Fracture mechanics, Damage and Fatigue Overview

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3
http://www.ltas-cm3.ulg.ac.be/
Chemin des Chevreuils 1, B4000 Liège
L.Noels@ulg.ac.be
Before fracture mechanics

- Design with stresses lower than
 - Elastic limit (σ^0_p) or
 - Tensile strength (σ_{TS})

- ~1860, Wöhler
 - Technologist in the German railroad system
 - Studied the failure of railcar axles
 - Failure occurred
 - After various times in service
 - At loads considerably lower than expected

- Failure due to cyclic loading/unloading
 - « Total life » approach
 - **Empirical** approach of fatigue
Before fracture mechanics

- **Empirical approach: Total life**
 - Life of a structure depends on

 - Minimal & maximal stresses: \(\sigma_{\text{min}} \) & \(\sigma_{\text{max}} \)
 - Mean stress: \(\sigma_m = (\sigma_{\text{max}} + \sigma_{\text{min}})/2 \)
 - Amplitude: \(\sigma_a = \Delta\sigma/2 = (\sigma_{\text{max}} - \sigma_{\text{min}})/2 \)
 - Load Ratio: \(R = \sigma_{\text{min}} / \sigma_{\text{max}} \)
 - Under particular environmental conditions (humidity, high temperature, …):
 - Frequency of cycles
 - Shape of cycles (sine, step, …)
Before fracture mechanics

- **Total life approach**
 - Stress life approach
 - For structures experiencing (essentially) elastic deformations
 - For \(\sigma_m = 0 \) & \(N_f \) identical cycles before failure
 - \(\sigma_e \): endurance limit (life\(>10^7 \) cycles)
 - \(\sigma_e \sim [0.35; 0.5] \sigma_{TS} \)
 - 1910, Basquin law
 \[
 \frac{\Delta \sigma}{2} = \sigma_a = \sigma'_f (2N_f)^b
 \]
 - \(\sigma'_f \): fatigue coefficient (mild steel \(T_{amb} \): \(\sim [1; 3] \) GPa)
 - \(b \): fatigue exponent (mild steel \(T_{amb} \): \(\sim [-0.1; -0.06] \))
 - Strain life approach
 - For structures experiencing (essentially) large plastic deformations
 - For \(N_f \) identical cycles before failure
 - 1954, Manson-Coffin
 \[
 \frac{\Delta \bar{\varepsilon}_p}{2} = \varepsilon'_f (2N_f)^c
 \]
 - \(\varepsilon'_f \): fatigue ductility coefficient \(\sim \) true fracture ductility (metals)
 - \(c \): fatigue ductility coefficient exponent \(\sim [-0.7, -0.5] \) (metals)
 - \(\Delta \bar{\varepsilon}_p \): plastic strain increment during the loading cycles
Design using total life approach

• 1952, De Havilland 106 Comet 1, UK (1)
 – First jetliner, 36 passengers, pressurized cabin (0.58 atm)
 – Wrong aerodynamics at high angle of attack (takeoff)
 • 1953, 2 crashes: lift loss due to swept wing and air intakes inefficient

 – The fuselage was designed using total life approach
 • 1952, a fuselage was tested against fatigue
 – Static loading at 1.12 atm, followed by
 – 10 000 cycles at 0.7 atm (> cabin pressurization at 0.58 atm)

 – Design issue
 • 1953, India, crash during storm
 – « Structural failure » of the stabilizer
 – The pilot does not “feel” the forces due to the fully powered controls (hydraulically assisted)
 – Fatigue due to overstress ?
• 1952, De Havilland 106 Comet 1, UK (2)
 – More design issues
 • 1954, January, flight BOAC 781 Rome-Heathrow
 – Plane G-ALYP disintegrated above the sea
 – After 1300 flights
 – Autopsies of passengers’ lungs revealed explosive decompression
 – Bomb? Turbine failure?
 → turbine rings with armor plates
 • 1954, April, flight SAA 201 Rome-Cairo
 – Plane G-ALYY disintegrated
 • 1954, April, reconstruction of plane ALYP from the recovered wreckages
 – Proof of fracture, but origin unknown
 • 1954, April, test of fuselage ALYU in water tank
 – Pressurization cycles of the cabin simulated
 – Rupture at port window after only 3057 pressurization cycles
 – Total life approach failed
 • Fuselages failed well before the design limit of 10000 cycles
• **1952, De Havilland 106 Comet 1, UK (3)**
 – 1954, August, ALYP roof retrieved from sea
 • Origin of failure at the communication window
 • Use of square riveted windows
 • Punched riveting instead of drill riveting
 ➞ Existence of initial defects

• **The total life approach**
 – Accounts for crack initiation in smooth specimen
 – Does not account for inherent defects
 • Metal around initial defects could have hardened during the initial static test load of the fatigue tested fuselage
 • Production planes without this static test load …

• **Life time can be improved by**
 – “Shoot peening”: surface bombarded by small spherical media
 • Compression residual stresses in the surface layer
 • Prevents crack initiation
 – Surface polishing (to remove cracks)

• **1958, Comet 3 et 4**
 – Round windows glued
 – Fuselage thicker
What is fracture mechanics?

