\left(\delta\boldsymbol{u}^{b}\right) \;\;\forall\delta\boldsymbol{u}^{b} \in \mathbb{R}^{3n} \;:\; \left.\delta\boldsymbol{u}^{b}\right|_{\partial_{D}B_{0h}} = 0$$

$$a\left(\boldsymbol{u}^{a},\,\delta\boldsymbol{u}^{b}\right) = \left\{\sum_{e}\int_{\Omega^{e}}\boldsymbol{\nabla}N^{b}\left(\boldsymbol{\xi}\right)\cdot\boldsymbol{\mathcal{H}}\cdot\boldsymbol{\nabla}N^{a}dV\right\}:\boldsymbol{u}^{a}\otimes\delta\boldsymbol{u}^{b}$$

$$\left(\boldsymbol{\omega}^{b}\right)=\left\{\sum_{e}\int_{\Omega^{e}}\boldsymbol{\nabla}N^{b}\left(\boldsymbol{\xi}\right)\cdot\boldsymbol{\mathcal{H}}\cdot\boldsymbol{\nabla}N^{a}dV\right\}:\boldsymbol{u}^{a}\otimes\delta\boldsymbol{u}^{b}$$

• With

$$b\left(\delta\boldsymbol{u}^{b}\right) = \left\{\sum_{e} \int_{\partial_{N}\Omega^{e}} \bar{\boldsymbol{T}}N^{b}\left(\boldsymbol{\xi}\right) \, dS + \sum_{e} \int_{\Omega^{e}} \boldsymbol{b}N^{b}\left(\boldsymbol{\xi}\right) \, dV \right\} \cdot \delta\boldsymbol{u}^{b}$$

- Finite-element equations (2)
 - FE formulation of the problem can be stated as finding u^a in \mathbb{R}^{3n} such that

$$a\left(\boldsymbol{u}^{a},\,\delta\boldsymbol{u}^{b}\right) = b\left(\delta\boldsymbol{u}^{b}\right) \quad \forall \delta\boldsymbol{u}^{b} \in \mathbb{R}^{3n} : \left. \delta\boldsymbol{u}^{b} \right|_{\partial_{D}B_{0h}} = 0$$
$$\left(a\left(\boldsymbol{u}^{a},\,\delta\boldsymbol{u}^{b}\right) = \left\{ \sum_{e} \int_{\Omega^{e}} \boldsymbol{\nabla}N^{b}\left(\boldsymbol{\xi}\right) \cdot \boldsymbol{\mathcal{H}} \cdot \boldsymbol{\nabla}N^{a} dV \right\} : \boldsymbol{u}^{a} \otimes \delta\boldsymbol{u}^{b}$$

• With

(using symmetrical properties of *H*)

$$b\left(\delta\boldsymbol{u}^{b}\right) = \left\{\sum_{e} \int_{\partial_{N}\Omega^{e}} \bar{\boldsymbol{T}}N^{b}\left(\boldsymbol{\xi}\right) \, dS + \sum_{e} \int_{\Omega^{e}} \boldsymbol{b}N^{b}\left(\boldsymbol{\xi}\right) \, dV\right\} \cdot \delta\boldsymbol{u}^{b}$$

- This can be reformulated

• Using
$$a\left(\boldsymbol{u}^{a},\,\delta\boldsymbol{u}^{b}
ight)=\sum_{e}\mathbf{K}^{e,\,ab}:\boldsymbol{u}^{a}\otimes\delta\boldsymbol{u}^{b}$$
 & $b\left(\delta\boldsymbol{u}^{b}
ight)=\sum_{e}\boldsymbol{f}_{\mathrm{ext}}^{e,\,b}\cdot\delta\boldsymbol{u}^{b}$

- As δu_b is arbitrary, except for the *n*' values constrained on $\partial_D B$, the problem is finding u^a in $\mathbb{R}^{3n-n'}$ such that $\sum \mathbf{K}^{e, ab} u^a = \sum f_{\text{ext}}^{e, b}$
- Remarks:
 - This corresponds to solving a system of 3n-n' equations with 3n-n' unknowns
 - -n' should be large enough so the system is not singular

- Elementary stiffness matrix
 - For one element, the second-order tensor related to nodes *a* and *b* reads

•
$$\mathbf{K}^{e, ab} = \int_{\Omega^e} \mathbf{\nabla} N^b \left(\boldsymbol{\xi} \right) \cdot \mathcal{H} \cdot \mathbf{\nabla} N^a dV$$

- Curvilinear coordinates
 - Element and shape functions are defined in the ξ -space

