Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Fracture Mechanics – LEFM – Energetic Approach

Linear Elastic Fracture Mechanics (LEFM)

Linear Elastic Fracture Mechanics (LEFM)

Asymptotic solution governed by stress intensity factors

3

- Relation with energy
 - Tensile strength for materials $\sigma_{\rm TS}\sqrt{a} \div \sqrt{E(2\gamma_s + W_{\rm pl})}$
 - Involve crack size and fracture energy \implies K should be related to energy

- Virtual energy of body *B*
 - Existence of (stress free) cracks
 - Virtual displacement δu

$$\delta E_{\text{int}} = \delta \int_{B} U dB = \int_{\partial_{N}B} \bar{T} \cdot \delta \boldsymbol{u} d\partial B + \int_{B} \boldsymbol{b} \cdot \delta \boldsymbol{u} dB = \delta W_{\text{ext}}$$

- Where we assume that the stress derives from an internal potential: $\sigma=\partial_{m{arepsilon}} U$
- Example: linear elasticity $\sigma = \mathcal{H} : \varepsilon = \partial_{\varepsilon} \frac{\varepsilon : \mathcal{H} : \varepsilon}{2} = \partial_{\varepsilon} U$
- So we assume reversibility

Energy of cracked bodies

- Prescribed displacements
 - Assuming a body with constant displacement field *u* & subjected to loading *Q*
 - The crack propagates & the load then decreases
 - Example: body subjected to *u* constant
 - As the crack grows, the work exerted by Q is constant

 $\implies \delta W_{\rm ext} = 0$

- Energy release rate *G* for *u* constant
 - Energy change related to a crack growth δA

 $\delta E_{\rm int} = -G\delta A \implies G = -\partial_A E_{\rm int}$

• The internal (elastic) energy is therefore function of the displacement and of the crack surface

 $E_{\text{int}} = E_{\text{int}}\left(u, A\right)$

Energy of cracked bodies

- Prescribed displacements (2)
 - Computation of the energy release rate G
 - For a constant crack size: $\delta E_{int} = Q \delta u$

$$\implies \partial_u E_{\text{int}}(u) = Q$$

• Energy release rate: $G = -\partial_A E_{int}$

$$-\partial_u G = \partial_A Q \implies G = -\int_0^u \partial_A Q(u', A) du'$$

- Can be measured by conducting (virtual)

experiments

- Body with crack surface A₀ loaded up to a displacement u
- Crack assumed to grow by *dA* at constant displacement
 - the specimen becomes more flexible
 - \implies so the load decreases by $\partial_A Q dA$
- Unload to zero
- The area between the 2 curves is then G dA

- **Prescribed loading**
 - The crack propagates & there is a displacement field δu
 - Example: body subjected to Q constant ٠
 - As the crack grows, there is a displacement δu •

$$\implies \delta W_{\text{ext}} = Q \delta u$$

- Energy release rate G for Q constant _
 - Energy change related a crack growth δA

$$\delta E_{\text{int}} = Q\delta u - G\delta A = \delta (Qu) - G\delta A$$
$$\implies G = -\partial_A (E_{\text{int}} - Qu)$$

• The internal (elastic) energy is therefore function of the loading and of the crack surface

$$E_{\text{int}} = E_{\text{int}} \left(Q, A \right)$$

Energy of cracked bodies

- Crack assumed to grow by *dA* at constant load
 - The specimen becomes more flexible

 \implies displacement increment $\partial_A u dA$

- Unload to zero
- The area between the 2 curves is then G dA

Q'