- **Back to physics**
 - Bonding in Crystals (attractive forces)
 - Molecular or van den Waals:
 - Interaction between dipoles
 - Ar, polymers, C₆H₆, graphite
 - Bonds easily break
 - Ionic
 - Interaction between ions
 - NaCl, …
 - Coulombic non directional forces
 - Hard & brittle crystals
 - Covalent
 - Bonds between atoms
 - CH₄, Diamond
 - Directional and strong forces
 - Hard & brittle crystals
 - Metallic
 - Sea of donated valence electrons (conductors)
 - Metals & alloys
 - Non-directional forces
What is fracture mechanics?

- **Back to physics (2)**
 - Free electrons model of a crystal structure
 - Atomic radius r
 - Bonding in Crystals
 - Attractive potentials differ from the bonding kinds, but same shape
 - Example metallic ions and electronic clouds

$$U_a = -M \frac{z_1 z_2 q^2}{4 \pi \varepsilon_0 r} = -\frac{A_a}{r} \quad \Rightarrow \quad f_a = \frac{A_a}{r^2}$$

z_i: valences, $\varepsilon_0=8.85$ pF/m: permittivity, $q=1.602 \times 10^{-19}$ C: electronic charge;

M: Madelung constant depends on the geometric arrangement in the crystal

- Other: Lennard-Jones (van den Waals), Morse (diatomic molecule), …

- Repulsive energy due to the interaction of electronic clouds & nuclei

$$U_r = b \lambda \exp \left(\frac{-r}{\rho} \right) = A_r \exp \left(\frac{-r}{\rho} \right) \quad \Rightarrow \quad f_r = -\frac{A_r}{\rho} \exp \left(\frac{-r}{\rho} \right)$$

b: number of adjacent ions, λ (eV), ρ (nm): repulsive parameters
What is fracture mechanics?

- Back to physics (3)
 - Free electrons model of a crystal structure (2)
 - Equilibrium & maximal force (NaCl)

1 eV = 1.60217646 × 10⁻¹⁹ J

Equilibrium at \(r = r_0, U_0 \)

\[
U_0 = -\frac{A_a}{r_0} \left[1 - \frac{\rho}{r_0} \right]
\]

Maximal force at \(r = r_*, f_{\text{max}} \)

\[
f_{\text{max}} = \frac{A_a}{r_*^2} \left[1 - \frac{\rho}{r_*} \right]
\]

\[
r_*^3 \exp \frac{-r_*}{\rho} = \frac{2A_a \rho^2}{A_r}
\]
What is fracture mechanics?

- From free electrons model to macroscopic behavior
 - Depends on the crystal lattice
 - Metallic crystal tends to be packed \(a_0^u \): size of the unit cell

- Examples:
 - Body-Centered-Cubic crystal
 - Face-Centered-Cubic crystal

Fe at low \(T^\circ \), Ferrite (low C-steel)
Fe at high \(T^\circ \), Austenite (low C-steel at high \(T^\circ \)), Al, Cu
What is fracture mechanics?

- From free electrons model to macroscopic behavior (2)
 - Stress

\[\sigma = \frac{1}{S_{\text{ref}}(\text{plane}, r_0)} \sum_i f_i \]

- Young modulus

\[E = \lim_{dr \to 0} \frac{\sigma(r_0 + dr) - \sigma(r_0)}{dr} r_0 \]

- Surface energy

\[2\gamma_s = \frac{N_{\text{rupture}} U_0}{S_{\text{ref}}} \] (\(\gamma_s \): energy to create a unit surface, cleavage: 2 surfaces \(S_{\text{ref}} \) are created)

- Depend on the lattice & on the plane orientation
 - Example: plane \(S(1,1,0) \) in BCC
 - \(S_{\text{ref}} = 2^{1/2} a_0^2 \)
 - \(N_{\text{rupture}} = 4 \times 1/8 \) (corner) + 2 x 1/8 (center)

- Theoretical tensile strength \(\sigma_{\text{Th}} \)
 - Planes of atoms separate at once
 - Brittle materials

Low representation: atoms are actually “in contact”
What is fracture mechanics?

• Theoretical tensile strength

- Sinus approximation

\[\sigma = \sigma_{Th} \sin \left(\pi \frac{a^u - a_0^u}{\delta} \right) \]

\[\frac{E}{a_0^u} \frac{d\sigma}{da^u} \bigg|_{a_0^u} = \sigma_{Th} \frac{\pi}{\delta} \]

\[2\gamma_s = \int_{a_0^u}^{a_0^u+\delta} \sigma \, da^u = 2\sigma_{Th} \frac{\delta}{\pi} \]

• Theoretical tensile strength of brittle materials

\[\sigma_{Th} = \sqrt{\frac{E\gamma_s}{a_0^u}} \]
What is fracture mechanics?