• Changing frame using mapping $oldsymbol{X} = oldsymbol{\Phi}\left(oldsymbol{\xi}
ight)$ of Jacobian determinant J

$$\left\{ \begin{aligned} \boldsymbol{\nabla} N^{a} &= \frac{\partial N^{a}\left(\boldsymbol{\xi}\right)}{\partial \boldsymbol{X}} = \frac{\partial N^{a}\left(\boldsymbol{\xi}\right)}{\partial \boldsymbol{\xi}} \cdot \frac{\partial \boldsymbol{\xi}}{\partial \boldsymbol{X}} = \boldsymbol{\nabla}_{\boldsymbol{\xi}} N^{a} \cdot \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi}\right)^{-1} \\ dV &= \left|\boldsymbol{\nabla}_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi}\right| dV^{\boldsymbol{\xi}} = JdV^{\boldsymbol{\xi}} \end{aligned} \right.$$

- Elementary stiffness matrix (2)
 - Elementary second-order tensor related to nodes *a* and *b*

•
$$\mathbf{K}^{e,\,ab} = \int_{\Omega^e} \mathbf{\nabla} N^b \left(\boldsymbol{\xi} \right) \cdot \mathcal{H} \cdot \mathbf{\nabla} N^a dV$$

• Curvilinear coordinates $X = \Phi\left(\xi\right)$

$$= \begin{cases} \boldsymbol{\nabla} N^{a} = \frac{\partial N^{a} \left(\boldsymbol{\xi}\right)}{\partial \boldsymbol{X}} = \frac{\partial N^{a} \left(\boldsymbol{\xi}\right)}{\partial \boldsymbol{\xi}} \cdot \frac{\partial \boldsymbol{\xi}}{\partial \boldsymbol{X}} = \boldsymbol{\nabla}_{\boldsymbol{\xi}} N^{a} \cdot \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi}\right)^{-1} \\ dV = |\boldsymbol{\nabla}_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi}| \, dV^{\boldsymbol{\xi}} = J dV^{\boldsymbol{\xi}} \end{cases}$$

$$= Ve^{ab} \int \left(\left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} N^{b} \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi}\right)^{-1}\right) - \mathcal{U}\left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} N^{a} \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi}\right)^{-1}\right) - \mathcal{U} \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} N^{a} \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi}\right)^{-1}\right) - \mathcal{U}$$

•
$$\mathbf{K}^{e, ab} = \int_{V^{\xi}} \left(\nabla_{\boldsymbol{\xi}} N^{b} \cdot \left(\nabla_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi} \right)^{-1} \right) \cdot \mathcal{H} \cdot \left(\nabla_{\boldsymbol{\xi}} N^{a} \cdot \left(\nabla_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi} \right)^{-1} \right) J dV^{\xi}$$

- Integrating this term is not always possible in closed form
 - Complex element shapes
 - For non-linear elements, the expression is more complex
- This integration is performed considering evaluation points
 - Gauss points
 - Lobatto

• Gauss integration

• Depending on the element shape, dimension, polynomial approximation, ... there is an optimal number of Gauss points n_{pg} to capture the field

$$\int_{V^{\xi}} f dV^{\xi} \to \sum_{n=0}^{n_{pg}} f\left(\xi^n\right) w^n V^{\xi}$$

- ξ^n is the location of the n^{th} Gauss point
- w^n is the weight of the n^{th} Gauss point
- What is the optimal number?
 - Too many: computational cost
 - Not enough: hourglass modes

• Gauss integration (2)

- Hourglass modes
 - Correspond to deformation modes leading to a zero-internal energy
 - 1D-example
 - Assume
 - » Linear strain approximation
 - » Antisymmetrical deformation
 - For one Gauss-point the stiffness matrix will be equal to zero
 - So two Gauss points are required
 - 2D-example
 - Assume linear square element
 - With a single Gauss-point integration
 - For some deformation modes
 - » Deformation gradient at the center is zero
 - » Zero internal energy (zero stiffness)
 - At least 4 Gauss points are required
 - » Or hourglass control

• Gauss integration (3)

- Locking
 - Elementary stiffness matrix reads

$$\mathbf{K}^{e, ab} = \sum_{n=0}^{n_{pg}} \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} N^{b} \left(\boldsymbol{\xi}^{n} \right) \cdot \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi} \right)^{-1} \left(\boldsymbol{\xi}^{n} \right) \right) \cdot \mathcal{H} \cdot \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} N^{a} \left(\boldsymbol{\xi}^{n} \right) \cdot \left(\boldsymbol{\nabla}_{\boldsymbol{\xi}} \otimes \boldsymbol{\Phi} \right)^{-1} \left(\boldsymbol{\xi}^{n} \right) \right) J \left(\boldsymbol{\xi}^{n} \right) w^{n} V^{\boldsymbol{\xi}}$$

- 2D-example
 - Assume linear square element
 - At least 4 Gauss points are required to avoid hourglass modes
 - If a constrain is added to the system
 - Incompressibility (rubber, plasticity)
 there are more equations than unknowns and
 the solution of the system is zero deformation
- Solutions

2009-2010

- Linear element with 1 Gauss point & hourglass control
- Linear element with Selected Reduced Integration
- Higher polynomial approximation
- Internal degrees of freedom (Enhanced Assumed Strain elements)

