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Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– 3 failure modes

– Asymptotic solution governed by stress intensity factors
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Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– Potential energy  PT = Eint - Qu

– Crack closure integral 

• Energy required to close crack tip

– Energy release rate

• Variation of potential energy in case of crack growth

• In linear elasticity

– In linear elasticity & if crack grows straight ahead
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Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– J-integral

• Strain energy flow

– Exists if an internal potential exists

• Is path independent if the contour G embeds a straight crack tip

• No assumption on subsequent growth direction

• Can be extended to plasticity if no unloading (see lecture on cohesive zone)

– If crack grows straight ahead G=J

– In linear elasticity (independently of crack growth direction):
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• Analytical

– SIF from full-field solution

• Limited cases

– From energetic consideration

• Growing straight ahead crack

• From J-integral

• Numerical (e.g. FEM)

– bi depends on geometry & crack length

• Tabulated solutions (handbooks)

– http://ebooks.asmedigitalcollection.asme.org/book.aspx?bookid=230

Linear Elastic Fracture Mechanics (LEFM)
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Linear Elastic Fracture Mechanics (LEFM)

• Small Scale Yielding assumption

– LEFM: we have assumed the existence of a K-dominance zone

• This holds if the process zone (in which irreversible process occurs) 

– Is a small region compared to the specimen size &

– Is localized at the crack tip

– Validity of this approach?

• We check the dimensions

• Non-linear fracture mechanics

– Derivation of the LEFM validity criterion 

– Providing solutions when LEFM criterion is not met
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Dugdale (1960) & Barenblatt (1962)’s cohesive model

• Dugdale cohesive zone/Yielding strip

– Remove the singularity 

– Introduce plasticity at crack tip

– Nonlinearities localized at crack tip

– Elastic perfectly plastic material (hp=0)

• The plastic zone has actually a different shape in most cases

– Depends on the stress state, hardening law etc.
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• Elasto-plasticity (small deformations)

– Beyond a threshold the material experiences irreversible deformations

– Typical behavior at low/room temperature

• Curves s-e independent of time

• At higher temperature creep …

– Yield surface

f < 0: elastic region

f = 0: plasticity

– Plastic flow

• Assumption: deformations can be added

• Normal plastic flow

– Path dependency (incremental equations in d ) 

Material behavior: Elasto-plasticity 
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• Existence of a free energy function

– Isotropic hardening

•

•

– Kinematic hardening

•

•

Material behavior: Elasto-plasticity 
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• Existence of energy release rate?

– Free energy

•

• &

– But 

• No unique value of 𝝈 for a given 𝜺

• Since 𝝈 𝜺𝒆 depends on the history

neither 𝐺 nor 𝐽 exists 

– We assume no possible unloading

We recover an energy 𝑈 𝜺 with 

and with (see next slide)

Material behavior: Elasto-plasticity 
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• Assuming no unloading

– Internal Potential 

• One has

• So

&

Material behavior: Elasto-plasticity 
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• J2-plasticity without unloading

– Internal energy

•

• With 

– Example: Power law hardening

•

• Parameters a & n

• Term sp
0/E represents the elastic

deformation before yield 

Elastoplastic behavior
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• Power law
– This law can be rewritten in terms of the total deformations

• Yield stress is replaced by 

equivalent stress

• Plastic strain is replaced by 

equivalent strain

• The governing law becomes

or

• Parameter n

– n→∞: perfect plasticity

– n→1: “elasticity”

– Doing so requires 2 assumptions
• There is no unloading 

• As elastic strains are assimilated to plastic strains, the material is incompressible

– Which are satisfied if
• We are interested only in crack initiation and not in crack propagation
• The stress components remain proportional with the loading
• Elastic deformations are negligible compared to plastic ones

Elastoplastic behavior
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• Power law (2)

– Internal potential for J2-elasto plasticity

•

with

– Here we have a non-linear 

incompressible response

•

• Obeys plastic flow equations

Elastoplastic behavior
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• The HRR theory

– From Hutchinson, Rice and Rosengren, 1967-1968

– Assumptions

• Semi-infinite crack

• Loading increased monotonically          only for crack initiation

• Power law            only if plastic deformations are large compared to elastic ones

– J-integral

• Elasto-plastic model & these assumptions = non-linear elasticity

• The J-integral can be used

• It is path independent, so one may choose

HRR theory
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• Near fields

– Evaluation of J-integral

• Choice of a circle to evaluate 𝐽

• Since J is path independent, it is the same 

whatever the value of r

– So the integrant should be 

independent of r (at the limit)