- Inherent defects play a major role in fracture mechanics
 - Theoretical tensile strength σ_{Th} vs Tensile strength σ_{TS}

<table>
<thead>
<tr>
<th></th>
<th>a_u^0 [nm]</th>
<th>E [GPA]</th>
<th>γ_s [J m$^{-2}$]</th>
<th>σ_{Th}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>0.3</td>
<td>60</td>
<td>21</td>
<td>64 GPa !</td>
</tr>
<tr>
<td>Steel (low T)</td>
<td>0.3</td>
<td>210</td>
<td>3400</td>
<td>1500 GPa !</td>
</tr>
</tbody>
</table>

- Theoretical values are much higher than observed ones
- 1920, Griffith studied the influence of a crack of size $2a$ on σ_{TS}
 - Brittle materials only
 - Analytically (see later on): $\sigma_{\text{TS}}\sqrt{a} \div \sqrt{E \cdot 2\gamma_s}$
 - Verified experimentally on glass fibers
 - Initially scratched to create a crack $2a$
 - Thermal treatment to remove the residual stresses
 - Important breakthrough
 - The strength depends on the defects size
 - Manufacturers improved the surface finishing (polishing, …)
 - Fracture mechanics was pioneered
Brittle / ductile fracture

• 2 kinds of behavior
 – Brittle:
 • (Almost) no plastic deformations prior to (macroscopic) failure
 – Ductile:
 • Plastic deformations prior to (macroscopic) failure
 – Different microscopic behaviors
Brittle / ductile fracture

• Deformation mechanisms
 – Elasticity

 - Results from bonds stretching
 - Reversible
 - Linear (metals, …) or non-linear (polymers, …)
Brittle / ductile fracture

- **Deformation mechanisms (2)**
 - **Plasticity**
 - The specimen experiences permanent deformations
 - Irreversible
 - Combination of
 - Bonds stretching (reversible part)
 - Plane shearing (irreversible part)

- What is the plane shearing mechanisms?
Brittle / ductile fracture

- **Deformation mechanisms (3)**
 - What is the plane shearing mechanisms?
 - Slip of a whole crystal lattice?

![Diagram of crystal lattice shearing](image)

- Back to sine model
 - Because of symmetry: $\tau = 0$ at $\delta = 0$, r_0, $2r_0$ → $\tau = \tau_{\text{max}} \sin \frac{\pi \delta}{r_0}$
 - Shear modulus: $G = \frac{d\tau}{d\delta/a_0^u}$ $|_{\delta=0} = \tau_{\text{max}} \frac{\pi a_0^u}{r_0}$
 - BCC: $\tau_{\text{max}} = \frac{G \sqrt{3}}{4\pi}$
 - Fe: $G = 82$ GPa → $\tau_{\text{max}} = 11$ GPa !!!
• Deformation mechanisms (4)
 – What is the plane shearing mechanisms (2) ?
 • Propagation of dislocations
 – A dislocation is characterized by
 » The Burger vector (difference between the distorted lattice around the dislocation and the perfect lattice)
 » Dislocation line (line along which the distortion is the largest)
 » Slip plane (plane where the dislocation motion occurs)
 – Edge dislocation
 • Dislocation line \perp to Burger vector
Brittle / ductile fracture

- **Deformation mechanisms** (5)
 - Screw dislocation & Mixed dislocation

- **Example:**
 - Plastically deformed zinc single crystal: \(\tau = \sigma \cos \lambda \cos \phi \)
Brittle / ductile fracture

- Dislocations and brittle/ductile materials
 - Cristal with ionic bonding (NaCl, …)
 - Motion of dislocations difficult
 - A + would be in front of another +
 - Cleavage before \(\rightarrow \) brittle
 - Covalent bonding (Si, diamond, …)
 - Motion of dislocations difficult
 - Strong & directional bonding
 - Cleavage before \(\rightarrow \) brittle
 - Metallic bonding
 - Motion of dislocations possible
 - Non directional bonding
 - Motion along packed slip directions
 - Brittle or ductile?

BCC:
- 6 slip planes
- \(\times 2 \) directions=
- 12 slip systems

FCC:
- 4 slip planes
- \(\times 3 \) directions=
- 12 slip systems
Brittle / ductile fracture

- Are metallic bondings leading to ductile behavior?
 - FCC (Al, Cu, …)
 - Many close-packed planes
 - Dislocations motion possible
 - Always ductile
 - BCC (Ferrite with Low C)
 - No close-packed plane
 - Only directions are close-packed
 - Low T°: atoms do not have enough energy to move
 - High T°: atoms have enough energy for dislocations motion (Peierls stress)
 - There is a ductile/brittle transition temperature (DBTT)
 - Dislocations motion can be reduced by obstacles → harder & less ductile
 - Substitutional solutes (Sn in Cu, …, duralumin)
 -Interstitial solutes (Cr or V in Fe, …)
 - Grain boundaries (small crystal size after cold rolling: Hall-Petch effect)
 - Precipitate particles (Martensite Body-Centered-Tetragonal in ferrite after quench)
 - Other dislocations (created after cold work)
Brittle / ductile fracture

- **Mechanism of brittle failure**
 - (Almost) no plastic deformations prior to the (macroscopic) failure
 - Cleavage: separation of crystallographic planes
 - In general inside the grains
 - Preferred directions: low bonding
 - Between the grains: corrosion, H$_2$, ...
 - Rupture criterion
 - 1920, Griffith: \(\sigma_{TS} \sqrt{a} \div \sqrt{E \cdot 2\gamma_s} \)
Brittle / ductile fracture