FE weak form for beams

- The problem is finding $u_z \in \mathrm{H}^2([0 L])$ such that

$$a\left(\boldsymbol{u}_{z},\,\delta\boldsymbol{u}_{z}\right) = b\left(\delta\boldsymbol{u}_{z}\right) \quad \forall \delta\boldsymbol{u}_{z} \in \mathbf{H}_{c}^{2}\left(\left]0\;L\right[\right) \subset \mathbf{H}^{2}\left(\left]0\;L\right[\right)$$
• With
$$\begin{cases}
a\left(\boldsymbol{u}_{z},\,\boldsymbol{v}_{z}\right) = \int_{0}^{L} EI \frac{\partial^{2}\boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2}\boldsymbol{v}_{z}}{\partial x^{2}} dx \\
b\left(\boldsymbol{v}_{z}\right) = \int_{0}^{L} f\left(x\right)\boldsymbol{v}_{z} dx + n_{x}\bar{T}_{z}\boldsymbol{v}_{z}\big|_{\partial_{N}L} + n_{x}\bar{M}_{xx}\frac{\partial\left(-\boldsymbol{v}_{z}\right)}{\partial x}\big|_{\partial M}
\end{cases}$$

- Finite element approximation _
 - Let us try to write a displacement

FE formulation, with

$$u_z = 0$$

$$du_z/dx = 0$$

$$U_z = 0$$

 ∂x

ant

$$u_{zh} \in U_{h}^{k} = \left\{ u_{zh} \in \mathbf{H}^{2} \left(\left] 0 \ L \right] \right\} :$$
$$u_{zh}|_{L^{e-1} L^{e}[} \in \mathbb{P}^{k} \left(\left] L^{e-1} \ L^{e}[\right) \ \forall \left] L^{e-1} \ L^{e}[\right\} \subset \mathbf{H}^{2} \left(\left] 0 \ L[\right) \right\}$$

Is it possible?

Finite element discretization of the weak form for beams

- FE weak form for beams (2)
 - Finite element approximation (2)
 - Let us try to write a displacement

FE formulation, with

$$\boldsymbol{u}_{zh} \in U_h^k = \left\{ \boldsymbol{u}_{zh} \in \mathbf{H}^2 \left(\left] 0 \ L \right[\right) : \\ \boldsymbol{u}_{zh} \right|_{]L^{e-1} L^e[} \in \mathbb{P}^k \left(\left] L^{e-1} \ L^e[\right) \ \forall \left] L^{e-1} \ L^e[\right] \subset \mathbf{H}^2 \left(\left] 0 \ L[\right) \right] \right\}$$

 The problem is that, even for quadratic shape functions in each element, the H² condition is not ensured at inter-element boundaries

Finite element discretization of the weak form for beams

- FE weak form for beams (3)
 - Solutions
 - Special shape functions C¹]0 L[
 - Shell in 3D?
 - Considering formulation with displacement & rotation degrees of freedom
 - Requires shearing
 - More degrees of freedom

- High order equations
 - C¹ is difficult to enforce strongly
 - Solutions
 - Discontinuous Galerkin methods
 - Meshless methods
- Mesh compatibility
 - Problem of mesh definition: crack propagation, at material boundaries
 - Solutions
 - XFEM
 - Smooth Particles Hydrodynamics
- Mesh deformation
 - For large deformations
 - Solution
 - Smooth Particles Hydrodynamics

References

• References

- Books
 - Finite elements: theory, fast solvers, and applications in solid mechanics, Dietrich Braess, Cambridge Press, 2001, ISBN 0521 011957
 - The Finite Element Method: Its Basis and Fundamentals, O.C. Zienkiewicz, R.L. Taylor and J.Z. Zhu, Elsevier Butterworth-Heinemann, 2005, ISBN 0 7506 6320 0
 - The Finite Element Method for Elliptic Problems, P.G. Ciarlet. North-Holland: Amsterdam, 1978, ISBN 0 4448 5028 7

- Two-field functional for beams
 - Extremum with respect to M_{xx}

•
$$I'(\boldsymbol{u}_z, M_{xx}; \delta M_{xx}) = \int_0^L \delta M_{xx} \left[\frac{\partial^2 (-\boldsymbol{u}_z)}{\partial x^2} - \partial_{M_{xx}} U(M_{xx}) \right] dx - n_x \delta M_{xx} \left[\frac{\partial (-\boldsymbol{u}_z)}{\partial x} - \bar{\theta}_y \right] \Big|_{\partial_T L} + n_x \partial_x \delta M_{xx} \left(\boldsymbol{u}_z - \bar{\boldsymbol{u}}_z \right) \Big|_{\partial_U L}$$

