Fracture mechanics, Damage and Fatigue Overview

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Fracture Mechanics - Overview

Before fracture mechanics

- Design with stresses lower than
 - Elastic limit (σ_p^0) or
 - Tensile strength ($\sigma_{\rm TS}$)
- ~1860, Wöhler

 σ

- Technologist in the German railroad system
- Studied the failure of railcar axles
 - Failure occurred
 - After various times in service
 - At loads considerably lower than expected

- Failure due to cyclic loading/unloading
- « Total life » approach
 - Empirical approach of fatigue

2

• Empirical approach: Total life

- Minimal & maximal stresses: σ_{min} & σ_{max}
- Mean stress: $\sigma_m = (\sigma_{max} + \sigma_{min})/2$
- Amplitude: $\sigma_a = \Delta \sigma/2 = (\sigma_{max} \sigma_{min})/2$
- Load Ratio: $R = \sigma_{\min} / \sigma_{\max}$
- Under particular environmental conditions (humidity, high temperature, ...):
 - Frequency of cycles
 - Shape of cycles (sine, step, ...)

- Total life approach
 - Stress life approach
 - For (essentially) elastic deformations
 - For $\sigma_m = 0 \& N_f$ identical cycles before failure
 - σ_e : endurance limit (if any, >10⁷ cycles) σ_e
 - 1910, Basquin law

$$\frac{\Delta\sigma}{2} = \sigma_a = \sigma_f' \left(2N_f\right)^b$$

- Parameters from experimental tests
- Strain life approach
 - For (essentially) plastic deformations
 - For N_f identical cycles before failure

- 1954, Manson-Coffin
$$\frac{\Delta ar{arepsilon}^p}{2} = arepsilon_f' \left(2 N_f
ight)^c$$

- $\Delta ar{arepsilon}^p$ plastic strain increment during the

loading cycles

4

Design using total life approach

- 1952, De Havilland 106 Comet 1, UK (1)
 - First jetliner, 36 passengers
 - Pressurized cabin (0.58 atm)
 - The fuselage designed using total life approach
 - 1952, a fuselage was tested against fatigue
 - Static loading at 1.12 atm, followed by
 - 10 000 cycles at 0.7 atm (> cabin pressurization at 0.58 atm)
 - 1953-1954: several explosive decompressions
 - 1954, April, test of fuselage ALYU in water tank
 - Pressurization cycles of the cabin simulated
 - Rupture at port window after only 3057 pressurization cycles

Design using total life approach

- 1952, De Havilland 106 Comet 1, UK (2)
 - 1954, August, ALYP roof retrieved from sea
 - Origin of failure at the communication window
 - Use of square riveted windows
 - Punched riveting instead of drill riveting
 - Existence of initial defects
- The total life approach
 - Accounts for crack initiation in smooth specimen
 - Does not account for inherent defects
 - Metal around initial defects could have hardened during the initial static test load of the fatigue tested fuselage
 - Production planes without this static test load ...
- 1958, Comet 3 et 4
 - Round windows glued
 - Fuselage thicker

FIG. 12. PHOTOGRAPH OF WRECKAGE AROUND ADF AERIAL WINDOWS-G-ALYP.

Why fracture mechanics?

- Limits of the total life approach ۲
 - Does not account for inherent defects
 - What is happening when a defect is present ?
 - **Example:** Comet •
 - Theoretical stress concentration
 - Infinite plane with an ellipsoidal void (1913, Inglis)

$$\sigma_{\max} = \sigma_{yy} \left(a, 0 \right) = \sigma_{\infty} \left(1 + \frac{2a}{b} \right)$$

$$- \hspace{0.1in} b {\rightarrow} \hspace{0.1in} 0 \hspace{0.1in} \Longrightarrow \hspace{0.1in} \sigma_{max} {\rightarrow} \hspace{0.1in} \infty \hspace{0.1in} \Longrightarrow \hspace{0.1in} breaks \hspace{0.1in} for \hspace{0.1in} \sigma_{\scriptscriptstyle \infty} {\rightarrow} \hspace{0.1in} 0$$

- In contradiction with Griffith and Irwin experiments •
 - Tensile tests on scratched glass samples
 - Tensile strength depends on
 - » The crack size a and on
 - » The surface energy γ_s

- i.e. $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \, 2\gamma_s}$

universit

What is fracture mechanics ?