- **Mechanism of ductile failure**
 - Plastic deformations prior to (macroscopic) failure of the specimen
 - Dislocations motion \rightarrow void nucleation around inclusions \rightarrow micro cavity coalescence \rightarrow crack growth
 - Is Griffith criterion $\sigma_{TS} \sqrt{a} \div \sqrt{E \left(2\gamma_s + W_{pl}\right)}$ still correct?
 - 1950, Irwin, the plastic work at the crack tip should be added to the surface energy:

$$\sigma_{TS} \sqrt{a} \div \sqrt{E \left(2\gamma_s + W_{pl}\right)}$$
Brittle / ductile fracture: Liberty ships

• **WWII**

 – Steel at low T°: brittle

 $\sigma_{TS} \sqrt{a} \div \sqrt{E \cdot 2\gamma_s}$ with $\gamma_s \sim 3400 \text{ J m}^{-2}$

 – Steel at room T°: ductile

 $\sigma_{TS} \sqrt{a} \div \sqrt{E \cdot (2\gamma_s + W_{pl})}$ with $2\gamma_s + W_{pl} \sim 200 \text{ kJ m}^{-2}$

 – Use of low-grade steel

 • In cold weather:

 DBTT \sim water temperature

 • When put in water existing cracks lead to failure

 • 30% of the liberty ships suffered from fracture
Brittle / ductile fracture

• Failure mode of polymers: rupture & disentangling of molecules
 – Behavior depends on the covalent chain structure
 • Aligned cross linked or networked (epoxy):
 – Always amorphous but directional
 – Brittle response
Brittle / ductile fracture

- Failure mode of polymers: rupture & disentangling of molecules (2)
 - Behavior depends on the covalent chain structure (2)
 - Semi crystalline (Plexiglas, PVC):
 - Linear polymers can locally crystallize into lamellar thin plates (chains fold back and forth)
 - Behavior strongly depends on temperature

![Diagram showing crystalline and amorphous regions](image)

2016-2017 Fracture Mechanics - Overview 27
Brittle / ductile fracture

• Failure mode of polymers: rupture & disentangling of molecules (3)
 – Behavior depends on the covalent chain structure (3)
 • Elastomer (Rubber):
 – Amorphous chains are kinked and heavily cross linked
 – Reversible behavior

Initial: amorphous chains are kinked, heavily cross-linked.

Final: chains are straight, still cross-linked.
• Composites
 – Fibers in a matrix
 • Fibers: polymers, metals or ceramics
 • Matrix: polymers, metals or ceramics
 • Fibers orientation: unidirectional, woven, random
 – Complex failure modes
 • Transverse matrix fracture
 • Longitudinal matrix fracture
 • Fiber rupture
 • Fiber debonding
 • Delamination
 • Macroscopically: no plastic deformation
Why fracture mechanics?

- **Limits of the total life approach**
 - Does not account for inherent defect
 - What is happening when a defect is present?
 - Theoretical stress concentration?
 - Infinite plane with an ellipsoidal void (1913, Inglis)
 \[\sigma_{\text{max}} = \sigma_{yy}(a,0) = \sigma_\infty \left(1 + \frac{2a}{b} \right) \]
 - As \(b \to 0 \Rightarrow \sigma_{\text{max}} \to \infty \Rightarrow \text{breaks for } \sigma_\infty \to 0 \)
 - In contradiction with Griffith and Irwin experiments
 \[\sigma_{TS} \sqrt{a} \div \sqrt{E \left(2\gamma_s + W_p \right)} \]
 - Development of the fracture mechanics field
 - How can we predict failure when a crack is there?
 - Microscopic observations for cycling loading
 - Crack initiated at stress concentrations (nucleation)
 - Crack growth
 - Failure of the structure when the crack reaches a critical size
 - How can we model this?
Linear Elastic Fracture Mechanics (LEFM)

- Singularity at crack tip for linear and elastic materials
 - 1957, Irwin, 3 fracture modes

 Mode I (opening)
 \[
 \begin{align*}
 \sigma_{zz} &= 0 \quad \text{or} \quad \varepsilon_{zz} = 0 \\
 \sigma_{yy}(\theta = \pm \pi) &= 0 \\
 \sigma_{xy}(\theta = \pm \pi) &= 0 \\
 u_x(\theta > 0) &= u_x(\theta < 0) \\
 u_y(\theta > 0) &= -u_y(\theta < 0)
 \end{align*}
 \]

 Mode II (sliding)
 \[
 \begin{align*}
 \sigma_{zz} &= 0 \quad \text{or} \quad \varepsilon_{zz} = 0 \\
 \sigma_{yy}(\theta = \pm \pi) &= 0 \\
 \sigma_{xy}(\theta = \pm \pi) &= 0 \\
 u_x(\theta > 0) &= -u_x(\theta < 0) \\
 u_y(\theta > 0) &= u_y(\theta < 0)
 \end{align*}
 \]