- $\forall \delta M_{xx} \in \mathrm{H}_{M}^{0}(]0 L[) = \{ \delta M_{xx} \in \mathrm{H}^{0}(]0 L[) : \delta M_{xx}|_{\partial_{M}L} = 0 \}$
- Due to the arbitrary nature of δM_{xx}
 - $-\frac{\partial^2 (-\boldsymbol{u}_z)}{\partial x^2} = \partial_{M_{xx}} U(M_{xx}, T_z) = \frac{M_{xx}}{EI} \quad \text{on]0 } L\text{[, satisfying bending law} \\ -\frac{\partial (-\boldsymbol{u}_z)}{\partial x} = \bar{\theta}_y \quad \text{on } \partial_T L\text{, satisfying constrained rotations}$
 - $oldsymbol{u}_z = oldsymbol{ar{u}}_z$ on $\partial_{_U} L$, satisfying constrained displacements

- Two-field functional for beams (2)
 - Extremum with respect to u_z

•
$$I'(\boldsymbol{u}_{z}, M_{xx}; \delta \boldsymbol{u}_{z}) = \int_{0}^{L} M_{xx} \frac{\partial^{2}(-\delta \boldsymbol{u}_{z})}{\partial x^{2}} dx - \int_{0}^{L} f(x) \delta \boldsymbol{u}_{z} dx -$$

 $n_{x} \bar{T}_{z} \delta \boldsymbol{u}_{z}|_{\partial_{N}L} - n_{x} \bar{M}_{xx} \frac{\partial (-\delta \boldsymbol{u}_{z})}{\partial x}\Big|_{\partial_{M}L} - n_{x} M_{xx} \frac{\partial (-\delta \boldsymbol{u}_{z})}{\partial x}\Big|_{\partial_{T}L} +$
 $n_{x} \partial_{x} M_{xx} \delta \boldsymbol{u}_{z}|_{\partial_{U}L}$

•
$$\delta \boldsymbol{u}_{z} \in \mathrm{H}_{c}^{2}\left(\left]0 \ L\right[\right) = \left\{\delta \boldsymbol{u}_{z} \in \mathrm{H}^{2}\left(\left]0 \ L\right[\right) : \left.\delta \boldsymbol{u}_{z}\right|_{\partial_{U}L} = \left.\partial_{x}\delta \boldsymbol{u}_{z}\right|_{\partial_{T}L} = 0\right\}$$

• Integration by parts

$$I'(\boldsymbol{u}_{z}, M_{xx}; \,\delta\boldsymbol{u}_{z}) = \int_{0}^{L} -\frac{\partial^{2}M_{xx}}{\partial x^{2}}\delta\boldsymbol{u}_{z}\,dx - \int_{0}^{L}f(x)\,\delta\boldsymbol{u}_{z}\,dx - n_{x}\left[\bar{T}_{z} - \frac{\partial M_{xx}}{\partial x}\right]\delta\boldsymbol{u}_{z}\Big|_{\partial_{N}L} - n_{x}\left[\bar{M}_{xx} - M_{xx}\right]\frac{\partial\left(-\delta\boldsymbol{u}_{z}\right)}{\partial x}\Big|_{\partial_{M}L} = 0$$

- Two-field functional for beams (3)
 - Extremum with respect to \boldsymbol{u}_{z} (2) • $I'(\boldsymbol{u}_{z}, M_{xx}; \delta \boldsymbol{u}_{z}) = \int_{0}^{L} -\frac{\partial^{2} M_{xx}}{\partial x^{2}} \delta \boldsymbol{u}_{z} \, dx - \int_{0}^{L} f(x) \, \delta \boldsymbol{u}_{z} \, dx - n_{x} \left[\bar{T}_{z} - \frac{\partial M_{xx}}{\partial x} \right] \delta \boldsymbol{u}_{z} \Big|_{\partial_{NL}} - n_{x} \left[\bar{M}_{xx} - M_{xx} \right] \frac{\partial (-\delta \boldsymbol{u}_{z})}{\partial x} \Big|_{\partial_{ML}} = 0$

• With
$$\frac{\partial^2 \left(-\boldsymbol{u}_z\right)}{\partial x^2} = \partial_{M_{xx}} U\left(M_{xx}, T_z\right) = \frac{M_{xx}}{EI}$$

• Due to the arbitrary nature of δu_z

$$- \frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = f(x) \text{ on }]0 L[\text{, satisfying linear momentum} \\ - \frac{\partial}{\partial x} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = \bar{T}_z \text{ on } \partial_N L, \text{ satisfying shear loading BC} \\ - EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} = \bar{M}_{xx} \text{ on } \partial_M L, \text{ satisfying momentum loading BC}$$

_

- Three-field functional for beams
 - Extremum with respect to M_{xx}

•
$$I'(\boldsymbol{u}_z, M_{xx}, \kappa; \delta M_{xx}) = \int_0^L -\delta M_{xx} \left(\kappa + \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2}\right) dx - n_x \delta M_{xx} \left[\frac{\partial (-\boldsymbol{u}_z)}{\partial x} - \bar{\theta}_y\right]\Big|_{\partial_T L} + n_x \partial_x \delta M_{xx} \left(\boldsymbol{u}_z - \bar{\boldsymbol{u}}_z\right)\Big|_{\partial_U L} = 0$$