– The terms involve stress times strain

HRR theory
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• Near fields

– Because of the path independence of 𝐽

•

– Generally speaking, the stress tensor can be expanded in a power series

•

where                 depends only on q and s

– Let s’ be the dominant exponent near the crack tip

where                 depends only on q and s’

• Strain field: 

– Therefore 

•

HRR theory
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HRR theory

• Near fields (2)

– Near fields are obtained using 𝑠’ = −
1

𝑛+1

• Rewrite stress field 

• kn is a plastic stress intensity factor which 

– Allows defining                 independently of the loading amplitude

– Depends on n

• Limit cases

– “Elasticity” (n→1):

LEFM solution in 1/r1/2 recovered

– Perfect plasticity (n→∞): 

stress remains finite
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HRR theory

• Near fields (3)

– Near fields are obtained using 𝑠’ = −
1

𝑛+1

• Stress field 

• Strain field

• Internal energy

• J-integral

with
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HRR theory

• Solution in terms of J-integral

– Near fields are obtained using 𝑠’ = −
1

𝑛+1

• Plastic stress intensity factor 

• Stress field 

• Strain field

– J is governing the stress field near the crack tip

• Limit case of 𝑛 → 1
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• Resolution for a semi-infinite crack in plane e state

– Airy functions

• Linear momentum

– If b = 0, there exists an Airy function F:

– We are not in linear elasticity we cannot say

• In polar coordinates

• We are seeking a solution in r -1/(n+1) we choose

• So the stress expressions satisfying the balance equation

Semi-infinite mode I crack in plane e state
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• Resolution for a semi-infinite crack in plane e state (2)

– Stream function

• Since we are incompressible                                      & 

with plane strain assumption (if not: ezz≠0 )

• So displacements derive from a stream function Y with

• In polar coordinates

– &

the displacements become

– Strains are obtained from

• We are seeking a solution in r -n/(n+1) we choose 

Semi-infinite mode I crack in plane e state
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• Resolution for a semi-infinite crack in plane e state (3)

– Strain tensor

• Stream function

• So the strain components are

Semi-infinite mode I crack in plane e state
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• Resolution for a semi-infinite crack in plane e state (4)

– Stress & Strain tensors

– 2 unknown functions f and g need for 2 equations 

• The power law

• The normality equation

Semi-infinite mode I crack in plane e state
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• Resolution for a semi-infinite crack in plane e state (5)

– Power law                             with normality

• These two equations lead to  (see annex 1 for details)

–

–

– Back to HRR field

• Near the crack tip, the fields were normalized by introducing an intensity factor

&

• Therefore, the functions f and g are rewritten

&

Semi-infinite mode I crack in plane e state
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• Resolution for a semi-infinite crack in plane e state (6)

– Using the new non-dimensional functions leads to

– These equations can be reduced to a differential equation of the 4th order in ሚ𝑓
• See appendix I 

•

Semi-infinite mode I crack in plane e state
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• Resolution for a semi-infinite crack in plane e state (7)

– New differential equation of the 4th order in ሚ𝑓

• Stress field from ሚ𝑓

– Range-Kutta resolution of differential equation of the 4th order in ሚ𝑓

• Initial boundary conditions

– Mode I symmetry:

– Stress free lips:

iterations on             until these 2 conditions are satisfied

– It remains to choose

• The differential equation is valid for any multiple of       

– Initial condition            is chosen so that

Semi-infinite mode I crack in plane e state
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• Resolution for a semi-infinite crack in plane e state (8)

– Solution of the plane e problem 

– The problem fields can now be determined

• &

• J characterizes the loading intensity on the crack

– Problem dependent

• In is a normalizing factor allowing to express the dependency with respect to J

– Still needs to be evaluated

Semi-infinite mode I crack in plane e state
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• Determination of stress and strain fields

– We sought the approximations      

with

• Similarly

• Since J is path independent

is numerically evaluated

Semi-infinite mode I crack in plane e state
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Semi-infinite mode I crack in plane e state

• Process zone shape

– The elastic-plastic boundary corresponds to

• Since

• Definition of the non-dimentional radius                          , 

the boundary is obtained for
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Semi-infinite mode I crack in plane e state

• Process zone shape (2)

– The elastic-plastic boundary corresponds to

• In terms of                              , 

the boundary is obtained for

• Limit case of 𝑛 → 1:  
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• Stress field at crack tip

– Since                                                           &

the stress field at crack tip is 

• The method does not remove the stress singularity (except for n→∞)

• Since the abscissa is                         , it appears that J is a measure of the 

intensity of the singular crack tip field (except for n→∞)

Semi-infinite mode I crack in plane e state
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• Crack opening displacement  (COD)

– Strain field                                      with 

– Displacement field

•

– COD: 

•

– For Dugdale’s model, a CTOD has 

been defined. Quid for HRR model?

