
University of Liège

Aerospace & Mechanical Engineering

Fracture Mechanics, Damage and Fatigue 

Linear Elastic Fracture Mechanics - Energetic Approach

Fracture Mechanics – LEFM – Energetic Approach

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3

http://www.ltas-cm3.ulg.ac.be/

Chemin des Chevreuils 1, B4000 Liège

L.Noels@ulg.ac.be

http://www.ltas-cm3.ulg.ac.be/


Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: different concepts

– Stress intensity factor

• Governing the asymptotic solution

•

– Energy release rate

• Variation of strain energy

if crack grows

•

– J-integral

• Strain energy flow

•

• More in depth

– How are they defined?

– How are they related?
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Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– 3 failure modes

– Asymptotic solution governed by stress intensity factors
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Energy of cracked bodies

• Relation with energy

– Tensile strength for materials

• Involve crack size and fracture energy K should be related to energy

• Virtual energy of body B

– Existence of (stress free) cracks 

– Virtual displacement du

• Where we assume that the stress derives from an internal potential:

• Example: linear elasticity

• So we assume reversibility 
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Energy of cracked bodies

• Prescribed displacements

– Assuming a body with constant displacement field u

& subjected to loading Q

– The crack propagates & the load then decreases 

• Example: body subjected to u constant

• As the crack grows, the work exerted by Q is constant 

– Energy release rate G for u constant

• Energy change related to a crack growth dA

• The internal (elastic) energy is therefore function

of the displacement and of the crack surface
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Energy of cracked bodies

• Prescribed displacements (2)

– Computation of the energy release rate G

• For a constant crack size: 

• Energy release rate: 

– Can be measured by conducting (virtual) 

experiments

• Body with crack surface A0 loaded up to a 

displacement u

• Crack assumed to grow by  dA at constant 

displacement

the specimen becomes more flexible          

so the load decreases by 

• Unload to zero

• The area between the 2 curves is then - G dA
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Energy of cracked bodies

• Prescribed loading

– The crack propagates & there is a displacement field du

• Example: body subjected to Q constant

• As the crack grows, there is a displacement du

– Energy release rate G for Q constant

• Energy change related a crack growth dA

• The internal (elastic) energy is therefore function

of the loading and of the crack surface
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Energy of cracked bodies

• Prescribed loading (2)

– Computation of the energy release rate G

• Complementary energy

Derivation

• Energy release rate: 

– Can be measured by conducting (virtual) experiments

• Body with crack surface A0 loaded up to Q

• Crack assumed to grow by  dA at constant load

– The specimen becomes more flexible          

displacement increment 

• Unload to zero

• The area between the 2 curves is then G dA
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Energy of cracked bodies

• General loading

– If PT = Eint - Qu is the potential energy of the specimen

•

• Which reduces to

– Prescribed displacements

– Prescribed loading

– Total energy 𝐸 = Π𝑇 + Γ is the sum of 

• Potential energy Π𝑇 of the structure

• The atomistic bond energy G where a crack possibly propagates

• Assuming a crack does propagate by a surface Δ𝐴:
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Energy of cracked bodies

• General loading (2)

– If PT = Eint - Qu is the potential energy of the specimen

– We have a crack propagation if

• Brittle materials:

–

– gs is the surface energy, a crack creates 2 surfaces

• For other materials:

–

– Ductility, composites, polymers, …

– Depends on the failure process (void coalescence, debonding, …)
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Energy of cracked bodies

• Linear case & compliance

– In linear elasticity, G analysis can be unified

• Linear response Q linear with u

• The compliance is defined by

• Energies

–

–

– Prescribed displacements

•

• For the crack to grow, all the energy required comes from the elastic energy

• The internal energy decreases with the crack growth
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Energy of cracked bodies

• Linear case & compliance

– In linear elasticity, G analysis can be unified

• Linear response Q linear with u

• The compliance is defined by

• Energies

–

–

– Prescribed loading

•

• Same expression as prescribed displacement but

• For the crack to grow by dA, 

– External load produces a work of 2G as 

– The internal energy is also increased by G
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Applications of the compliance method

• Delamination of composites

– Assuming a >> h: Double Cantilever Beam

• The parts on the left are 2 cantilever beams

• The right part is stress free

• Flexion of one cantilever beam

with                          displacement at loading

• Compliance

• Energy release rate
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Applications of the compliance method

• Delamination of composites (2)