'u /d(

 E_{int}

U

- General loading
 - If $\Pi_T = E_{int} Qu$ is the potential energy of the specimen
 - $G = -\partial_A \left(E_{\text{int}} W_{\text{ext}} \right) = -\partial_A \Pi_T$
 - Which reduces to
 - Prescribed displacements $G = -\partial_A E_{int}$
 - Prescribed loading $G = -\partial_A \left(E_{int} Qu \right)$
 - Total energy $E = \Pi_T + \Gamma$ is the sum of
 - Potential energy Π_T of the structure
 - The atomistic bond energy Γ where a crack possibly propagates
 - Assuming a crack does propagate by a surface ΔA :

$$0 = \frac{\partial \Pi_T}{\partial A} + \frac{\partial \Gamma}{\partial A} = -G + G_c$$

$$G \text{ depends on geometry and loading}$$

$$G = \frac{\partial \Pi_T}{\partial A} + \frac{\partial \Gamma}{\partial A} = -G + G_c$$

- General loading (2)
 - If $\Pi_T = E_{int}$ Qu is the potential energy of the specimen

 $G = -\partial_A (E_{int} - W_{ext}) = -\partial_A \Pi_T$ - We have a crack propagation if $G = G_c = \partial_A \Gamma$ material • Brittle materials: - $G_c = 2\gamma_s$ G_c is a material property G depends on geometry and loading

- γ_s is the surface energy, a crack creates 2 surfaces
- For other materials:
 - $G_c = 2\gamma_s + W_{\rm pl}$
 - Ductility, composites, polymers, ...
 - Depends on the failure process (void coalescence, debonding, ...)

10

Linear case & compliance

- In linear elasticity, *G* analysis can be unified
 - Linear response $\implies Q$ linear with u
 - The compliance is defined by $C = \frac{u}{Q}$
 - Energies

-
$$E_{\text{int}} = \frac{1}{2}Qu = \frac{u^2}{2C} = \frac{Q^2C}{2}$$

- $W_{\text{ext}} = Qu = \frac{u^2}{C} = Q^2C$

- Prescribed displacements
 - $G = -\partial_A E_{\text{int}}$

$$\implies G = -\partial_A E_{\text{int}}\Big|_u = -\partial_A \left(\frac{u^2}{2C}\right)\Big|_u = \frac{u^2}{2C^2}\partial_A C = \frac{Q^2}{2}\partial_A C$$

- For the crack to grow, all the energy required comes from the elastic energy
- The internal energy decreases with the crack growth

Linear case & compliance

- In linear elasticity, *G* analysis can be unified
 - Linear response $\implies Q$ linear with u
 - The compliance is defined by $C = \frac{u}{Q}$
 - Energies

-
$$E_{\text{int}} = \frac{1}{2}Qu = \frac{u^2}{2C} = \frac{Q^2C}{2}$$

- $W_{\text{ext}} = Qu = \frac{u^2}{C} = Q^2C$

- Prescribed loading

2020-2021

$$G = -\partial_A \left(E_{\text{int}} - W_{\text{ext}} \right) = -\partial_A \Pi_T$$
$$\implies G = -\partial_A \left(E_{\text{int}} - Qu \right)|_Q = -\partial_A \left(\frac{Q^2 C}{2} - Q^2 C \right) \Big|_Q = \frac{Q^2}{2} \partial_A C$$

Same expression as prescribed displacement but

$$G + \partial_A E_{\rm int}|_Q = Q \partial_A u = Q^2 \partial_A C = 2G$$

- For the crack to grow by *dA*,
 - External load produces a work of 2G as
 - The internal energy is also increased by G

12

Applications of the compliance method

Paul Tihon, coexpair

Applications of the compliance method

- Delamination of composites (2)
 - Since

$$G = \frac{Q^2}{2} \partial_A C = \frac{12Q^2 a^2}{Et^2 h^3}$$

- Experimental application: measure of G_c
 - *G_c* mode I for composite
- Experimental application: crack length determination
 - An existing crack will grow under cyclic loading
 - If *C*(*A*) has been determined
 - Analytically (as above for composite)
 - Numerically or
 - Experimentally
 - then the crack length can be determined by measuring the compliance
 - Compliance is obtained by measuring load and load point displacement simultaneously

- Relation between the energy release rate and the SIFs
 - G is a variation of the potential energy with respect of the crack size
 - In linear elasticity, the stress state near crack tip is characterized by K_{mode}
 - How can we relate both concepts?