Back to physics

- Bonding in Crystals (attractive forces)
 - Molecular or van den Waals:
 - Interaction between dipoles
 - Ar, polymers, C₆H₆, graphite
 - Bonds easily break
 - Ionic
 - Interaction between ions
 - NaCl, ...
 - Coulombic non directional forces
 - Hard & brittle crystals
 - Covalent
 - Bonds between atoms
 - CH4, Diamond
 - Directional and strong forces
 - Hard & brittle crystals
 - Metallic
 - Sea of donated valence electrons (conductors)
 - Metals & alloys
 - Non-directional forces

18

(18)

18-

(18+)

 18^{-1}

(18+

18-

(19+

 18^{-1}

(17+

18-

8

- Back to physics (2)
 - Free electrons model of a crystal structure
 - Bonding in Crystals
 - Differ from the bonding kinds, but same shape

E..g.: metallic ions and

What is fracture mechanics ?

- Back to physics (3)
 - Free electrons model of a crystal structure (2)
 - Equilibrium & maximal force (NaCl)

- From free electrons model to macroscopic behavior
 - Depends on the crystal lattice
 - Metallic crystal tends to be packed (a_0^u : size of the unit cell)
 - Examples:

Body-Centered-Cubic crystal

Fe at low T° , Ferrite (low C-steel)

Face-Centered-Cubic crystal

Fe at high T° , Austenite (low C-steel at high T°), Al, Cu

• From free electrons model to macroscopic behavior (2)

What is fracture mechanics ?

 σ (Pa)

 E/a_0^u

 a^{u}_{0}

- From free electrons model to macroscopic behavior (3)
 - Cleavage
 - Planes of atoms separate at once
 - Brittle materials
 - Theoretical tensile strength σ_{Th}

- Surface energy
$$\gamma_{s}$$
: $2\gamma_{s}=rac{N_{
m rupture}U_{0}}{S_{
m ref}}$

- Energy to create a unit surface
- Cleavage: 2 surfaces S_{ref} are created
- Depend on the lattice & on the plane
- E.g.: plane S(1,1,0) in BCC

$$-S_{\rm ref} = 2^{1/2} a_0^{u^2}$$

 $- N_{rupture} = 4 \times 1/8$ (corner) + 2 x 1/8 (center)

Low representation:

atoms are actually

"in contact"

 a^{u}

 a^{u}_{0}

 $2\gamma_s$

 a^{u} (nm)

What is fracture mechanics ?

Fracture Mechanics - Overview

- Inherent defects play a major role in fracture mechanics
 - Theoretical tensile strength $\sigma_{\rm Th}$ vs Tensile strength $\sigma_{\rm TS}$

	a^{u}_{0} [nm]	E [GPA]	γ_s [J m ⁻²]	$\sigma_{ m Th}$
Glass	0.3	60	21	64 GPa !
Steel (low T)	0.3	210	3400	1500 GPa !

• Theoretical values are much higher than observed ones

Brittle / ductile fracture

- 2 kinds of behavior
 - Brittle: _
 - (Almost) no plastic deformations prior to (macroscopic) failure
 - Ductile:
 - Plastic deformations prior to (macroscopic) failure
 - Different microscopic behaviors _

Deformation mechanisms

- Results from bonds stretching
- Reversible
- Linear (metals, ...) or non-linear (polymers, ...)

Brittle / ductile fracture

- Deformation mechanisms (2)
 - Plasticity
 - The specimen experiences permanent • deformations
 - Irreversible •
 - Combination of

 $\mathbf{F}a^{u}_{0}$

- Bonds stretching (reversible part)
- Plane shearing (irreversible part)

 σ

– What is the plane shearing mechanisms?

- Deformation mechanisms (3)
 - What is the plane shearing mechanisms ?
 - Slip of a whole crystal lattice?

Back to sine model

- Because of symmetry: $\tau = 0$ at $\delta = 0$, r_0 , $2r_0 \implies \tau = \tau_{\max} \sin \frac{\pi \delta}{r_0}$

- Shear modulus: $G = \frac{d\tau}{d\delta/a_0^u} \bigg|_{\delta=0} = \tau_{\max} \frac{\pi a_0^u}{r_0}$ $\text{BCC: } \tau_{\max} = \frac{G\sqrt{3}}{4\pi}$
- Fe : $G = 82 \text{ GPa} \implies \tau_{\text{max}} = 11 \text{ GPa } !!!$