Semi-infinite mode I crack in plane e state
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• Crack tip opening displacement (CTOD)

– The CTOD is defined as        such 

that a 90°-angle is intercepted

• Let r* be the value of r satisfying this criterion:

• Since

Semi-infinite mode I crack in plane e state
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• Crack tip opening displacement (CTOD) (2)

– The CTOD is defined as        such 

that a 90°-angle is intercepted (2)

• Let r* be the value of r satisfying this criterion:

• Since

• Finally

Semi-infinite mode I crack in plane e state
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• Crack tip opening displacement (CTOD) (3)

– The CTOD is defined as        such 

that a 90°-angle is intercepted (3)

•

• dn depends on

– n

– but also on 

• Since for a given material J is uniquely 

related to the CTOD, this last one can 

be used as a crack initiation criterion

Semi-infinite mode I crack in plane e state
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• Summary

– Assumptions

• J2-plasticity with power law description

• Small deformations

• There is no unloading and loading is 

proportional in all the directions (ok for crack  

initiation and not for crack propagation)

• Elastic strains are assimilated to plastic strain 

(material is incompressible)

• Semi-infinite crack

– HRR results for semi-infinite mode I crack 

in plane e state

• Asymptotic stress, strain and displacement fields

– The J-integral plays the role of an 

equivalent “plastic strain intensity factor”

– Stress field evolves in a proportional

way, so this is applicable to incremental

plasticity as long as J increases

Semi-infinite mode I crack in plane e state
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• Summary (2)

– HRR results for semi-infinite mode I crack in 

plane e state (2)

• Process zone

with

– If SSY

• CTOD

– New definition

–

– Also function of J

• We did not assume SSY !!!

– Questions

• What is happening for other configurations?

• What is the range of validity?

Semi-infinite mode I crack in plane e state
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• Mode I crack in plane s state

– Analysis is the same with other              ,               &                 fields  

Other HRR solutions
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• Mode I crack in plane s state (2)

– Stress field is

– Asymptotic syy stress

• So for the same J, a thin specimen is less stressed at crack tip 

Other HRR solutions
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• Mode I crack in plane s state (3)

– Crack Tip Opening Displacement

•

Other HRR solutions
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• Mode I crack in plane s state (4)
– Process zone shapes

• The process zones  

– Have a different shape

– Are more diffuse in plane s

• Mode III

– In SSY, the process zone has a circular 

shape

• Perfectly plastic

• With hardening

Other HRR solutions
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• Mode II and mixed mode crack 

– In SSY, the solution depends on the 

elastic mixity parameter

– Examples 

• Process zones in plane e state 

• SSY 

Other HRR solutions
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• Compressibility 

– Elastic part of the deformations in not incompressible 

– Considering this effect will diffuse the plastic zone

• Example: Mode I, plane e state & SSY 

• The plastic zone size rp is defined as the

length of the plastic zone ahead of the crack

Other HRR solutions
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• HRR solution in SSY can explain 3D effect

– Let us assume that the solution is

• Plane-s-like near free surfaces

• Plane-e-like near mid-plane of specimen

– Although K and s are not constant through

the thickness, it remains that

• There is a transition in the plastic zone

shape and size

• This transition is responsible for shear lips

• Shear lips form a 45-degree-angle since  

szz=0 (so max shear at 45° in plane Oyz)

What can be learned from these models
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• HRR solution in SSY can explain 3D effect (2)

– During a toughness test, the K measured is

an average one

• It is more important for thin specimen

• The process is never really plane e

– There are actually complex 3D effects

• In SSY, even for a thin specimen, near the 

mid-plane a plane-e-state is developed

• If the load increases, the plastic zone can

be plane-s-like near the mid-plane

– Effect of T-stress should also be considered

• Recall T-stress is the 0-order term obtained 

with the asymptotic solution, which is dominant

at radius rc

• In general, if the test is such that T < 0, the 

measured fracture K will be larger than for

T > 0, independently of the thickness *

• For ASTM toughness tests, the thickness 

is large                              so that T > 0  

What can be learned from these models

2a
T>0

*D.J Smith, M.R Ayatollahi and M.J Pavier,Proc. R. Soc. 