 Mode III (shearing)
 \[
 \begin{align*}
 \sigma_{xx} = \sigma_{xy} = \sigma_{yy} = \sigma_{zz} &= 0 \\
 \sigma_{yy}(\theta = \pm \pi) &= 0 \\
 \sigma_{xy}(\theta = \pm \pi) &= 0 \\
 u_y &= u_x = 0 \\
 u_z(\theta > 0) &= -u_z(\theta < 0)
 \end{align*}
 \]

- Boundary conditions
Singularity at crack tip for linear and elastic materials (2)

- Asymptotic solutions (Airy functions, see next week)

\[\sigma_{xx} = \frac{C}{\sqrt{r}} \cos \frac{\theta}{2} \left[1 - \sin \frac{3\theta}{2} \sin \frac{\theta}{2} \right] + \mathcal{O} \left(r^0 \right) \]
\[\sigma_{yy} = \frac{C}{\sqrt{r}} \cos \frac{\theta}{2} \left[1 + \sin \frac{3\theta}{2} \sin \frac{\theta}{2} \right] + \mathcal{O} \left(r^0 \right) \]
\[\sigma_{xy} = \frac{C}{\sqrt{r}} \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \sin \frac{\theta}{2} + \mathcal{O} \left(r^0 \right) \]

\[u_x = \frac{C (1 + \nu)}{E} \sqrt{r} \cos \left(\frac{\theta}{2} \right) \left[\kappa - 1 + 2 \sin^2 \left(\frac{\theta}{2} \right) \right] \]
\[u_y = \frac{C (1 + \nu)}{E} \sqrt{r} \sin \left(\frac{\theta}{2} \right) \left[\kappa - 1 - 2 \cos^2 \left(\frac{\theta}{2} \right) \right] \]

with for plane \(\sigma \quad \kappa = \frac{3 - \nu}{1 + \nu} \)

& plane \(\varepsilon \quad \kappa = 3 - 4\nu \)

- Introduction of the Stress Intensity Factors - SIF (Pa m^{1/2})

\[K_I = \lim_{r \to 0} \left(\sqrt{2\pi r} \sigma_{yy}^{\text{mode I}} \bigg|_{\theta=0} \right) = C \sqrt{2\pi} \]
\[K_{II} = \lim_{r \to 0} \left(\sqrt{2\pi r} \sigma_{xy}^{\text{mode II}} \bigg|_{\theta=0} \right) = C \sqrt{2\pi} \]
\[K_{III} = \lim_{r \to 0} \left(\sqrt{2\pi r} \sigma_{yz}^{\text{mode III}} \bigg|_{\theta=0} \right) = C \sqrt{2\pi} \]

- \(K_i \) are dependant on both loading and geometry

\[\sigma_{\text{mode } i} = \frac{K_i}{\sqrt{2\pi r}} f^{\text{mode } i} (\theta) \]
\[u_{\text{mode } i} = K_i \sqrt{\frac{r}{2\pi}} g^{\text{mode } i} (\theta) \]
• New failure criterion
 – 1957, Irwin, crack propagation
 • $\sigma_{\text{max}} \rightarrow \infty \quad \Rightarrow \quad \sigma$ is irrelevant
 • If $K_i = K_{ic} \quad \Rightarrow$ crack growth
 – Toughness (ténacité) K_{ic}
 • Steel, Al, … : see figures
 • Concrete: 0.2 - 1.4 MPa m$^{1/2}$ (brittle failure)

Diagram:
- Linear Elastic Fracture Mechanics (LEFM)
- Fracture Mechanics - Overview
- Yield σ^0_y [MPa]
- Toughness K_{ic} [MPa\sqrt{m}]
- Temperature T [°C]
- Brittle
- Ductile
- Brittle/brittle transition regime
• **Stress Intensity Factor (SIF)**
 – Computation of the SIFs K_i
 • Analytical (crack $2a$ in an infinite plane)
 \[
 \begin{align*}
 K_I &= \sigma_\infty \sqrt{\pi a} \\
 K_{II} &= \tau_\infty \sqrt{\pi a} \\
 K_{III} &= \tau_\infty \sqrt{\pi a}
 \end{align*}
 \]
 • For other geometries or loadings
 \[
 \begin{align*}
 K_I &= \beta_I \sigma_\infty \sqrt{\pi a} \\
 K_{II} &= \beta_{II} \tau_\infty \sqrt{\pi a} \\
 K_{III} &= \beta_{III} \tau_\infty \sqrt{\pi a}
 \end{align*}
 \]
 • β_i obtained by
 – Superposition
 – FEM
 – Energy approach
 » Related to Griffith’s work
 \[
 \sigma_{TS} \sqrt{a} \div \sqrt{E(2\gamma_s + W_{pl})}
 \]
 » See next slides
 – For 2 loadings $a \& b$: $K_I = K_I^a + K_I^b$
 – **BUT** for 2 modes $K \neq K_I + K_{II}$
• Measuring K_{lc}
 - Done by strictly following the ASTM E399 procedure
 • A possible specimen is the Single Edge Notch Bend (SENB)
 - Plane strain constraint (thick enough specimen) conservative (see later)
 - Specimen machined with a V-notch in order to start a sharp crack
 • Cyclic loading to initiate a fatigue crack
 • Toughness test performed with
 - A calibrated P - δ recording equipment
 - The Crack Mouth Opening Displacement (CMOD=v) is measured with a clipped gauge
 - P_c is obtained on P-v curves
 » either the 95% offset value or
 » the maximal value reached before
 - K_{lc} is deduced from P_c using
 \[
 K_I = \frac{PL}{tW^{\frac{3}{2}}} f \left(\frac{a}{W} \right)
 \]
 » $f(a/W)$ depends on the test (SENB, …)
Linear Elastic Fracture Mechanics (LEFM)