19

- Deformation mechanisms (4)
 - What is the plane shearing mechanisms (2) ?
 - A dislocation is characterized by
 - The Burger vector (difference between the distorted lattice around the dislocation and the perfect lattice)
 - Dislocation line (line along which the distortion is the largest)
 - Slip plane (plane where the dislocation motion occurs)
 - Edge dislocation
 - Dislocation line _|_ to Burger vector

© DoITPoMS, University of Cambridge

20

- Deformation mechanisms (5)
 - Screw dislocation

&

Mixed dislocation

– Example:

• Plastically deformed zinc single crystal : $\tau = \sigma \cos \lambda \cos \phi$

Brittle / ductile fracture

- Dislocations and brittle/ductile materials
 - Cristal with ionic bonding (NaCl, ...)
 - Motion of dislocations difficult
 - A + would be in front of another +
 - Cleavage before brittle

- Covalent bonding (Si, diamond, ...)
 - Motion of dislocations difficult
 - Strong & directional bonding
 - Cleavage before brittle

- Metallic bonding
 - Motion of dislocations possible
 - Non directional bonding
 - Motion along packed slip directions
 - Brittle or ductile?

- Is metallic bonding leading to ductile behavior?
 - FCC (Al, Cu, Austenite)
 - Many close-packed planes

- Is metallic bonding leading to ductile behavior ?
 - BCC (Ferrite with Low C)
 - No close-packed plane

- Only directions are close-packed
- Low T°: atoms do not have enough energy to move

- High T°: atoms have enough energy for dislocations motion (Peierls stress)
 ductile
- There is a ductile/brittle transition temperature (DBTT)

- Is metallic bonding leading to ductile behavior?
 - Dislocations motion can be reduced by obstacles —> harder & less ductile
 - Substitutional solutes (Sn in Cu, ..., duralumin)
 - Interstitial solutes (Cr or V in Fe, ...)
 - Grain boundaries (small crystal size after cold rolling: Hall-Petch effect)
 - Precipitate particles (Martensite Body-Centered-Tetragonal in ferrite after quench)
 - Other dislocations (created after cold work)

- Mechanism of brittle failure
 - (Almost) no plastic deformations prior to the (macroscopic) failure
 - Cleavage: separation of crystallographic planes
 - In general inside the grains
 - Preferred directions: low bonding
 - Between the grains: corrosion, H₂, ...
 - Rupture criterion
 - 1920, Griffith: $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \, 2\gamma_s}$

Brittle / ductile fracture

b♠ True Mechanism of ductile failure Plastic deformations prior to (macroscopic) σ_{TS} failure of the specimen Dislocations motion >void nucleation σ_{p}^{0} • around inclusions > micro cavity coalescence crack growth True ε • Is Griffith criterion $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \, 2\gamma_s}$ still correct? • 1950, Irwin, the plastic work at the crack tip should be added to the surface energy: $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \left(2\gamma_s + W_{\rm pl}\right)}$

- WWII
 - Steel at low T° : brittle
 - $\sigma_{\mathrm{TS}}\sqrt{a} \div \sqrt{E \, 2\gamma_s}$

with $\gamma_{s} \sim 3400 \text{ Jm}^{-2}$

- Steel at room T° : ductile

• $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \left(2 \gamma_s + W_{\rm pl}\right)}$ with $2\gamma_s + W_{\rho l} \sim 200 \text{ kJ m}^{-2}$

- Use of low-grade steel
 - In cold weather:

DBTT ~ water temperature

- When put in water existing cracks lead to failure
- 30% of the liberty ships suffered from fracture

Fracture Mechanics - Overview

- Failure mode of polymers: rupture & disentangling of molecules
 - Behavior depends on the covalent chain structure
 - Aligned cross linked or networked (epoxy):
 - Always amorphous but directional
 - Brittle response

region

- Failure mode of polymers: rupture & disentangling of molecules (2)
 - Behavior depends on the covalent chain structure (2) _ Crystalline
 - Semi crystalline (Plexiglas, PVC):
 - Linear polymers can locally crystallize into lamellar thin plates (chains fold back and forth)
 - Behavior strongly depends on temperature

- Failure mode of polymers: rupture & disentangling of molecules (3)
 - Behavior depends on the covalent chain structure (3)
 - Elastomer (Rubber):
 - Amorphous chains are kinked and heavily cross linked
 - Reversible behavior

Initial: amorphous chains are kinked, heavily cross-linked.

