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Classification of multiscale methods

• Multiscale problems can be divided into two classes :

– Type A problems : deal with isolated defects near which the macroscopic

models are invalid (shocks, cracks, dislocations,…). Elsewhere the explicitly

given macroscale model is valid.

– Type B problems : constitutive modeling is based on the microscopic

models for which the macroscopic model is not explicitly available and is 

instead determined from the microscopic model.

• Heterogeneous Multiscale Method (HMM) has been attempting to
build a unified framework for designing effective simulation methods that
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build a unified framework for designing effective simulation methods that
couple microscale and macroscale models. HMM applies for both type A
and type B problems

• In general, there is no restriction on models that can be used at both
macroscale and microscale (continuum media, molecular dynamics,
quantum physics,…).

• In this presentation, we restrict ourselves to type B problems. We also
consider continuum media models at both scales.



Why use computational multiscale methods?

• The heterogeneous nature and the multiscale structure of complex
micro-structured materials confer them some remarkable properties:

– mechanical: resistance, increased Young modulus, negative Poisson ratio…

– electromagnetic/optic: resistance, electromagnetic shielding, µ < 0, ε < 0…

• Classical methods are not efficient to model these materials :

– direct simulation methods such as the finite element method are costly in 

Computational multiscale methods allow to model complex micro-structured

materials using more accurate macroscopic constitutive laws.

2010-2011 Introduction 5

– direct simulation methods such as the finite element method are costly in 

terms of computational time and memory.

– the trial-and-error approach that consists in manufacturing the material and 

then measure its physical properties is costly and not suited for optimization.

• Computational methods have been succesfully used to model complex
micro-structured materials :

– for linear/slightly nonlinear materials,the Mean-Field Homogenization

method is efficient.

– for highly nonlinear complex micro-structured materials, all other methods

fail and only Computational Multiscale Methods (CMM) remain valid.



• In the CMM  framework, 2 problems are defined:

• Macroscale problem

• Microscale problem (Boundary Value Problem- BVP)

• Scale transitions allow coupling  two scales : 

– upscaling: constitutive law (e.g.: stress, tangent operator) for macroscale

problem is determined from microscale problem (e.g. using averaging theory).

– downscaling: transfer of macroscale quantities (e.g.: strain) to the microscale. 

These quantities allow determining equilibrium state of BVP.

CMM – macro/micro-problems and scale transitions
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Scale transitions



CMM – Basic assumptions

• Material macroscopically sufficiently homogeneous, but microscopically
heterogeneous (inclusions, grains, interfaces, cavities,…) � (continuum
media and averaging theorems).

• Scale separation: the characteristic at microscale must be much
smaller than the characteristic size at macroscale.

• Two additional assumptions can be made:

– The characteristic size of the heterogeneities must be much greater than the

molecular dimension (continuum media at the microscale).

– The characteristic size of the heterogeneities must be much smaller than the– The characteristic size of the heterogeneities must be much smaller than the

size of the RVE (RVE statistically representative).
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Heterogeneous micro-structure associated

with macroscopic continuum point M



Some key advantages:

– Do not require any constitutive assumption with respect to the overall 

material behavior.

– Enable the incorporation of large deformations and rotations on both micro 

and macro-level.

– Are suitable for arbitrary material behavior, including physically non-linear 

and time dependent behavior.

– Provide the possibility to introduce detailed micro-structural information, 

including a physical and/or geometrical evolution of the microstructure, in the 

macroscopic analysis.

Computational Multiscale Method – advantages

macroscopic analysis.

– Allow the use of any modeling technique at the micro-level.

– Microscale problems are solved independently from each others and the 

method can be easily parallelized.
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• Approaches to solve scale transitions problems:

– 1965: Method based on Eshelby results: Mean-field homogenization (Hill)

– 1978: Asymptotic homogenization method (A. Bensoussan et al.)

– 1985: Global-local method (Suquet).