- **Energy approach**
 - Mode I
 - Initial crack $2a$
 \[
 \begin{align*}
 \sigma_{yy}^0 (\theta = 0, \ r = x - a) &= \frac{\sigma_\infty \sqrt{a}}{\sqrt{2} (x - a)} \\
 u_y^0 (\theta = 0, \ r = x - a) &= 0
 \end{align*}
 \]
 - Crack grows to $2(a + \Delta a)$
 \[
 u_y^1 (\theta = \pm \pi, \ r = a + \Delta a - x) = \pm \frac{\sigma_\infty (1 + \nu) (\kappa + 1)}{E \sqrt{2}} \sqrt{a + \Delta a} \sqrt{a + \Delta a - x}
 \]
 - Energy is needed for crack to grow by $2\Delta a$ as there is a work done by σ_{yy}
 \[
 \Delta E_{\text{int}} = -4dz \int_a^{a+\Delta a} \int_{u_y^0}^{u_y^1} \sigma_{yy} du_y dx \quad (x4 \text{ as it is for } x>0, x<0 \text{ & for } y<0, y>0)
 \]
Linear Elastic Fracture Mechanics (LEFM)

- Energy approach (2)
 - Mode I
 - Energy needed for crack to grow by Δa
 $$\Delta E_{\text{int}} = -4dz \int_a^{a+\Delta a} \int_{u_y^0}^{u_y^1} \sigma_{yy} du_y dx$$
 - Assumption: σ_{yy} linear in terms of u_y
 $$\Delta E_{\text{int}} = -2dz \int_a^{a+\Delta a} \sigma_{yy}^0 u_y^1 dx$$
 - Change of variable
 $$x = a + \Delta a \cos^2 \theta$$
 $$\Delta E_{\text{int}} = -\frac{dz \sigma_{yy}^2 \sqrt{a (a + \Delta a) (1 + \nu) (1 + \kappa)}}{2E} \pi \Delta a$$
 - G : energy release rate for a straight ahead growth
 $$G = -\frac{dE_{\text{int}}}{dA} = -\lim_{\Delta a \to 0} \frac{\Delta E_{\text{int}}}{2\Delta a dz} = \frac{\pi a \sigma_{yy}^2}{4E} \frac{(1 + \nu) (\kappa + 1)}{E'} = \frac{K_I^2}{E'}$$
 - The crack has been assumed lying in an infinite plane. But
 $$G = \frac{K_I^2}{E'}$$ still holds for other expressions of K_I (see next lectures)
Linear Elastic Fracture Mechanics (LEFM)

- Energy approach (3)
 - 1920, Griffith, energy conservation:
 \[E = E_{\text{int}} + \Gamma \]
 - Total energy \(E \) is the sum of the internal (elastic) energy \(E_{\text{int}} \) with the energy \(\Gamma \) needed to create surfaces \(A \)
 \[\frac{\partial E}{\partial A} = \frac{\partial E_{\text{int}}}{\partial A} + \frac{\partial \Gamma}{\partial A} = 0 \]
 - If \(\gamma_s \) is the surface energy (material property of brittle material)
 \[G = G_c = -\frac{dE_{\text{int}}}{dA} = \frac{d\Gamma}{dA} = 2\gamma_s \]
 A crack creates 2 surfaces \(A \)
 - Mode I, infinite plane
 - Strength
 \[G = \frac{\pi a \sigma_{\infty}^2}{E'} = \frac{K_I^2}{E'} \]
 \[\sigma_{TS} = \sqrt{\frac{2\gamma_s E}{\pi a}} \]
 Depend on the crack size
 \[\sigma_{TS} \sqrt{a} = 195 \text{kPa} \ m^\frac{1}{2} \]
 \[\sigma_{TS} \sqrt{a} = 115 \text{MPa} \ m^\frac{1}{2} \]
 - Glass: \(G_c = 2 \gamma_s \sim 2 \text{Jm}^{-2}, E = 60 \text{ GPa} \)
 - Steel: \(G_c = \text{plast. dissipation} \sim 200 \text{ kJm}^{-2}, E = 210 \text{ GPa} \)
 - Straight ahead propagation for general loading
 - Proceeding as for mode I:
 \[G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{(1 + \nu) K_{III}^2}{E} \]
 crack growth if
 \[G = G_c \]
Linear Elastic Fracture Mechanics (LEFM)