Brittle / ductile fracture

Composites

- Fibers in a matrix
 - Fibers: polymers, metals or ceramics •
 - Matrix: polymers, metals or ceramics •
 - Fibers orientation: unidirectional, woven, • random
- Complex failure modes
 - Transverse matrix fracture •
 - Longitudinal matrix fracture ۲
 - Fiber rupture ۲
 - Fiber debonding
 - **Delamination** ۲
 - Macroscopically: no ٠ plastic deformation

Fracture Mechanics - Overview

32

- Limits of the total life approach
 - Does not account for inherent defect
 - What is happening when a defect is present ?
 - Theoretical stress concentration ?
 - Infinite plane with an ellipsoidal void (1913, Inglis)

$$\sigma_{\max} = \sigma_{yy} \left(a, 0 \right) = \sigma_{\infty} \left(1 + \frac{2a}{b} \right)$$

 $- \hspace{0.1cm} b {\rightarrow} \hspace{0.1cm} 0 \Longrightarrow \hspace{0.1cm} \sigma_{max} {\rightarrow} \hspace{0.1cm} \stackrel{\hspace{.1cm} \sim}{=} \hspace{0.1cm} \text{breaks for } \sigma_{\scriptscriptstyle \infty} {\rightarrow} \hspace{0.1cm} 0$

- In contradiction with Griffith and Irwin experiments $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \left(2\gamma_s + W_{\rm pl} \right)}$

- Development of the fracture mechanics field
 - How can we predict failure when a crack is there ?
 - Microscopic observations for cycling loading
 - Crack initiated at stress concentrations (nucleation)
 - Crack growth
 - Failure of the structure when the crack reaches a critical size
 - How can we model this?

Singularity at crack tip for linear and elastic materials
 – 1957, Irwin, 3 fracture modes

- Singularity at crack tip for linear and elastic materials (2)
 - Asymptotic solutions (Airy functions)

$$\begin{array}{c} \text{Mode I} \\ \text{Mode II} \\ \hline \sigma_{xx} = \frac{C}{\sqrt{r}}\cos\frac{\theta}{2}\left[1-\sin\frac{3\theta}{2}\sin\frac{\theta}{2}\right] + \mathcal{O}\left(r^{0}\right) \\ \hline \sigma_{yy} = \frac{C}{\sqrt{r}}\cos\frac{\theta}{2}\left[1+\sin\frac{3\theta}{2}\sin\frac{\theta}{2}\right] + \mathcal{O}\left(r^{0}\right) \\ \hline \sigma_{xy} = \frac{C}{\sqrt{r}}\cos\frac{\theta}{2}\left[1+\sin\frac{3\theta}{2}\sin\frac{\theta}{2}\right] + \mathcal{O}\left(r^{0}\right) \\ \hline \sigma_{xy} = \frac{C}{\sqrt{r}}\cos\frac{\theta}{2}\cos\frac{3\theta}{2}\sin\frac{\theta}{2} + \mathcal{O}\left(r^{0}\right) \\ \hline u_{x} = \frac{C(1+\nu)}{E}\sqrt{r}\cos\left(\frac{\theta}{2}\right)\left[\kappa-1+2\sin^{2}\left(\frac{\theta}{2}\right)\right] \\ u_{y} = \frac{C(1+\nu)}{E}\sqrt{r}\sin\left(\frac{\theta}{2}\right)\left[\kappa+1-2\cos^{2}\left(\frac{\theta}{2}\right)\right] \\ \hline u_{y} = -\frac{C(1+\nu)}{E}\sqrt{r}\cos\left(\frac{\theta}{2}\right)\left[\kappa-1-2\sin^{2}\left(\frac{\theta}{2}\right)\right] \\ \hline u_{y} = -\frac{C(1+\nu)}{E}\sqrt{r}\cos\left(\frac{\theta}{2}\right)\left[\kappa-1-2\sin^{2}\left(\frac{\theta}{2}\right)\right] \\ \hline u_{z} = \frac{4C(1+\nu)}{E}\sqrt{r}\sin\left(\frac{\theta}{2}\right) \\ \hline u_{z} = \frac{4C(1+\nu)}{E}\sqrt{r}\cos\left(\frac{\theta}{2}\right) \\ \hline$$

for plane
$$\sigma \kappa = \frac{3-\nu}{1+\nu}$$
 &

for plane ϵ $\kappa = 3 - 4\nu$

35

- Singularity at crack tip for linear and elastic materials (3)
 - Asymptotic solutions (Airy functions)