- 1957, Irwin, crack closure integral
 - Consider a body *B* with a cavity of surface *S*
 - The stress state is σ
 - The displacement field is *u* (in *B* & on *S*)
 - Constrained to $\overline{\boldsymbol{u}}$ on $\partial_D B$
 - The surface traction is T
 - Constrained to \overline{T} on $\partial_N B$
 - Constrained to 0 on S
 - The cavity grows to $S + \Delta S$
 - The volume lost is ΔB
 - The stress state becomes $\sigma + \Delta \sigma$
 - The displacement field becomes $u + \Delta u$
 - $\Delta u = 0$ on $\partial_D B$
 - The surface traction becomes $T + \Delta T$
 - $\Delta T = 0$ on $\partial_N B$
 - Constrained to 0 on $S + \Delta S$

- In elasticity (linear or not) and if *b* assumed equal to 0
 - Potential energy variation

$$\begin{cases} \Pi_T = \int_B U(\boldsymbol{\nabla} \boldsymbol{u}) \, dB - \int_{\partial_N B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} d\partial B \\ \Pi_T + \Delta \Pi_T = \int_{B - \Delta B} U(\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \Delta \boldsymbol{u}) \, dB - \int_{\partial_N B} \bar{\boldsymbol{T}} \cdot (\boldsymbol{u} + \Delta \boldsymbol{u}) \, d\partial B \end{cases}$$

- On the cavity surface S: t is defined as σn
 - Be careful: *S*+∆*S* is stress free, but only in the final configuration

-
$$(\sigma + \Delta \sigma) \cdot n = 0$$
 on $S + \Delta S$ but,

$$- \sigma(\varepsilon') \cdot n \neq 0 \text{ on } S + \Delta S$$

- Surface traction $t = \sigma \cdot n \neq 0$ on ΔS during the growth

 $\partial_N B$

- For a hole tending to a crack, see annex 1, one has

$$\Delta \Pi_T = \int_{\Delta S} \int_{\boldsymbol{u}}^{\boldsymbol{u} + \Delta \boldsymbol{u}} \boldsymbol{t}(\boldsymbol{u}') \cdot d\boldsymbol{u}' \ dS$$

17

 $u=ar{u}$

∂́лВ

 $\sigma + \Delta \sigma$

B-AB

- Change of potential for a crack growth in elasticity (linear or not)
 - General expression $\Delta \Pi_T = \int_{\Delta S} \int_u^{u+\Delta u} t(u') \cdot du' \, dS$
 - Physical explanation for mode I

- 55 -
- If the response is elastic AND linear
 - t is decreasing linearly with Δu
 - The work is then $t^0 \cdot \Delta u/2$

Fracture Mechanics – LEFM – Energetic Approach

- Change of potential for a crack growth in LINEAR elasticity
 - Variation of potential in LINEAR elasticity

$$\Delta \Pi_T = \int_{\Delta S} \int_{\boldsymbol{u}}^{\boldsymbol{u} + \Delta \boldsymbol{u}} \boldsymbol{t}(\boldsymbol{u}') \cdot d\boldsymbol{u}' \, dS$$
$$\implies \Delta \Pi_T = \int_{\Delta S} \frac{1}{2} \boldsymbol{t}^0 \cdot \Delta \boldsymbol{u} \, dS$$

- Where t^{0} is the tension before crack propagation
- Where Δu is the opening after crack propagation
- The surface created ΔS has actually two sides
 - An upper side ΔA^+
 - A lower side ΔA^{-}