– Since

– Experimental application: measure of Gc

• Gc mode I for composite

– Experimental application: crack length determination

• An existing crack will grow under cyclic loading

• If C(A) has been determined 

– Analytically (as above for composite)

– Numerically or 

– Experimentally 

then the crack length can be determined by measuring the compliance

• Compliance is obtained by measuring load and load point displacement 

simultaneously
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Crack closure integral

• Relation between the energy release rate and the SIFs

– G is a variation of the potential energy with respect of the crack size

– In linear elasticity, the stress state near crack tip is characterized by Kmode

– How can we relate both concepts?
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• 1957, Irwin, crack closure integral

– Consider a body B with a cavity of surface S

• The stress state is s

• The displacement field is u (in B & on S)

– Constrained to  𝒖 on 

• The surface traction is T

– Constrained to  𝑻 on 

– Constrained to 0 on S

– The cavity grows to S+DS

• The volume lost is DB

• The stress state becomes s+Ds

• The displacement field becomes u+Du

– Du = 0 on 

• The surface traction becomes T+DT

– DT = 0 on 

– Constrained to 0 on S+DS

Crack closure integral
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• In elasticity (linear or not) and if b assumed equal to 0

– Potential energy variation

– On the cavity surface S: t is defined as s .n

• Be careful: S+DS is stress free, 

but only in the final configuration

– (s+Ds).n = 0 on S+DS but, 

– s(e’) . n ≠ 0 on S+DS

– Surface traction 𝒕 = 𝝈 ⋅ 𝒏 ≠ 𝟎 on DS during the growth

– For a hole tending to a crack, see annex 1, one has

b
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S
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Crack closure integral
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• Change of potential for a crack growth in elasticity (linear or not)

– General expression 

• Physical explanation for mode I

– Let us assume a crack growing from a to a+Da

– syy produces a work on Da

• If the response is elastic AND linear

– t is decreasing linearly with Du

– The work is then t0 .Du/2

Crack closure integral
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Crack closure integral

• Change of potential for a crack growth in LINEAR elasticity 

– Variation of potential in LINEAR elasticity

• Where t0 is the tension before crack propagation 

• Where Du is the opening after crack propagation

– The surface created DS has actually two sides

• An upper side DA+

• A lower side DA-

• With                                    &
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Crack closure integral

• Change of potential for a crack growth in LINEAR elasticity (2)

– Variation of potential in linear elasticity

– Energy release rate

• The increment of fracture area DA corresponds to DA+

• Valid for any linear elastic material

• Valid for any direction of crack growth (mode I, II & III)

– Tensile mode I: G > 0  for a crack growth

• PT decreases           crack growth requires energy 

• G corresponds to the work needed 

to close the crack by Da
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• Energy release rate for LINEAR elasticity

• Can be simplified if crack grows straight ahead

– Increment of fracture area: DA = t Da (t = thickness)

– Since DA has been chosen equal to DA+: 𝒕𝑖 = 𝝈𝑖𝑗 ⋅ 𝒏𝑗 = −𝝈𝑖𝑦

Crack that grows straight ahead
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Crack that grows straight ahead

• Energy release rate in mode I (LEFM & crack growing straight ahead)

– Expression in 2D:

•

• Mode I: only term in i=y since

– Asymptotic solution

y x

z
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Crack that grows straight ahead

• Energy release rate in mode I (2)

– Asymptotic solution before crack growth

– Asymptotic solution after crack growth

– Energy
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• Energy release rate in mode I (3)

– After substitution

• Change of variable

• Plane s & plane e

with

Crack that grows straight ahead
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• Energy release rate in mode II (LEFM & crack growing straight ahead)

– Asymptotic solution

– Proceeding as for mode I

• This time s0
xy(r, 0) Dux(Da-r, ±p) is the non zero term

Crack that grows straight ahead
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• Energy release rate in mode III (LEFM & crack growing straight ahead)

– Expression in 2D:

– Asymptotic solution

• So                                       &

• Energy release rate

Crack that grows straight ahead
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• Energy release rate (LEFM & crack growing straight ahead)

– Quadratic field           superposition ?

– But when analyzing

• i = x : s0
xy(r, 0) ≠ 0 & Dux(Da-r, ±p) ≠ 0 only for mode II

• i = y : s0
yy(r, 0) ≠ 0 & Duy(Da-r, ±p) ≠ 0 only for mode I

• i = z : s0
yz(r, 0) ≠ 0 & Duz(Da-r, ±p) ≠ 0 only for mode III

Energies can be added:

– Some remarks

• This formula is valid for

– Elastic linear material ONLY

– Crack that grows straight ahead ONLY

• So usefulness is questionable in the general case as

– If more than one mode at work, the crack will not grow straight ahead

– What if material is not linear?