Mode I

Mode II

Mode III

$$\boldsymbol{\sigma}_{yy} = rac{C}{\sqrt{r}}\cosrac{ heta}{2}\left[1+\sinrac{3 heta}{2}\sinrac{ heta}{2}
ight] + \mathcal{O}(r^0)$$

$$\boldsymbol{\sigma}_{xy} = \frac{C}{\sqrt{r}} \cos \frac{\theta}{2} \left[1 - \sin \frac{3\theta}{2} \sin \frac{\theta}{2} \right] + \mathcal{O} \left(r^0 \right)$$

$$\sigma_{yz} = rac{C}{\sqrt{r}}\cosrac{ heta}{2} + \mathcal{O}\left(r^0
ight)$$

– Introduction of the Stress Intensity Factors - SIF (Pa $m^{1/2}$)

$$\begin{cases} K_{I} = \lim_{r \to 0} \left(\sqrt{2\pi r} \boldsymbol{\sigma}_{yy}^{\text{mode I}} \mid_{\theta=0} \right) = C\sqrt{2\pi} \\ K_{II} = \lim_{r \to 0} \left(\sqrt{2\pi r} \boldsymbol{\sigma}_{xy}^{\text{mode II}} \mid_{\theta=0} \right) = C\sqrt{2\pi} \end{cases} \begin{bmatrix} \boldsymbol{\sigma}^{\text{mode i}} = \frac{K_{i}}{\sqrt{2\pi r}} \mathbf{f}^{\text{mode i}}(\theta) \\ \mathbf{f}_{III} = \lim_{r \to 0} \left(\sqrt{2\pi r} \boldsymbol{\sigma}_{yz}^{\text{mode III}} \mid_{\theta=0} \right) = C\sqrt{2\pi} \end{bmatrix}$$

- K_i are dependent on both
 - Loading &
 - Geometry

• 1957, Irwin, new failure criterion

- $\sigma_{max} \rightarrow \infty \implies \sigma \text{ is irrelevant}$
- Compare the SIFs (dependent on loading and geometry) to a new material property: the toughness
 - If $K_i = K_{iC} \implies$ crack growth
 - Toughness (ténacité) K_{Ic}
 - Steel, Al, ... : see figures
 - Concrete: 0.2 1.4 MPa m^{1/2}

- Evaluation of the stress Intensity Factor (SIF)
 - Analytical (crack 2a in an infinite plane)

- Measuring K_{Ic}
 - Done by strictly following the ASTM E399 procedure
 - Specimen
 - Normalized, e.g. Single Notched Bend (SENB) •
 - Plane strain constraint (thick enough ٠
 - *conservative* (see next slide)
 - Specimen machined with a V-notch
 - Crack initiation
 - Cyclic loading to initiate a fatigue crack •
 - Crack length from compliance •
 - Crack Mouth Opening Displacement
 - (CMOD=v) measured with a clipped gauge
 - Calibrated using FEM

- Measuring K_{ic} (2)
 - Done by strictly following the ASTM E399 procedure
 - Toughness test
 - Calibrated P, δ recording equipment
 - Crack Mouth Opening Displacement (CMOD=v) measured with a clipped gauge
 - P_c is obtained on P v curves
 - Either the 95% offset value or
 - The maximal value reached before
 - K_{Ic} is deduced from P_c using

$$K_I = \frac{PL}{tW^{\frac{3}{2}}} f\left(\frac{a}{W}\right)$$

- f(a/W) depends on the test (SENB, ...)
- f(a/W) calibrated using FEM etc, in the norm
- Check the constraint once you have K_{Ic}
 - Plane strain constraint (thick enough)

40

Energy approach

- We can now assess the crack loading

• SIF
$$\sigma^{\text{mode i}} = \frac{K_i}{\sqrt{2\pi r}} \mathbf{f}^{\text{mode i}}(\theta)$$

- Crack propagates if $K_i \geq K_{iC}$
- Back to Griffith
 - $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \, 2\gamma_s}$
 - Relates apparent strength to surface energy
- How to make the link: Consider a virtual crack propagation
 - What happens if the crack grows?
 - How is the strain energy evolving