•
$$\forall \delta M_{xx} \in \mathcal{H}^0_M(]0 L[) = \{\delta M_{xx} \in \mathcal{H}^0(]0 L[) : \delta M_{xx}|_{\partial_M L} = 0\}$$

• Due to the arbitrary nature of δM_{xx}

$$- \kappa = -\frac{\partial^2 u_z}{\partial x^2}$$
 on]0 *L*[, satisfying bending compatibility

$$- \bar{\theta}_y = \frac{\partial (-u_z)}{\partial x}$$
 on $\partial_T L$, satisfying constrained rotations

$$- u_z = \bar{u}_z$$
 on $\partial_N L$, satisfying constrained displacements

- Three-field functional for beams (2)
 - Extremum with respect to κ

•
$$I'(\boldsymbol{u}_z, M_{xx}, \kappa; \delta\kappa) = \int_0^L \left[\partial_{\kappa} U(\kappa) - M_{xx}\right] \delta\kappa \, dx = 0$$

- $\forall \delta \kappa \in \mathcal{H}_{M}^{0}(]0 L[) = \{\delta \kappa \in \mathcal{H}^{0}(]0 L[) : \delta \kappa|_{\partial_{M}L} = 0\}$
- Due to the arbitrary nature of $\delta \kappa$
 - $\quad M_{xx} = \partial_{\kappa} U\left(\kappa\right) = EI\kappa \quad \text{on]0 L[, satisfying bending law}$

- Three-field functional for beams (3)
 - Extremum with respect to u_z

•
$$I'(\boldsymbol{u}_{z}, M_{xx}, \kappa; \delta \boldsymbol{u}_{z}) = \int_{0}^{L} \left[-M_{xx} \frac{\partial^{2} \delta \boldsymbol{u}_{z}}{\partial x^{2}} \right] dx - \int_{0}^{L} f(x) \, \delta \boldsymbol{u}_{z} \, dx - n_{x} \bar{T}_{z} \delta \boldsymbol{u}_{z} \Big|_{\partial_{NL}} - n_{x} \bar{M}_{xx} \frac{\partial \left(-\delta \boldsymbol{u}_{z} \right)}{\partial x} \Big|_{\partial_{ML}} + n_{x} \partial_{x} M_{xx} \delta \boldsymbol{u}_{z} \Big|_{\partial_{UL}} - n_{x} M_{xx} \frac{\partial \left(-\delta \boldsymbol{u}_{z} \right)}{\partial x} \Big|_{\partial_{TL}}$$

- $\delta \boldsymbol{u}_{z} \in \mathrm{H}^{2}_{c}\left(\left[0 \ L\right]\right) = \left\{\delta \boldsymbol{u}_{z} \in \mathrm{H}^{2}\left(\left[0 \ L\right]\right) : \left.\delta \boldsymbol{u}_{z}\right|_{\partial_{U}L} = \left.\partial_{x}\delta \boldsymbol{u}_{z}\right|_{\partial_{T}L} = 0\right\}$
- Integration by parts

$$I'(\boldsymbol{u}_{z}, M_{xx}, \kappa; \delta \boldsymbol{u}_{z}) = \int_{0}^{L} \left[-\frac{\partial^{2} M_{xx}}{\partial x^{2}} \right] \delta \boldsymbol{u}_{z} \, dx - \int_{0}^{L} f(x) \, \delta \boldsymbol{u}_{z} \, dx - n_{x} \left(\bar{T}_{z} + \frac{\partial M_{xx}}{\partial x} \right) \delta \boldsymbol{u}_{z} \Big|_{\partial_{N}L} - n_{x} \left(\bar{M}_{xx} - M_{xx} \right) \frac{\partial \left(-\delta \boldsymbol{u}_{z} \right)}{\partial x} \Big|_{\partial_{M}L} = 0$$

- Three-field functional for beams (4)
 - Extremum with respect to u_z (2)

•
$$I'(\boldsymbol{u}_z, M_{xx}, \kappa; \delta \boldsymbol{u}_z) = \int_0^L \left[-\frac{\partial^2 M_{xx}}{\partial x^2} \right] \delta \boldsymbol{u}_z \, dx - \int_0^L f(x) \, \delta \boldsymbol{u}_z \, dx - n_x \left(\bar{T}_z + \frac{\partial M_{xx}}{\partial x} \right) \delta \boldsymbol{u}_z \Big|_{\partial_N L} - n_x \left(\bar{M}_{xx} - M_{xx} \right) \frac{\partial \left(-\delta \boldsymbol{u}_z \right)}{\partial x} \Big|_{\partial_M L} = 0$$

• With

-
$$M_{xx} = \partial_{\kappa} U(\kappa) = EI\kappa$$

- $\kappa = -\frac{\partial^2 u_z}{\partial x^2}$

• Due to the arbitrary nature of δu_z

$$- \frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = f(x)$$
$$- \frac{\partial}{\partial x} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = \bar{T}_z$$