Crack that grows straight ahead
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• Delamination of composites

– Energy release rate

– Pure mode I since

• uy(-y) = -uy(y) & ux(-y) = ux(y)  

– Crack is growing straight ahead

• Plane s

• Plane e

Application of the crack closure integral

a

h

h

Q

Thickness t

x
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J integral

• The crack closure integral has some limitations

– Elastic materials

– Useful only when crack grows straight ahead 

• More general energy-related concept?

2020-2021 Fracture Mechanics – LEFM – Energetic Approach 29



J integral

• Rice (1968) proposed to compute the energy that flows to the crack tip

– Given a homogeneous uncracked body B

• D is a subvolume of boundary ∂D

• The stress tensor derives from a potential U

• On ∂D traction T is defined as s . n

• Static assumption 𝛁 ⋅ 𝝈 = 𝟎

• We assume the existence of 

an internal potential 𝑈 elasticity?

• The J-integral is the vector defined by

or, along 𝒙𝑖
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J integral

• Rice (1968) proposed to compute the energy that flows to the crack tip

– Given an homogeneous uncracked body B (2)

•

• First term with 𝝈𝑘𝑚 = 𝝈𝑚𝑘 = 𝜕𝜺𝑘𝑚 𝑈

• Second term with 𝛁 ⋅ 𝝈 = 𝟎

– The flow of energy through a closed surface is equal to zero
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J integral

• For heterogeneous materials
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J integral

• For homogeneous cracked materials (2D form)

– Of practical interest is the flow // crack tip

with

• Along G - and G + :

– nx = 0 , ny = ±1

– Crack is stress free: Ta = say ny = 0

» If there is no friction at the crack

– So one can compute the energy that flows toward the crack tip by

• It is path independent

• No assumption on linearity has been made (only existence of U)

• Does not depend on subsequent crack growth direction
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J integral for crack growing straight ahead

• The J integral can be specialized

– Back to crack closure integral

• Potential energy

• Energy release rate

• If the crack grows straight ahead, considering a 

domain moving with the crack tip, it can be shown 

that (see annex 2)

– So G=J

• For materials defined by an internal potential 

(linear response or not)

• AND if the crack grows straight ahead
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J integral for linear elasticity

• The J integral can be specialized 

– For linear elasticity

• General expression

• Linear elasticity 𝑈 =
𝜎:𝜀

2

• Arbitrary path            choose a circle with 𝑟 → 0

asymptotic solution holds and plugged in 𝐽
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Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– 3 failure modes

– Asymptotic solution governed by stress intensity factors
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Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– Potential energy  PT = Eint - Qu

– Crack closure integral 

• Energy required to close crack tip

– Energy release rate

• Variation of potential energy in case of crack growth

• In linear elasticity

– In linear elasticity & if crack grows straight ahead
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2

2𝜇



Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– J-integral

• Strain energy flow

– Exists if an internal potential exists

• Is path independent if the contour G embeds a straight crack tip

• No assumption on subsequent growth direction

• Can be extended to plasticity if no unloading (see later)

– If crack grows straight ahead G=J

– In linear elasticity (independently of crack growth direction):
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Exercise 1

• Exercise 1: Fracture testing of elastomers

– Infinite strip with semi-infinite crack

– Plane s (t << h)

– Questions

• 1) Compute J integral

– What are the assumptions?

• 2) Compute G

– Why is it equal to J ?

• 3) When can we deduce the SIF from there?

– What is the value of KI ?
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Exercise 1: Solution

• J integral

– Assuming an internal potential 𝑈

– 𝐽 is path independent

Choose an easy one

Γ1, Γ5, & Γ3 far away from crack tip  

– Evaluate the different contributions

• On G1 & G5: material unloaded             

&

• On G2 & G4: nx = 0 and u,x = 0 because of clamping

• What remains is
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Exercise 1: Solution

• J integral (2)

– What remains iw

•

– On G3: 

• nx = 1 

• Far away from the crack: displacement along y (and z)

• Since 𝜺𝑦𝑦 = 𝒖𝑦,𝑦 is uniform along 𝑦, 𝑈 is also uniform along 𝑦
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Exercise 1: Solution