- Energy approach (2)
 - Mode I

$$\begin{cases} \boldsymbol{\sigma}_{yy} = \frac{C}{\sqrt{r}}\cos\frac{\theta}{2} \left[1 + \sin\frac{3\theta}{2}\sin\frac{\theta}{2} \right] + \mathcal{O}\left(r^{0}\right) \\ \boldsymbol{u}_{y} = \frac{C\left(1+\nu\right)}{E}\sqrt{r}\sin\left(\frac{\theta}{2}\right) \left[\kappa + 1 - 2\cos^{2}\left(\frac{\theta}{2}\right) \right] \end{cases}$$

– Initial crack 2a

- Energy approach (3) •
 - Mode I

$$\begin{cases} \boldsymbol{\sigma}_{yy} = \frac{C}{\sqrt{r}}\cos\frac{\theta}{2} \left[1 + \sin\frac{3\theta}{2}\sin\frac{\theta}{2} \right] + \mathcal{O}\left(r^{0}\right) \\ \boldsymbol{u}_{y} = \frac{C\left(1+\nu\right)}{E}\sqrt{r}\sin\left(\frac{\theta}{2}\right) \left[\kappa + 1 - 2\cos^{2}\left(\frac{\theta}{2}\right) \right] \end{cases}$$

- Virtual crack
$$2(a+\Delta a)$$

$$\begin{array}{c}
\mathbf{y} \\
\mathbf{x} \\
\mathbf$$

- Energy approach (4)
 - Virtual crack propagation

- Energy approach (5)
 - Variation of strain energy when crack grows by Δa

$$\Delta E_{\rm int} = -4dz \int_{a}^{a+\Delta a} \int_{\boldsymbol{u}_{y}}^{\boldsymbol{u}_{y}^{1}} \boldsymbol{\sigma}_{yy} d\boldsymbol{u}_{y} dx$$

• Linear elasticity: σ_{yy} linear in terms of u_y

$$\Delta E_{\rm int} = -2dz \int_a^{a+\Delta a} \boldsymbol{\sigma}_{yy}^0 \boldsymbol{u}_y^1 dx$$

• Change of variable $x = a + \Delta a \cos^2 \theta$

$$\implies \Delta E_{\rm int} = -\frac{dz\sigma_{\infty}^2\sqrt{a\left(a+\Delta a\right)}\left(1+\nu\right)\left(1+\kappa\right)}{2E}\pi\Delta a < \mathbf{0}$$

– New concept: G is the energy release rate for a straight ahead growth

$$G = -\frac{dE_{\text{int}}}{dA} = -\lim_{\Delta a \to 0} \frac{\Delta E_{\text{int}}}{2\Delta a dz} = \frac{\pi a \sigma_{\infty}^2}{4E} (1+\nu) (\kappa+1) = \frac{\pi a \sigma_{\infty}^2}{E'} = \frac{K_I^2}{E'}$$

- Expression $G = \frac{K_I^2}{E'}$ with $E' = \frac{4E}{(1+\nu)(\kappa+1)} = \begin{cases} E & P\sigma \\ \frac{E}{1-\nu^2} & P\varepsilon \end{cases}$

- Holds not only for infinite plate
- In linear elasticity and crack growing straight ahead

- Energy approach (6)
 - 1920, Griffith
 - Total energy $E = E_{int} + \Gamma$ is the sum of
 - Internal (strain) energy E_{int} of the structure
 - The atomistic bond energy Γ where a crack possibly propagates

- Energy approach: J-integral
 - Energy release rate
 - Straight ahead propagation for linear elasticity $G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{(1+\nu)K_{III}^2}{E}$
 - Should be related to the energy flowing toward the crack tip

• J-integral
$$J = \int_{\Gamma} \left[U(\boldsymbol{\varepsilon}) \, \boldsymbol{n}_x - \boldsymbol{u}_{,x} \cdot \boldsymbol{T} \right] dl$$

- Defined even for non-linear materials
- Is path independent if the contour
 Γ embeds a straight crack tip
- BUT no assumption on subsequent growth direction
- If crack grows straight ahead: $\implies G=J$

- If linear elasticity:
$$\implies J = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}$$

- Can be extended to plasticity if no unloading (see later)
- Advantages
 - Efficient numerical computation of the SIFs
 - Useful for non perfectly brittle materials

• Direction of crack grow

- Assumptions: the crack will grow in the direction where the SIF related to mode I in the new frame is maximal
 - Crack growth if $\left(\sqrt{2\pi r}\boldsymbol{\sigma}_{\theta\theta}\left(r,\,\theta*\right)\right) \geq K_{C}$ with $\partial_{\theta}\boldsymbol{\sigma}_{\theta\theta}|_{\theta^{*}} = 0$
- From direction of loading, one can compute the propagation direction