 $- -EI\frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} = \bar{M}_{xx}$

on]0 L[, satisfying linear momentum

on $\partial_N L$, satisfying shear loading BC

on $\partial_M L$, satisfying momentum loading BC

Annex III: Finite element discretization of the weak form

- Convergence rate in the energy norm
 - Starting from $\||\boldsymbol{e}^k|\|^2 = a\left(\boldsymbol{u}_h \boldsymbol{u}^k, \, \boldsymbol{u}_h \boldsymbol{u}^k\right)$
 - Using linearity of *a*

$$\implies \left\| \left| \boldsymbol{e}^{k} \right| \right\|^{2} = a \left(\boldsymbol{u}_{h} - \boldsymbol{u}^{\text{exact}}, \, \boldsymbol{u}_{h} - \boldsymbol{u}^{k} \right) + a \left(\boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k}, \, \boldsymbol{u}_{h} - \boldsymbol{u}^{k} \right)$$

• Using orthogonality relation ($a\left(oldsymbol{u}_h-oldsymbol{u}_{ ext{exact}}^k,oldsymbol{v}_h
ight)=0~~oralloldsymbol{u}_h,~oldsymbol{v}_h\in X_c^k$)

$$\implies \left\| \left| \boldsymbol{e}^{k} \right| \right\|^{2} = a \left(\boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k}, \, \boldsymbol{u}_{h} - \boldsymbol{u}^{k} \right)$$

• Using upper bound ($|a\left(oldsymbol{u},oldsymbol{v}
ight)|\leq \||oldsymbol{u}|\|\,\||oldsymbol{v}|\|$)

$$\Longrightarrow \left\| \left| \boldsymbol{e}^{k} \right| \right\|^{2} \leq \left\| \left| \boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k} \right| \right\| \left\| \left| \boldsymbol{u}_{h} - \boldsymbol{u}^{k} \right| \right\| = \left\| \left| \boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k} \right| \right\| \left\| \left| \boldsymbol{e}^{k} \right| \right\|$$
$$\Longrightarrow \left\| \left| \boldsymbol{e}^{k} \right| \right\|^{2} \leq \left\| \left| \boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k} \right| \right\|^{2} = \sum_{e} \left\| \sqrt{\mathcal{H}} : \boldsymbol{\nabla} \otimes \left(\boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k} \right) \right\|_{\mathbf{L}^{2}(\Omega^{e})}^{2}$$
$$\Longrightarrow \left\| \left| \boldsymbol{e}^{k} \right| \right\|^{2} \leq \left| \mathcal{H} \right| \sum_{e} \left\| \boldsymbol{\nabla} \otimes \left(\boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k} \right) \right\|_{\mathbf{L}^{2}(\Omega^{e})}^{2}$$

Annex III: Finite element discretization of the weak form

- Convergence rate in the energy norm (2)
 - $\hspace{0.1 cm} \hspace{0.1 cm} \hspace{0.1 cm} \hspace{0.1 cm} \hspace{0.1 cm} \hspace{0.1 cm} \hspace{0.1 cm} {\rm tring from } \left\| \left| \boldsymbol{e}^k \right| \right\|^2 \leq \left| \mathcal{H} \right| \sum \left\| \boldsymbol{\nabla} \otimes \left(\boldsymbol{u}^{\rm exact} \boldsymbol{u}^k \right) \right\|_{{\rm \mathbf{L}}^2(\Omega^e)}^2$
 - Using Sobolov norm definition ($\|f\|_{W^{m, p}([a, b])} = \sum_{k=0}^{m} \left\|f^{(k)}\right\|_{L^{p}([a, b])}$)

$$\Longrightarrow \left\| \left| \boldsymbol{e}^k \right| \right\|^2 \leq \left| \mathcal{H} \right| \sum_e \left\| \boldsymbol{u}^{ ext{exact}} - \boldsymbol{u}^k \right\|_{\mathbf{H}^1(\Omega^e)}^2$$

• As $\boldsymbol{u}^{k} \in \mathbb{P}^{k}\left(\Omega_{0}^{e}\right)$, assuming $\boldsymbol{u}^{\mathrm{exact}} \in \mathbf{H}^{k+1}\left(\Omega_{0}^{e}\right)$ using the interpolation

theory
$$\left(\left\|\boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k}\right\|_{\mathbf{H}^{q}\left(\Omega_{0}^{e}\right)} \leq Ch_{e}^{k+1-q} \left|\boldsymbol{u}^{\text{exact}}\right|_{\mathbf{H}^{k+1}\left(\Omega_{0}^{e}\right)}\right)$$
, with $q = 1$
 $\implies \left\|\left|\boldsymbol{e}^{k}\right|\right\|^{2} \leq C \sum_{e} h_{e}^{2k} \left|\boldsymbol{u}^{\text{exact}}\right|_{\mathbf{H}^{k+1}\left(\Omega^{e}\right)}^{2}$
 $\implies \left\|\left|\boldsymbol{e}^{k}\right|\right\| \leq Ch_{\max}^{k} \left|\boldsymbol{u}^{\text{exact}}\right|_{\mathbf{H}^{k+1}\left(B_{h}\right)}^{2}$