2020-2021

$$\Delta A^{+}$$

$$\Delta A$$

$$\llbracket u \rrbracket$$

$$\Delta A^{-}$$

$$\Delta \Pi_T = \int_{\Delta A^+} \frac{1}{2} \boldsymbol{t}^0 \cdot [\boldsymbol{\Delta} \boldsymbol{u}^+ - \boldsymbol{\Delta} \boldsymbol{u}^-] \, dS = \int_{\Delta A} \frac{1}{2} \boldsymbol{t}^0 \cdot [\boldsymbol{\Delta} \boldsymbol{u}] \, dS$$

 t_i t_i^0

19

- Change of potential for a crack growth in LINEAR elasticity (2)
 - Variation of potential in linear elasticity

$$\Delta \Pi_T = \int_{\Delta A} \frac{1}{2} \boldsymbol{t}^0 \cdot \left[\!\left[\boldsymbol{\Delta} \boldsymbol{u} \right]\!\right] dS$$

- Energy release rate
 - The increment of fracture area ΔA corresponds to ΔA^+

$$\implies G = -\partial_A \Delta \Pi_T = -\lim_{\Delta A \to 0} \frac{1}{\Delta A} \int_{\Delta A} \frac{1}{2} \boldsymbol{t^0} \cdot [\![\Delta \boldsymbol{u}]\!] dA$$

- Valid for any linear elastic material
- Valid for any direction of crack growth (mode I, II & III)
- Tensile mode I: G > 0 for a crack growth
 - Π_T decreases \implies crack growth requires energy
 - G corresponds to the work needed to close the crack by Δa

- Energy release rate for LINEAR elasticity $G = -\partial_A \Delta \Pi_T = -\lim_{\Delta A \to 0} \frac{1}{\Delta A} \int_{\Delta A} \frac{1}{2} \boldsymbol{t^0} \cdot [\![\Delta \boldsymbol{u}]\!] dA$
- Can be simplified if crack grows straight ahead

- Increment of fracture area: $\Delta A = t \Delta a$ (t = thickness)
- Since ΔA has been chosen equal to ΔA^+ : $t_i = \sigma_{ij} \cdot n_j = -\sigma_{ij}$

$$G = \lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_{\Delta a} \frac{1}{2} \sigma_{iy}^{0}(r, \theta = 0) \cdot \left[\!\left[\Delta u_{i} (\Delta a - r, \theta = \pi) \right]\!\right] dr$$

Stress before crack growth Displacement jump after crack growth

- Energy release rate in mode I (LEFM & crack growing straight ahead) •
 - Expression in 2D: _

•
$$G = \lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_{\Delta a} \frac{1}{2} \sigma_{iy}^{0}(r, \theta = 0) \cdot \left[\!\left[\Delta u_{i}(\Delta a - r, \theta = \pi) \right]\!\right] dr$$

Mode I: only term in i=y since $\sigma_{xy}(r', 0) = 0$ •

х Z

Asymptotic solution

$$\boldsymbol{\sigma}_{yy} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right]$$
$$\boldsymbol{u}_y = K_I \frac{1+\nu}{E} \sqrt{\frac{r}{2\pi}} \sin \frac{\theta}{2} \left[\kappa + 1 - 2 \cos^2 \frac{\theta}{2} \right]$$

Energy release rate in mode I (2)

Asymptotic solution before crack growth

$$\boldsymbol{\sigma}_{yy} = \frac{K_I}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right]$$
$$\implies \boldsymbol{\sigma}_{yy}^{\mathbf{0}}(r, \theta = 0) = \frac{K_I}{\sqrt{2\pi r}}$$

$$u_{y} = K_{I} \frac{1+\nu}{E} \sqrt{\frac{r}{2\pi}} \sin \frac{\theta}{2} \left[\kappa + 1 - 2\cos^{2} \frac{\theta}{2} \right]$$
$$\implies \Delta u_{y} (\Delta a - r, \theta = \pm \pi) = \pm K_{I} \frac{(1+\nu)(1+\kappa)}{E} \sqrt{\frac{\Delta a - r}{2\pi}}$$