Linear Elastic Fracture Mechanics (LEFM)

 R_c Non-perfectly brittle materials $R_{\rm c \ ducile} t_3 << (\text{Plane } \sigma)$ Plastic zone _ • Limit G_c becomes $R_c(a)$ $R_{\rm c\ ducile} t_2 < t_1$ • $R_c(a)$ depends on the Steady state Initial crack loading mode and no growth $R_{\rm c\ ducile} t_1$ Blunting longer only on the material Stability of the crack K_{c fragile} Active Stable Plastic Plastic wake plastic zone $\begin{cases} G = R_c \left(a \right) \\ \frac{dG}{da} \le \frac{dR_c}{da} \end{cases}$ zone 0 $\Delta A = t \Delta a$ $\mathbf{f}R_c, G$ $R_{\rm c\ ductile}$ Instable: $a > a^*$ • G ($\sigma^4 > \sigma^3$): Stability limit $\frac{dG}{da} > \frac{dR_c}{da}$ *G* ($\sigma^3 > \sigma^2$): Propagation *G* ($\sigma^2 > \sigma^1$): initiation $G(\sigma^1)$: No crack a a^* a_0 2021-2022 49

Limits of the LEFM

solution (in terms of

 $1/r^{1/2}$) dominance

- The stress still tends toward infinity
 Zone of asymptotic
 - There are non-linearities (plasticity at crack tips)
 - Far away from the crack the approximation does not hold (structural response)
- Small Scale Yielding assumption
 - Holds if crack front plastic zone size is small compared to the crack length
 - Cohesive zone r_p at crack tip $a \rightarrow a_{\text{eff}} = a + \frac{r_p}{3}$ 1960, Dugdale-Barenblatt • Mode I $r_p = \frac{\pi K_I^2 (a_{\text{eff}})}{8\sigma_p^2}$

 σ_{yy}

Asymptotic σ_{vv}

True σ_{yy}

Х

Iterative method

- If applied stress larger than half the yield stress
 - The assumption does not hold non linear fracture mechanics (NLFM)

50

- Pressurized Water Reactor (PWR)
 - Typical RPV operating conditions: 15 MPa, 300° C

Quadrennial Technology Review 2015, U.S. Department of Energy

Fracture Mechanics - Overview

IEGE

universite

http://www.eia.doe.gov/cneaf/nuclear/page/nuc_reactors/pwr.html

- **RPV** material •
 - Base material:
 - Manganese–nickel–molybdenum low-alloy steel •
 - E.g. SA508 Cl. 3
 - Cladding:
 - Stainless steel

Fracture Mechanics - Overview

RPV material: exhibits a DBTT

- Definition of T_{100} : Reference temperature for which 50% of the normalized samples break at a toughness of 100 [MPa \sqrt{m}]

Integrity of reactor pressure vessels in nuclear power plants : assessment of irradiation email and effects in reactor pressure vessel steels. International Atomic Energy Agency, 2009. (IAEA nuclear energy series), ISSN 1995-7807, ISBN 978-92-0-101709-3

Reactor Pressure Vessels (RPV)

RPV operations

- Pressurized Thermal Shock (PTS)
 - Loss of coolant accident (LOCA)
 - Primary side injection of cold water
 - Sudden decrease of wall temperature
 - Decrease of the toughness
 - N.B. decrease of pressure, but thermal strains

Christopher Boyd, Interactions of Thermal-Hydraulics with Fuel Behavior, Structural Mechanics, and Computational Fluid Dynamics Office of Nuclear Regulatory Research Nuclear Regulatory Commission

54

- Irradiation embrittlement
 - Irradiation during the RPV operation
 - Embrittlement increasing with
 - The fluence (number of neutrons per unit surface)
 - Neutron energy (>1MeV)

Reactor Pressure Vessels (RPV)

Integrity of reactor pressure vessels in nuclear power plants : assessment of irradiation embrittlement effects in reactor pressure vessel steels. International Atomic Energy Agency, 2009. (IAEA nuclear energy series), ISSN 1995-7807, ISBN 978-92-0-101709-3

Fracture Mechanics - Overview

Safety assessment

Methodology

Cyclic loading

cycles

• Fatigue failure

•

- Tests performed with different $\Delta P = P_{\text{max}} - P_{\text{min}}$

 P_{\min}

Persistent slip

band (PSB)