– 1995: First-order computational homogenization method (Ghosh et al.)

– 2001: Extension to the second-order (Geers et al.)

– 2003: Heterogeneous Multiscale Method - HMM (E et al.).

– 2007: Continuous–discontinuous multiscale approach (Massart et al.) and 

computational homogenization of thin sheets and shells (Geers et al)

History

computational homogenization of thin sheets and shells (Geers et al)

– 2008: Thermo-mechanical coupling (Ozdemir et al.) and Computational

homogenization of interface problems (Matous et al)

• Applications: 

– Mechanics:  damage and fracture analysis, thin sheet and shells, failure 

analysis of cohesive interfaces, flow transport through heterogeneous porous 

media…

– Heat transfer: heat conduction in heterogeneous media
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Macroscopic problem

• Macroscopic problem

– Weak form
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Definition of microscopic problem

• Representative volume element (RVE)

– A model of material micro-structure which is used to obtain the macroscopic 

material response at a macroscopic material point.

• Selection of RVE

– RVE contains all necessary information of micro-structure

RVE associated with

a macroscopic point

– RVE contains all necessary information of micro-structure

– Computation efficiency 

• RVE equilibrium state

– In absence of body forces:

– Constitutive law:

– For hyper-elastic material

– Equilibrium state of the RVE is assumed to be consistent with the boundary 

condition, which are related to the macroscopic strain field
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Definition of microscopic problem

• Boundary condition

– Strain driven problem

– Microscopic strain: 

– Macroscopic strain:

– Using Gauss theorem:

– Split of displacement field: mean part and fluctuation part:

– Constrain on the fluctuation field:

– Boundary condition must be defined to satisfy (*) 
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(*)



Definition of microscopic problem

• Boundary condition

– Hill assumption (rule of mixtures):  no fluctuations  in RVE 

– Linear displacement boundary condition (Dirichlet boundary condition): no 

fluctuation at RVE boundary

– Periodic boundary condition: periodicity of fluctuation field and anti-

periodicity of traction field at RVE boundary

– Minimal kinematic boundary condition (Neumann  boundary condition)
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Definition of microscopic problem

• Boundary condition

– Periodic boundary condition is the most efficient in terms of convergence 

rate

– Linear displacement upper-estimate the effective properties

– Constant traction (Neumann BC) under-estimate the effective properties
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RVE selection Convergence of average properties 

with increasing RVE size.



Coupling of microscopic and macroscopic problem

• Strain averaging

• Hill-Mandel principle:

– Energy consistency in the transition of macro- and micro-scales:

(**)

– For elastic material in small strain:

– Virtual strain: 

– Equation (**) becomes:

– Stress averaging: 
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Coupling of microscopic and macroscopic problem

• Hill-Mandel principle:

– Hill-Mandel condition in terms of fluctuation part: 

– Using the equilibrium state and  Gauss theorem:

– All boundary conditions previously defined satisfy  the condition (***)

(***)

• Stress averaging and tangent operator

– Equilibrium state and Gauss theorem:

– Tangent operator: 
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Finite element implementation

• Finite element model at microscopic scale

– Minimal potential energy principle

– Discretize the displacement fluctuations at element level

– Assemble operator:– Assemble operator:

– Approximation of internal energy:
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Finite element implementation

• RVE boundary condition

– Linear displacement boundary condition

• For M nodes on RVE boundary

• Partitioning of fluctuation field on RVE boundary

• Linear constraints on fluctuation displacement
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Finite element implementation

• RVE boundary condition

– Constant traction boundary condition

• From strain averaging equation

• Assemble on RVE boundary elements

(*)

• Linear constraints on fluctuation displacement
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Finite element implementation