- Using similar argumentation for $\boldsymbol{e} = \boldsymbol{u}_h \boldsymbol{u}^{\text{exact}} \in \mathbf{H}_c^2(B_0)$ $\implies \||\boldsymbol{e}|\| \leq Ch_{\max}^k |\boldsymbol{u}^{\text{exact}}|_{\mathbf{H}^{k+1}(B_h)}$
- As $|\boldsymbol{u}^{\text{exact}} \boldsymbol{u}^{k}| \leq |\boldsymbol{e}| + |\boldsymbol{e}^{k}|$, using the 2 error estimates $\implies |||\boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k}||| \leq Ch_{\max}^{k} |\boldsymbol{u}^{\text{exact}}|_{\mathbf{H}^{k+1}(B_{h})}$

Annex IV: Finite element discretization of the weak form

- Convergence rate in the L²-norm
 - Starting from $b^{d}(\boldsymbol{e}) = a\left(\boldsymbol{u}^{d,\,\mathrm{exact}},\,\boldsymbol{e}\right) = a\left(\boldsymbol{u}^{d,\,\mathrm{exact}} \boldsymbol{u}^{d,\,k},\,\boldsymbol{e}\right) + a\left(\boldsymbol{u}^{d,\,k},\,\boldsymbol{e}\right)$
 - As *a* is symmetrical

$$\implies b^{d}(\boldsymbol{e}) = a\left(\boldsymbol{u}^{d,\,\mathrm{exact}} - \boldsymbol{u}^{d,\,k},\,\boldsymbol{e}\right) + a\left(\boldsymbol{u}_{h} - \boldsymbol{u}^{\mathrm{exact}},\,\boldsymbol{u}^{d,\,k}\right)$$

• Using orthogonality relation (
$$a(\boldsymbol{u}_h - \boldsymbol{u}^{\text{exact}}, \boldsymbol{v}_h) = 0 \quad \forall \boldsymbol{u}_h, \ \boldsymbol{v}_h \in X_c^k$$
)
 $\implies b^d(\boldsymbol{e}) = a(\boldsymbol{u}^{d, \text{exact}} - \boldsymbol{u}^{d, k}, \ \boldsymbol{e}) = a(\boldsymbol{u}^{d, \text{exact}} - \boldsymbol{u}^{d, k}, \ \boldsymbol{u}_h - \boldsymbol{u}^{\text{exact}})$
 $\implies b^d(\boldsymbol{e}) = a(\boldsymbol{u}^{d, \text{exact}} - \boldsymbol{u}^{d, k}, \ \boldsymbol{u}_h - \boldsymbol{u}^k) + a(\boldsymbol{u}^{d, \text{exact}} - \boldsymbol{u}^{d, k}, \ \boldsymbol{u}^k - \boldsymbol{u}^{\text{exact}})$

• Let us particularize the loading of the dual problem $\, m b^d = m e \,$ & ar T = 0

$$b^{d}\left(\boldsymbol{v}_{h}\right) = \sum_{e} \int_{\Omega^{e}} \boldsymbol{e} \cdot \boldsymbol{v}_{h} \, dV \implies b^{d}\left(\boldsymbol{e}\right) = \left\|\boldsymbol{e}\right\|_{\mathbf{L}^{2}\left(B_{0h}\right)}^{2}$$

 $\implies \|\boldsymbol{e}\|_{\mathbf{L}^{2}(B_{0h})}^{2} = a\left(\boldsymbol{u}^{d, \operatorname{exact}} - \boldsymbol{u}^{d, k}, \, \boldsymbol{u}_{h} - \boldsymbol{u}^{k}\right) + a\left(\boldsymbol{u}^{d, \operatorname{exact}} - \boldsymbol{u}^{d, k}, \, \boldsymbol{u}^{k} - \boldsymbol{u}^{\operatorname{exact}}\right)$

• Using upper bound ($|a\left(oldsymbol{u},\,oldsymbol{v}
ight)|\leq \||oldsymbol{u}|\|\,\||oldsymbol{v}|\|$)

$$\implies \|\boldsymbol{e}\|_{\mathbf{L}^{2}(B_{0h})}^{2} \leq \left\| \left| \boldsymbol{u}^{d, \operatorname{exact}} - \boldsymbol{u}^{d, k} \right| \right\| \left\| \left| \boldsymbol{e}^{k} \right| \right\| + \left\| \left| \boldsymbol{u}^{d, \operatorname{exact}} - \boldsymbol{u}^{d, k} \right| \right\| \left\| \left| \left| \boldsymbol{u}^{k} - \boldsymbol{u}^{\operatorname{exact}} \right| \right\|$$