Energy

$$\boldsymbol{\sigma}_{yy}^{\mathbf{0}}(r,\theta=0) \left[\!\left[\boldsymbol{\Delta}\boldsymbol{u}_{y}(\Delta a-r,\theta=\pm\pi)\right]\!\right] = K_{I}^{2} \frac{(1+\nu)(1+\kappa)}{\pi E} \sqrt{\frac{\Delta a-r}{r}}$$

 $\overline{2}$

y
n
r

$$\theta$$

 x
 $\sigma_{yy} = 0, \Delta u_{y} \neq 0$
 $\sigma_{yy} \neq 0, \Delta u_{y} = 0$

23

- Energy release rate in mode I (3)
 - After substitution

$$G = \lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_0^{\Delta a} K_I^2 \frac{(1+\nu)(\kappa+1)}{2\pi E} \sqrt{\frac{\Delta a - r'}{r'}} dr'$$

- Change of variable $r' = \Delta a \cos^2 x$

$$\implies G = \lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_0^{\frac{\pi}{2}} K_I^2 \frac{(1+\nu)(\kappa+1)}{\pi E} \sqrt{\frac{\sin^2 x}{\cos^2 x}} \Delta a \cos x \sin x dx$$

$$\implies G = \int_0^{\frac{\pi}{2}} K_I^2 \frac{(1+\nu)(\kappa+1)}{2\pi E} (1-\cos 2x) dx$$
• Plane σ $\kappa = \frac{3-\nu}{1+\nu}$ & plane ε $\kappa = 3-4\nu$

$$\implies G = K_I^2 \frac{(1+\nu)(\kappa+1)}{4E} = \frac{K_I^2}{E'}$$
with $E' = \frac{4E}{(1+\nu)(\kappa+1)} = \begin{cases} E & P\sigma \\ \frac{E}{1-\nu^2} & P\varepsilon \end{cases}$

- Energy release rate in mode II (LEFM & crack growing straight ahead)
 - Asymptotic solution

$$\boldsymbol{u}_{x} = K_{II} \frac{1+\nu}{E} \sqrt{\frac{r}{2\pi}} \sin \frac{\theta}{2} \left[\kappa + 1 + 2 \cos^{2} \frac{\theta}{2} \right]$$
$$\boldsymbol{u}_{y} = K_{II} \frac{1+\nu}{E} \sqrt{\frac{r}{2\pi}} \cos \frac{\theta}{2} \left[1 - \kappa + 2 \sin^{2} \frac{\theta}{2} \right]$$

$$\begin{cases} \boldsymbol{\sigma}_{yy} = \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2} \\ \boldsymbol{\sigma}_{xy} = \frac{K_{II}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2} \right] \end{cases}$$

- Proceeding as for mode I
 - This time $\sigma_{xy}^0(r, 0) \Delta u_x(\Delta a r, \pm \pi)$ is the non zero term

$$\implies G = \frac{K_{II}^2}{E'}$$

- Energy release rate in mode III (LEFM & crack growing straight ahead)
 - Expression in 2D:

$$G = \lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_{\Delta a} \frac{1}{2} \boldsymbol{\sigma}_{iy}^{0}(r, \theta = 0) \cdot \left[\!\left[\Delta \boldsymbol{u}_{i}(\Delta a - r, \theta = \pi) \right]\!\right] dr$$

- Asymptotic solution

$$\begin{cases} \boldsymbol{u}_{z} = \frac{2K_{III}\left(1+\nu\right)}{E}\sqrt{\frac{2r}{\pi}}\sin\frac{\theta}{2}\\ \boldsymbol{\sigma}_{yz} = \frac{K_{III}}{\sqrt{2\pi r}}\cos\frac{\theta}{2} \end{cases}$$

• So
$$\sigma_{yz}^{\mathbf{0}}(r,\theta=0) = \frac{K_{III}}{\sqrt{2\pi r}} \& \Delta u_z(\Delta a - r,\theta=\pm\pi) = \pm 2K_{III} \frac{(1+\nu)}{E} \sqrt{2\frac{\Delta a - r}{\pi}}$$