A, 2006, vol. 462, pp 415-2437 

t

Kc

K rupture

Plane s

Plane e 

t1
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t3<t2

t
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• Effective crack length for SSY 

– If SSY assumption holds

• J can be expressed in terms of K

• Then the plastic size can be written

• However, there are dependencies on

– Parameters n & n

– Whether it is plane e or plane s

– Rice’s model for perfectly plastic material

• Intersection of the linear elastic solution

with the yield stress leads at h rp

• But there is a redistribution of the stresses 

so that the traction remains the same

– First order approximation: stress

distribution is shifted 

What can be learned from these models
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• Effective crack length for SSY (2)

– Rice’s model (2)

• 2 equations with 2 unknowns

• System: 

• So the plastic zone size is                                                          &

• So everything is as if the crack had an effective length  a +h rp = a + rp/2

What can be learned from these models
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• Effective crack length for SSY (3)

– Rice’s model (2)

• So everything is as if the crack had 

an effective length  a +h rp = a + rp/2

– From HRR models, numerical simulations, etc …

• Considering blunting, compressibility, hardening, …, an estimation is 

What can be learned from these models
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• Effective crack length for SSY (4)

– If s∞< 50% of sp
0 then a second order SSY assumption holds

• The cohesive zone remains small compared to crack size

• The effective crack size can be stated as a +h rp = a + rp/2 

with                                                                   for cracks in finite plates

• So there is an iterative procedure to follow:

– a) compute K from a

– b) compute effective crack size

– c) compute new K from aeff and back to b) if needed

– This method is a correction for linear fracture mechanics, but does not allow 

considering problems with large yielding

What can be learned from these models
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• Validity in SSY

– We have two asymptotic solutions

• HRR field is valid in the process zone

• LEFM is still valid in the elastic zone close to the crack tip

– Conditions

• This is the case if all sizes are 25 times larger than the plastic zone

Validity of HRR field
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• Validity in SSY (2)

– Crack initiation criteria

• Criteria based on J or dt are valid: J ≥ JC or dt ≥ dC

– J & dt depend on a, the geometry, the loading, …

• But as the LEFM solution holds, we can still use K(a)≥KC

– Might be corrected by using the effective length aeff if s∞< 50% of sp
0

– Sizes for K–based toughness test

• Examples:

– Titanium alloy 6%Al-4%V

» Yield: 830 MPa

» Toughness: 55 MPa · m½

» a, t, L > 1.1 cm

– Strength steel 

» Yield: 350 MPa

» Toughness: 250 MPa · m½

» a, t, L > 1.27 m !!!

Validity of HRR field

t

a L
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• Validity in elasto-plastic conditions
– Deformations are small

– We still have one asymptotic solution valid

• HRR field is valid in the process zone

– LEFM is NOT valid in the elastic zone close to the crack

– Conditions

• This is the case if all sizes are 25 times larger than CTOD

Validity of HRR field
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• Validity in elasto-plastic conditions (2)

– Crack initiation criteria

• Criteria based on J or dt are valid: J ≥ JC or dt ≥ dC

– J & dt depend on a, the geometry, the loading, …

• The LEFM solution DOES NOT hold, we CANNOT use K(a)≥KC

– Sizes for J–based toughness test

• If KC is computed from JC:

• Examples:

– Titanium alloy 6%Al-4%V

» Yield: 830 MPa

» Toughness: 55 MPa · m½

» Young: 110 GPa

» a, t, L > 0.75 mm

– Strength steel 

» Yield: 350 MPa

» Toughness: 250 MPa · m½

» Young: 210 GPa

» a, t, L > 1.93 cm

Validity of HRR field

t

a L
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• Validity in large yielding

– Example: ligament size is too small

– Small deformations assumption does not hold

– Neither HRR field nor LEFM asymptotic fields are valid

– Crack initiation criterion?

• As there is no zone of J-dominance can J still be used?

Validity of HRR field
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• Validity in large yielding (2)

– Plastic strain concentrations depend on the experiment

– Zones near free boundaries or other cracks tend to be less stressed

– Crack initiation criterion?