- Nucleation: cracks initiated for $K < K_c$

P_{max}

Can also happen around a

• Surface: deformations result from dislocations motion along slip planes

bulk defect

Cyclic loading

- Fatigue failure (2)
 - Stage I fatigue crack growth:
 - Along a slip plane
 - Stage II fatigue crack growth:
 - Across several grains
 - Along a slip plane in each grain,
 - Straight ahead macroscopically
 - Striation of the failure surface: corresponds to the cycles

Cyclic loading

- There is ΔK_{th} such that if $\Delta K \sim \Delta K_{\text{th}}$:
 - The crack has a growth rate lower than one atomic spacing per cycle (statistical value)
 - Dormant crack

- Depends on the geometry, the loading, the frequency
- Steel: $\Delta K_{\rm th} \sim 2-5$ MPa $m^{1/2}$, $C \sim 0.07-0.11\ 10^{-11}$ [m (MPa m^{1/2})-m], $m \sim 4$

- Steel in sea water: $\Delta K_{\text{th}} \sim 1-1.5 \text{ MPa m}^{1/2}, C \sim 1.6 \ 10^{-11} \text{ [idem]}, m \sim 3.3$

• Be careful: K depends on $a \implies$ integration required to get $a(N_f)$

- Mode I: $K_I = \sigma_{\infty} \sqrt{\pi a} \implies \Delta K = (\sigma_{\infty, \max} - \sigma_{\infty, \min}) \sqrt{\pi a}$

- Zone III
 - Rapid crack growth until failure
 - Static behavior (cleavage) due to the effect of $K_{max}(a)$
 - There is failure once a_f is reached, with a_f such that $K_{max}(a_f) = K_c$

- « Infinite life design »
 - $-\sigma_a < \sigma_e$: « infinite » life
 - Economically deficient
- « Safe life design »
 - No crack before a determined number of cycles
 - At the end of the expected life the component is changed even if no failure has occurred
 - Emphasis on prevention of crack initiation
 - Approach theoretical in nature
 - Assumes initial crack free structures
 - Use of $\sigma_a N_f$ curves (stress life)
 - Add factor of safety
 - Components of rotating structures vibrating with the flow cycles (blades)
 - Once cracks form, the remaining life is very short due to the high frequency of loading

« Fail safe design »

- Even if an individual member of a component fails, there should be sufficient structural integrity to operate safely
- Load paths and crack arresters
- Mandate periodic inspection
- Accent on crack growth rather than crack initiation
- Example: 1988, B737, Aloha Airlines 243
 - 2 fuselage plates not glued
 - Sea water > rust and volume increased
 - Fatigue of the rivets
 - The crack followed a predefined path allowing a safe operation

- « Damage tolerant design »
 - Assume cracks are present from the beginning of service
 - Characterize the significance of fatigue cracks on structural performance
 - Control initial crack sizes through manufacturing processes and (non-destructive) inspections
 - Estimate crack growth rates during service (Paris-Erdogan)
 - Schedule conservative inspection intervals (e.g. every so many cycles)
 - Verify crack growth during these inspections
 - Predict end of life (*a_f*)
 - Remove old structures from service before predicted end-of-life (fracture) or implement repair-rehabilitation strategy
 - Non-destructive inspections
 - Optical
 - X-rays
 - Ultrasonic (reflection on crack surface)

References

- Lecture notes
 - Lecture Notes on Fracture Mechanics, Alan T. Zehnder, Cornell University, Ithaca, <u>http://hdl.handle.net/1813/3075</u>
 - Fracture Mechanics Online Class, L. Noels, ULg, <u>http://www.ltas-</u> <u>cm3.ulg.ac.be/FractureMechanics</u>
- Book
 - Fracture Mechanics: Fundamentals and applications, D. T. Anderson. CRC press, 1991.
 - S. Suresh, Fatigue of Materials, Cambridge University Press, 2001
- RPV
 - Documents
 - Integrity of reactor pressure vessels in nuclear power plants : assessment of irradiation embrittlement effects in reactor pressure vessel steels. International Atomic Energy Agency, 2009. (IAEA nuclear energy series), ISSN 1995-7807, ISBN 978-92-0-101709-3
 - Pressurized thermal shock in nuclear power plants: good practices for assessment, International Atomic Energy Agency, 2010 (iaea-tecdoc-1627), ISSN 1011-4289, ISBN 978-92-0-111109-8