- **Energy approach: J-integral**
 - Energy release rate
 - Straight ahead propagation for linear elasticity
 - Should be related to the energy flowing toward the crack tip
 - J-integral
 \[J = \int_{\Gamma} \left[U(\varepsilon) n_x - u_x \cdot T \right] dl \]
 - Defined even for non-linear materials
 - Is path independent if the contour Γ embeds a straight crack tip
 - BUT no assumption on subsequent growth direction
 - If crack grows straight ahead: $G=J$
 - If linear elasticity: $J = K_I^2 E' + K_{II}^2 E' + \frac{(1+\nu)K_{III}^2}{2\mu}$
 - Can be extended to plasticity if no unloading (see later)

- **Advantages**
 - Efficient numerical computation of the SIFs
 - Useful for non perfectly brittle materials
Linear Elastic Fracture Mechanics (LEFM)

- **Direction of crack grow**
 - Assumptions: the crack will grow in the direction where the SIF related to mode I in the new frame is maximal
 - Crack growth if \(\left(\sqrt{2\pi r} \sigma_{\theta\theta} (r, \theta^*) \right) \geq K_C \) with \(\partial_{\theta} \sigma_{\theta\theta} |_{\theta^*} = 0 \)
 - From direction of loading, one can compute the propagation direction

\[
\cot \beta^* = \frac{K_{II}}{K_I} \quad \rightarrow \quad \sigma_{\theta\theta} = \frac{K_I}{\sqrt{2\pi r}} \left[\cos^3 \frac{\theta}{2} - \frac{3 \cot \beta^*}{2} \sin \theta \cos \frac{\theta}{2} \right]
\]
Linear Elastic Fracture Mechanics (LEFM)

- **Non-perfectly brittle materials**
 - Plastic zone
 - Limit G_c becomes $R_c(a)$
 - $R_c(a)$ depends on the loading mode and no longer only on the material
 - Stability of the crack
 - Stable
 \[
 \begin{align*}
 G &= R_c(a) \\
 \frac{dG}{da} &\leq \frac{dR_c}{da}
 \end{align*}
 \]
 - Instable: $a > a^*$
 \[
 \begin{align*}
 \frac{dG}{da} &> \frac{dR_c}{da}
 \end{align*}
 \]
Limits of the LEFM

- The stress still tends toward infinity
 - There are non-linearities (plasticity at crack tips)
 - Far away from the crack the approximation does not hold (structural response)

- Small Scale Yielding assumption
 - Holds if crack front plastic zone size is small compared to the crack length
 - Cohesive zone r_p at crack tip
 \[a \to a_{\text{eff}} = a + \frac{r_p}{3} \]
 - 1960, Dugdale-Barenblatt
 - Mode I
 \[r_p = \frac{\pi K_I^2}{8 \sigma_p^2} (a_{\text{eff}}) \]
 Iterative method

- If applied stress larger than half the yield stress
 - The assumption does not hold \rightarrow non linear fracture mechanics (NLFM)
Reactor Pressure Vessels (RPV)

- **Pressurized Water Reactor (PWR)**
 - Typical RPV operating conditions: 15 MPa, 300° C

Image from US. Nuclear Regulatory Commission,
Quadrennial Technology Review 2015, U.S. Department of Energy

Image from US. Nuclear Regulatory Commission,
http://www.eia.doe.gov/cneaf/nuclear/page/nuc_reactors/pwr.html
Reactor Pressure Vessels (RPV)

• RPV material
 – Base material:
 • Manganese–nickel–molybdenum low-alloy steel
 • E.g. SA508 Cl. 3
 – Cladding:
 • Stainless steel

\[\bar{t}_{\text{base}} \approx 0.2 \text{ m} \quad \bar{t}_{\text{clad}} \approx 0.01 \text{ m}\]

\[\phi \approx 3-5 \text{ m}\]

Reactor Pressure Vessels (RPV)

- RPV material: exhibits a DBTT
 - Definition of T_{100}: Reference temperature for which 50% of the normalized samples break at a toughness of 100 [MPa√m]

Reactor Pressure Vessels (RPV)

- **RPV operations**
 - Pressurized Thermal Shock (PTS)
 - Loss of coolant accident (LOCA)
 - Primary side injection of cold water
 - Sudden decrease of wall temperature
 - Decrease of the toughness
 - N.B. decrease of pressure, but thermal strains

Christopher Boyd, Interactions of Thermal-Hydraulics with Fuel Behavior, Structural Mechanics, and Computational Fluid Dynamics
Office of Nuclear Regulatory Research Nuclear Regulatory Commission
• **Irradiation embrittlement**
 - Irradiation during the RPV operation
 - Embrittlement increasing with
 - The fluence (number of neutrons per unit surface)
 - Neutron energy (>1MeV)

Shift in the DBTT with the operating time

Fracture Mechanics - Overview

<table>
<thead>
<tr>
<th>Temperature T [°C]</th>
<th>Toughness K_{IC} [MPa√m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>

Ductile/brittle transition regime

Fictitious material

2016-2017 Fracture Mechanics - Overview 47
Reactor Pressure Vessels (RPV)