 $\implies \sigma_{yz}^{\mathbf{0}}(r,\theta=0) [\![\Delta u_z(\Delta a - r,\theta=\pm\pi)]\!] = 4K_{III}^2 \frac{(1+\nu)}{\pi E} \sqrt{\frac{\Delta a - r}{r}}$

• Energy release rate

$$G = \lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_0^{\Delta a} 2K_{III}^2 \frac{(1+\nu)}{\pi E} \sqrt{\frac{\Delta a - r'}{r'}} dr' = \frac{K_{III}^2 (1+\nu)}{E} = \frac{K_{III}^2}{2\mu}$$

Fracture Mechanics – LEFM – Energetic Approach

- Energy release rate (LEFM & crack growing straight ahead)
 - Quadratic field superposition ?

- But when analyzing
$$G = \lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_{\Delta a} \frac{1}{2} \sigma_{iy}^{0}(r, \theta = 0) \cdot \left[\!\left[\Delta u_{i}(\Delta a - r, \theta = \pi)\right]\!\right] dr$$

- $i = x : \sigma_{xy}^{0}(r, 0) \neq 0 \& \Delta u_{x}(\Delta a r, \pm \pi) \neq 0$ only for mode II
- $i = y : \sigma_{yy}^{0}(r, 0) \neq 0 \& \Delta u_{y}(\Delta a r, \pm \pi) \neq 0$ only for mode I
- $i = z : \sigma_{yz}^{0}(r, 0) \neq 0 \& \Delta u_{z}(\Delta a r, \pm \pi) \neq 0$ only for mode III

➡ Energies can be added:

$$\begin{cases} G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu} \\ E' = \frac{4E}{(1+\nu)(\kappa+1)} = \begin{cases} E & P\sigma \\ \frac{E}{1-\nu^2} & P\varepsilon \end{cases} \end{cases}$$

- Some remarks
 - This formula is valid for
 - Elastic linear material ONLY
 - Crack that grows straight ahead ONLY
 - So usefulness is questionable in the general case as
 - If more than one mode at work, the crack will not grow straight ahead
 - What if material is not linear?

- Delamination of composites
 - Energy release rate

$$G = \frac{Q^2}{2}\partial_A C = \frac{12Q^2a^2}{Et^2h^3}$$

- Pure mode I since
 - $u_y(-y) = -u_y(y) \& u_x(-y) = u_x(y)$
- Crack is growing straight ahead

$$\implies K_I = \sqrt{E'G} = \frac{2Qa}{th} \sqrt{\frac{E'}{E}} \sqrt{\frac{3}{h}}$$

• Plane $\sigma K_I = \frac{2Qa}{th} \sqrt{\frac{3}{h}}$

• Plane
$$\epsilon K_I = \frac{2Qa}{th\sqrt{1-\nu^2}}\sqrt{\frac{3}{h}}$$

2020-2021

- The crack closure integral has some limitations
 - Elastic materials
 - Useful only when crack grows straight ahead
- More general energy-related concept?

- Rice (1968) proposed to compute the energy that flows to the crack tip
 - Given a homogeneous uncracked body B
 - D is a subvolume of boundary ∂D
 - The stress tensor derives from a potential U
 - On ∂D traction **T** is defined as $\sigma \cdot n$
 - Static assumption $\implies \nabla \cdot \sigma = 0$
 - We assume the existence of an internal potential U => elasticity?
 - The J-integral is the vector defined by

$$\boldsymbol{J} = \int_{\partial D} \left[U \left(\boldsymbol{\nabla} \boldsymbol{u} \right) \boldsymbol{n} - \left(\boldsymbol{\nabla} \boldsymbol{u} \right)^T \boldsymbol{T} \right] dA$$

or, along x_i

2020-2021

$$\boldsymbol{J}_{i} = \int_{\partial D} \left[U\left(\boldsymbol{\varepsilon}\right) \boldsymbol{n}_{i} - \boldsymbol{\nabla}_{i} \boldsymbol{u}_{k} \boldsymbol{\sigma}_{km} \boldsymbol{n}_{m} \right] dA$$