• RVE boundary condition

– Periodic boundary condition

• Periodic mesh requirement

• Periodic mesh: apply on matching node on RVE boundary

Periodic mesh and non-periodic mesh

• Linear constraints on fluctuation displacement

2010-20 11 Finite element implementation 20

Matching node



Finite element implementation

• RVE boundary condition

– Periodic boundary condition

• Non-periodic mesh: polynomial interpolation method

• Linear constraints on fluctuation displacement
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Finite element implementation

• RVE equilibrium state

– Minimize

– Subject to:

• Enforcement by Lagrange multipliers

– Lagrange function

– Equilibrium state

– Internal force

– Nonlinear system
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Finite element implementation

• Enforcement by Lagrange multipliers

– Nonlinear system to solve

– Solve by Newton-Raphson procedure

• Step 0

• Step 1

• Step 2

• Step 3

• If EXIT

• else GOTO step 1
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Finite element implementation

• Enforcement by constraint elimination

– Problem:

– Decomposition: dependent part and independent part from constraints

– New equation of independent part– New equation of independent part

– Solve by Newton-Raphon procedure
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Nested solution scheme

MACRO

– Step 1: Initialization

• Assign RVE to every

integration points (IPs)

• Set for all Ips

– Step 2: next load increment

at macroscopic problem

MICRO

– RVE analysis

• Prescribe boundary condition

• Calculate homogenized 

tangent operator

– Step 3: next Iteration

• Solve macroscopic problem

• Calculate macroscopic

forces

– Step 4: convergence

• If convergence � step 2

• Else � step 3

– RVE analysis

• Prescribe boundary condition

• Calculate homogenized 

stress

• Calculate homogenized 

tangent operator
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Numerical examples

• Problem
Vertical displacement
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• Material 

– Matrix:

– Inclusion:   

Finite element meshPlane strain problem 

and boundary condition



Numerical examples

• RVE analysis

– Macroscopic strain

– Homogenized stress

• Linear displacement boundary condition

RVE finite element mesh

Inclusion

Matrix
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• Periodic boundary condition

RVE finite element mesh



Numerical examples

• RVE analysis

– Displacement field
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– Von-Mises stress

Linear displacement BC Periodic BC



Numerical examples

• Multi-scale analysis
Quadratic triangle
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Macroscopic finite element mesh

RVE finite element mesh

Inclusion

Matrix



Numerical examples

• Multi-scale analysis

– Vertical displacement 

Vertical displacement
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– Reaction force

Plane strain problem 

and boundary conditionReaction force

Linear displacement BC 3421.955

Periodic BC 3406.800

Single scale 3381.519



Numerical examples

• Multi-scale analysis

– Von-Mises stress
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Single scale Linear displacement BC Periodic BC



Limitations

• The “scale separation” assumption sets limitations inherent to the
computational multiscale method. Problems for which this assumption is
invalid can not be accurately modeled using these methods.

• The computational time is still long because a microscale problem must
be solved in each gauss point. Micro-problems are solved independently
and parallelization can greatly reduced the computational time.

• Limitations inherent to the first-order scheme have been addressed:

– Second-order schemes have been proposed to account for higher-order

deformation gradients at the macroscale and the size effects of the RVE. deformation gradients at the macroscale and the size effects of the RVE. 

– The continuous-discontinuous approach has been proposed to deal with 

problems of intense localization (e.g.: damage and fracture analysis). 

– Computational homogenization of structured thin sheets and shells, based

on the application of second-order homogenization have been proposed.

– …

• Thermo-mechanical coupling has been addressed. Coupling with other 
physics (heat, mechanics, electromagnetism,…) is essential to fully 
characterize complexe behavior of multiscale materials.
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Perspectives

• Computational homogenization of emerging and evolving localization
bands on the macro-scale

• Multi-physics and coupled field problems (electro-mechanical, thermo-
electrical, fluid-structure interaction, magneto-electro-elasticity,
acoustics, etc.)

• Dynamic problems, including inertia effects and/or propagating waves
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• Problems related to non-convexity and microstructure evolution
emanating from the micro-scale

• Integration of phase field models across the scales.
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