Irradiation embrittlement: Shift in DBTT

- Defined by a shift in T_{100}
 - $T_0 = T_{100} + \Delta T_{100}$
- Computed in terms of
 - Chemical composition
 - Power of fluence (Φ)
- Measured
 - Surveillance specimen capsules
 - Near the inside vessel wall

Safety assessment

- **Methodology**

Defects characterization
- Postulated flaws (following norms)
- Non Destructive in-service inspections (Ultrasonic …)

Loading conditions
- Critical loading conditions
 - Evaluation of the temperature, stress … distributions

Material properties
- Toughness of base material (experiments)
 - Environmental conditions (end-of-life fluence, temperature)

- Evaluation of SIFs
 - Analytical methods
 - Numerical methods

- In-service toughness
 - Models
 - Experiments
Cyclic loading

- Fatigue failure
 - Tests performed with different $\Delta P = P_{\text{max}} - P_{\text{min}}$
 - Nucleation: cracks initiated for $K < K_c$
 - Surface: deformations result from dislocations motion along slip planes
 - Can also happen around a bulk defect

Persistent slip band (PSB)
Cyclic loading

- **Fatigue failure (2)**
 - Stage I fatigue crack growth:
 - Along a slip plane
 - Stage II fatigue crack growth:
 - Across several grains
 - Along a slip plane in each grain,
 - Straight ahead macroscopically
 - Striation of the failure surface: corresponds to the cycles
• Fatigue failure (3)
 – SSY assumption
 • Tests: conditioning parameters
 – ΔP &
 – $P_{\text{min}} / P_{\text{max}}$
 • Therefore fatigue failure can be described by
 – $\Delta K = K_{\text{max}} - K_{\text{min}}$ &
 – $R = K_{\text{min}} / K_{\text{max}}$

\[\frac{da}{dN_f} = f(\Delta K, R) \]

• There is ΔK_{th} such that if $\Delta K \sim \Delta K_{\text{th}}$:
 – The crack has a growth rate lower than one atomic spacing per cycle (statistical value)
 – Dormant crack
Cyclic loading

- **Crack growth rate**
 - Zone I
 - Stage I fatigue crack growth
 - ΔK_{th} depends on R
 - Zone II
 - Stage II fatigue crack growth: striation
 - 1963, Paris-Erdogan
 \[
 \frac{da}{dN_f} = C \Delta K^{-m}
 \]
 - Depends on the geometry, the loading, the frequency
 - Steel: $\Delta K_{th} \sim 2-5$ MPa $m^{1/2}$, $C \sim 0.07-0.11 \times 10^{-11}$ [m (MPa $m^{1/2}$)$^{-m}$], $m \sim 4$
 - Steel in sea water: $\Delta K_{th} \sim 1-1.5$ MPa $m^{1/2}$, $C \sim 1.6 \times 10^{-11}$ [idem], $m \sim 3.3$
 - Be careful: K depends on a integration required to get $a(N_f)$
 - Mode I: $K_I = \sigma_\infty \sqrt{\pi a}$ $\Rightarrow \Delta K = (\sigma_{\infty, \text{max}} - \sigma_{\infty, \text{min}}) \sqrt{\pi a}$
 - Zone III
 - Rapid crack growth until failure
 - Static behavior (cleavage) due to the effect of $K_{\text{max}}(a)$
 - There is failure once a_f is reached, with a_f such that $K_{\text{max}}(a_f) = K_c$
Fatigue design

• « Infinite life design »
 – $\sigma_a < \sigma_e$: « infinite » life
 – Economically deficient

• « Safe life design »
 – No crack before a determined number of cycles
 • At the end of the expected life the component is changed even if no failure has occurred
 • Emphasis on prevention of crack initiation
 • Approach theoretical in nature
 – Assumes initial crack free structures
 – Use of $\sigma_a - N_f$ curves (stress life)
 • Add factor of safety
 – Components of rotating structures vibrating with the flow cycles (blades)
 • Once cracks form, the remaining life is very short due to the high frequency of loading
Fatigue design

• « Fail safe design »
 – Even if an individual member of a component fails, there should be sufficient structural integrity to operate safely
 – Load paths and crack arresters
 – Mandate periodic inspection
 – Accent on crack growth rather than crack initiation
 – Example: 1988, B737, Aloha Airlines 243
 • 2 fuselage plates not glued
 • Sea water \rightarrow rust and volume increased
 • Fatigue of the rivets
 • The crack followed a predefined path allowing a safe operation

2016-2017 Fracture Mechanics - Overview 55
Fatigue design

« Damage tolerant design »

– Assume cracks are present from the beginning of service
– Characterize the significance of fatigue cracks on structural performance
 • Control initial crack sizes through manufacturing processes and (non-destructive) inspections
 • Estimate crack growth rates during service (Paris-Erdogan) & plan conservative inspection intervals (e.g. every so many years, number of flights)
 • Verify crack growth during these inspections
 • Predict end of life (a_f)
 • Remove old structures from service before predicted end-of-life (fracture) or implement repair-rehabilitation strategy

– Non-destructive inspections
 • Optical
 • X-rays
 • Ultrasonic (reflection on crack surface)
References

• Lecture notes

• Book

• RPV
 – Documents