• Energy release rate G

– If an internal potential exists

– Displacements are prescribed

• Far behind the crack: unloaded material

• Far ahead of the crack, U  was  found to be uniform

• if the crack growth by Da the change of energy is -2 U t h Da
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Exercise 1: Solution

• Energy release rate G (2)

– Displacements are prescribed

– Crack grows by Da

– G = J as the crack grows straight ahead (by symmetry)
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Exercise 1: Solution

• Stress intensity factor

– We have

•

– Linear elasticity: 

•

• But we have a plane-stress assumption

(𝝈𝑧𝑧 = 0) and

• Plane-strain assumption (𝜺𝑥𝑥 = 0) 

• SIF                                                                 
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Exercise 2

• Exercise 2: Laminated composite

– 2 long thin strips of steel

• E = 200 GPa

• h = 0.97 mm

• t = 10.1 mm

– Bonded with epoxy

• Gc = 300 Pa.m

– Central crack 2a

– Questions

• 1) Critical load for 2a = 60 mm

• 2) Apply same method for 2a = 70 and 80 mm

– Report on a P vs u graph the toughness locus

• 3) Determine the critical energy release rate from that graph
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Exercise 2: Solution

• Compliance method

– Beam theory

– Energy release rate in linear elasticity

– Critical load for 2a = 60 mm
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Exercise 2: Solution

• Failure locus

– Using the same method
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Exercise 2: Solution

• Failure locus

– Assuming the graph is 

deduced from experiments

• Critical energy release rate
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Exercise 2: Solution

• Failure locus

– Assuming the graph is 

deduced from experiments

• Critical energy release rate
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• In elasticity (linear or not) and if b assumed equal to 0

– Potential energy variation

– Stress derives from a potential

• Since    .s = 0 (as b=0)

• Applying Gauss theorem

Annex 1: Crack closure integral
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• In elasticity (linear or not) and if b assumed equal to 0 (2)

– Study of term

• Traction is constant on         & displacement is constant on

• On the cavity surface S: t is defined as s .n

• Be careful: S+DS is stress free, but only in the final configuration

– (s+Ds).n = 0 on S+DS but, 

– s(e’) .n ≠ 0 on S+DS so the integral does not vanish

– However, S remains stress free during the whole process

– Eventually

• If instead of a cavity we have a crack, the change of volume is zero and the last 

term disappears

Annex 1: Crack closure integral
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Annex 2: J integral for crack growing straight ahead

• Back to crack closure integral 

– Material not necessarily linear

– For a crack (DB = 0), and in 2D, the energy release rate becomes

•

• As the crack is stress free, as Du = 0 on ∂D B, and as Ds = 0 on ∂N B

• After using the equilibrium equation .(s+Ds) = 0 

b

T

n

B-DB

S

s +Ds

DS
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• Referential O’x’y’ moving with the crack tip

– Only if the crack grows straight ahead

&

• Energy release rate 

– Involves the whole body B

– However, as Da →0, the non vanishing contributions are around the crack tip

• The equation is then limited to the FIXED region D of boundary G

x

y

B

G

Da

x’

y’

a

D

Annex 2: J integral for crack growing straight ahead
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• Energy release rate (2)

– In static                                    in D

– Since the crack is stress free

Gauss theorem leads to

– Last term of energy release rate becomes

• Using limit definition and after changing frame

• Using momentum equilibrium equation and internal potential definition
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Da

x’

y’

a

D

Annex 2: J integral for crack growing straight ahead
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• Energy release rate (3)

– As D is fixed, let us define D* moving with

the crack tip:

– First part of energy release rate becomes

• Since D* → D, this relation tends toward

• N.B.: Formally, one should use derivatives & limits of integrals with non-constant 

intervals

x

y

B

G

Da

x’

y’

a

D
D*

G *

DDL
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Da Da

Annex 2: J integral for crack growing straight ahead
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• Energy release rate (4)

– First part of energy release rate becomes (2)

• Homogeneous materials (∂x’U =0)

• Considering the opened curve GL , at the limit

• Considering the opened curve GR* , at the limit

x

y

Daa

D

G *

DDL

Da

GL

x

y

G

Daa

D

G R*
DDR

Da

Annex 2: J integral for crack growing straight ahead
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• Energy release rate (5)

– First part of energy release rate becomes (3)

• As GL + GR* → G , it yields 

– And as

• with

• The energy rate is rewritten

• So G=J

– For materials defined by an internal potential (linear response or not)

– AND if the crack grows straight ahead

Annex 2: J integral for crack growing straight ahead
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