Annex IV: Finite element discretization of the weak form

- Convergence rate in the L²-norm (2)
 - Starting from $\|\boldsymbol{e}\|_{\mathbf{L}^{2}(B_{0h})}^{2} \leq \||\boldsymbol{u}^{d, \operatorname{exact}} \boldsymbol{u}^{d, k}|\| [\||\boldsymbol{e}^{k}|\| + \||\boldsymbol{u}^{k} \boldsymbol{u}^{\operatorname{exact}}|\|]$
 - Assuming the problem is elliptic with

$$-\mathbf{A}\cdot \boldsymbol{u} = \boldsymbol{b} \text{ in } B_0$$

with \mathbf{A} : $C^{\infty}(B_0) \to \mathbf{H}^{p-2m}(B_0)$ the elliptic operator

- » *m*=1 in elasticity
- » *m*=2 for beams

$$- \partial^i \boldsymbol{u} = 0 \text{ on } \partial B_0 \quad \forall \ 0 \le i \le m-1$$

– If the exact solution $\,oldsymbol{u}\in\mathbf{H}^{2m}\left(B_{0}
ight)\,$, then*

$$\|\boldsymbol{u}\|_{\mathbf{H}^p} \le C^p \|\mathbf{A} \cdot \boldsymbol{u}\|_{\mathbf{H}^{p-2m}(B_0)} \quad \forall \ p \ge 2m$$

• Using *m*=1, *p*=2, as $b^d = e$ this theorem applied to the dual problem leads to

$$\begin{aligned} \left\| \boldsymbol{u}^{d, \operatorname{exact}} \right\|_{\mathbf{H}^{2}(B_{0h})} &\leq C \left\| \boldsymbol{b}^{d} \right\|_{\mathbf{H}^{0}(B_{0h})} = C \left\| \boldsymbol{e} \right\|_{\mathbf{L}^{2}(B_{0h})} \end{aligned}$$

$$\bullet \quad \operatorname{Using} \left\| \left| \boldsymbol{u}^{\operatorname{exact}} - \boldsymbol{u}^{k} \right| \right\| &\leq C h_{\max}^{k} \left\| \boldsymbol{u}^{\operatorname{exact}} \right\|_{\mathbf{H}^{k+1}(B_{h})} \text{ for the dual problem} \end{aligned}$$

$$\Longrightarrow \left\| \left| \boldsymbol{u}^{d, \operatorname{exact}} - \boldsymbol{u}^{d, k} \right| \right\| &\leq C' h_{\max} \left\| \boldsymbol{u}^{d, \operatorname{exact}} \right\|_{\mathbf{H}^{2}(B_{0h})} \leq C h_{\max} \left\| \boldsymbol{e} \right\|_{\mathbf{L}^{2}(B_{h0})} \end{aligned}$$

*J. Lions, E. Magenes, Problèmes aux limites non homogènes, Dunod, Paris, France, 1968.

Annex IV: Finite element discretization of the weak form

- Convergence rate in the L²-norm (3)
 - Starting from $\|\boldsymbol{e}\|_{\mathbf{L}^{2}(B_{0h})}^{2} \leq \||\boldsymbol{u}^{d, \operatorname{exact}} \boldsymbol{u}^{d, k}|\| [\||\boldsymbol{e}^{k}|\| + \||\boldsymbol{u}^{k} \boldsymbol{u}^{\operatorname{exact}}|\|]$

• As
$$\| \| \boldsymbol{u}^{d, \operatorname{exact}} - \boldsymbol{u}^{d, k} \| \| \leq C' h_{\max} \| \boldsymbol{u}^{d, \operatorname{exact}} \|_{\mathbf{H}^{2}(B_{0h})} \leq C h_{\max} \| \boldsymbol{e} \|_{\mathbf{L}^{2}(B_{h0})}$$

$$\implies \|\boldsymbol{e}\|_{\mathbf{L}^{2}(B_{0h})} \leq Ch_{\max}\left[\left\|\left|\boldsymbol{e}^{k}\right|\right\| + \left\|\left|\boldsymbol{u}^{k} - \boldsymbol{u}^{\mathrm{exact}}\right|\right\|\right]$$

• Using
$$\begin{cases} \left\| \left\| \boldsymbol{e}^{k} \right\| \right\| \leq Ch_{\max}^{k} \left\| \boldsymbol{u}^{\text{exact}} \right\|_{\mathbf{H}^{k+1}(B_{h})} \\ \left\| \left\| \boldsymbol{u}^{\text{exact}} - \boldsymbol{u}^{k} \right\| \right\| \leq Ch_{\max}^{k} \left\| \boldsymbol{u}^{\text{exact}} \right\|_{\mathbf{H}^{k+1}(B_{h})} \\ \implies \left\| \boldsymbol{e} \right\|_{\mathbf{L}^{2}(B_{0h})} \leq Ch_{\max}^{k+1} \left\| \boldsymbol{u}^{\text{exact}} \right\|_{\mathbf{H}^{k+1}(B_{h})} \end{cases}$$

*J. Lions, E. Magenes, Problèmes aux limites non homogènes, Dunod, Paris, France, 1968.