• Solution is no longer uniquely governed by J

• Relation between J & dt is dependent on the configuration and on the loading

• The critical JC measured for an experiment might not be valid for another one

• A 2-parameter characterization is needed

Validity of HRR field

s

s
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s

s
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• Thick specimen with centered crack:

– Steel 

• Yield: 350 MPa

• Toughness: 250 MPa · m½

• Young: 210 GPa

• Hardening exponent >>

– Loading

• P =  25,  50 & 150 kN

– Compute the stress intensity factor 

in terms of crack size a

• Compare the solutions obtained by

– LEFM

– LEFM with effective crack length

• Check validity

Exercise 1: Specimen with centered crack

2a2W=1.5 in.

=3.8 cm

L = 3 in.
= 7.62 cm

t = 0.5 in

=1.27 cm

P P

2021-2022 Fracture Mechanics – NLFM – HRR Theory 57



• P= 50 kN

– Far stress field

•

– Solution for a = 7 mm

• SIF:

with

Exercise 1: Solution

2a2W=1.5 in.

=3.8 cm

L = 3 in.
= 7.62 cm

t = 0.5 in

=1.27 cm

P P
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• P= 50 kN (2)

– Solution for a = 7 mm (2)

• Effective crack length

– First iteration 

– Second iteration

– It has converged

• The correction is of about 1%

• Validity: 

– s∞< 0.5 sp
0: OK  

– a = 7 mm, t = 12.7 mm, & W-a = 12 mm > 25 rp = 6.2 mm: OK

Exercise 1: Solution
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• P= 50 kN (3)

– For other a 

• For a = 9.2 mm

– rp = 0.383 mm 25 rp = 9.6 mm > a : solution not valid anymore

Exercise 1: Solution

rp > W-a
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• P= 25 kN

– Solution

• For a = 13.7 mm

– rp = 0.235 mm 25 rp = 5.9 mm > W- a = 5.3 mm: solution not valid 

anymore

Exercise 1: Solution

rp > W-a
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• P= 150 kN

– Solution

• For this loading

– 25 rp > a always

– As s∞= 0.88 sp
0 SSY theory does not hold, the size of the plastic zone 

cannot be approximated by

– We will use the HRR theory, but we need to evaluate the J-integral

Exercise 1: Solution

rp > W-a
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• Resolution for a semi-infinite crack in plane e state (A1)

– Power law                             with

• Deviatoric tensor, plane e & incompressible material:

– As                                                                    or

– Out of plane stress                                  &

– Non zero components of deviatoric tensor:

• Equivalent von Mises stress

– In terms of r and f

Annex 1: Mode I crack and HRR theory
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• Resolution for a semi-infinite crack in plane e state (A2)

– Power law (2)

• Equivalent deformation in terms of r and g

• So the power law                                               becomes 

• We have a differential equation in terms of functions depending on q & n

• But we are still missing a relation between the functions f & g

We will now study the normality relation

Annex 1: Mode I crack and HRR theory
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• Resolution for a semi-infinite crack in plane e state (A3)

– Normality

• Strain-stress relations                              &

imply

• In terms of f & g:

– Back to HRR field

• Near the crack tip, the fields were normalized by introducing an intensity factor

&

• Therefore, the functions f and g are rewritten

&

• Which allows writing the differential equations in terms of       &   

Annex 1: Mode I crack and HRR theory
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• The two differential equations are

– &

–

– Let                                                then, these equations become

•

•

Annex 1: Mode I crack and HRR theory
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• Theses equations can be reduced to a single ODE as

–

– After differentiating                                                              and 

substituting     and its derivatives, it yields the fourth order ODE                                                         

Annex 1: Mode I crack and HRR theory
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• Semi-infinite mode I crack in plane e state

– Von Mises stress                                                                            (Plane e)

– Perfectly plastic material

• Von Mises stress:

• The Mohr’s circle is centered on                         with radius

– In Region II in frame
• er, eq, we have pure shearing in the directions 0 and j=p/2

• ex, ey, we have pure shearing in the directions q and j=q+p/2

Annex 2: Slip line solution for perfectly plastic material
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• Semi-infinite mode I crack in plane e state (2)

– In Region I for q → 0:                      in frame

• er, eq, we have pure shearing in the 

directions j=p/4 and j=-p/4

• ex, ey, we have pure shearing in the 

directions j=p/4 and j=-p/4

– In Region I for q → p:                        in frame

• er, eq, we have pure shearing in the 

directions j=p/4 and j=-p/4

• ex, ey, we have pure shearing in the 

directions j=-3p/4 and j=3p/4

– Slip directions are the ones of maximal shearing

Annex 2: Slip line solution for perfectly plastic material
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• Mode I crack in plane s state 

– Slip lines (perfectly plastic material)

Annex 2: Slip line solution for perfectly plastic material
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