- Rice (1968) proposed to compute the energy that flows to the crack tip
 - Given an homogeneous uncracked body B (2)

•
$$\boldsymbol{J}_{i} = \int_{\partial D} \left[U(\boldsymbol{\varepsilon}) \, \boldsymbol{n}_{i} - \boldsymbol{\nabla}_{i} \boldsymbol{u}_{k} \boldsymbol{\sigma}_{km} \boldsymbol{n}_{m} \right] dA$$

• First term with $\sigma_{km} = \sigma_{mk} = \partial_{\varepsilon_{km}} U$

$$\int_{\partial D} U(\boldsymbol{\varepsilon}) \boldsymbol{n}_i \, dA = \int_D \partial_{\boldsymbol{x}_i} U(\boldsymbol{\varepsilon}) \, dD = \int_D \partial_{\boldsymbol{\varepsilon}_{km}} U(\boldsymbol{\varepsilon}) \, \partial_{\boldsymbol{x}_i} \boldsymbol{\varepsilon}_{km} dD$$
$$= \int_D \boldsymbol{\sigma}_{km} \, \frac{\partial_{\boldsymbol{x}_i \boldsymbol{x}_m} \boldsymbol{u}_k + \partial_{\boldsymbol{x}_i \boldsymbol{x}_k} \boldsymbol{u}_m}{2} \, dD = \int_D \boldsymbol{\sigma}_{km} \, \partial_{\boldsymbol{x}_i \boldsymbol{x}_m} \boldsymbol{u}_k \, dD$$

• Second term with $\nabla \cdot \sigma = 0$

$$\int_{\partial D} \partial_{x_{i}} \boldsymbol{u}_{k} \boldsymbol{\sigma}_{km} \boldsymbol{n}_{m} dA = \int_{D} \partial_{x_{m}} (\partial_{x_{i}} \boldsymbol{u}_{k} \boldsymbol{\sigma}_{km}) dD$$
$$= \int_{D} \left(\partial_{x_{i}x_{m}} \boldsymbol{u}_{k} \boldsymbol{\sigma}_{km} + \partial_{x_{i}} \boldsymbol{u}_{k} \boldsymbol{\sigma}_{km} \boldsymbol{\sigma}_{km} \right) dD$$
$$= 0 \text{ (balance eq.)}$$
$$\boldsymbol{J}_{i} = \int_{\partial D} \left[U(\boldsymbol{\varepsilon}) \, \boldsymbol{n}_{i} - \boldsymbol{\nabla}_{i} \boldsymbol{u}_{k} \boldsymbol{\sigma}_{km} \boldsymbol{n}_{m} \right] dA = 0$$

The flow of energy through a closed surface is equal to zero

 ∂D

D

B

n

• For heterogeneous materials

$$U(\nabla \boldsymbol{u}, \boldsymbol{X}) \Longrightarrow \frac{DU(\nabla \boldsymbol{u}, \boldsymbol{X})}{D\boldsymbol{X}_{i}} = \frac{\partial U}{\partial \boldsymbol{\varepsilon}} : \boldsymbol{\varepsilon}_{,i} + \frac{\partial U}{\partial \boldsymbol{X}_{i}} \Longrightarrow \boldsymbol{J}_{i} \neq 0$$

- For homogeneous cracked materials (2D form)
 - Of practical interest is the flow // crack tip

$$J_{x} = \oint_{\Gamma} \left[U(\boldsymbol{\varepsilon}) \, \boldsymbol{n}_{x} - \boldsymbol{u}_{,x} \cdot \boldsymbol{T} \right] dl = 0$$

with $\oint_{\Gamma} = \int_{\Gamma_{1}} + \int_{\Gamma^{+}} + \int_{\Gamma^{-}} - \int_{\Gamma_{2}}$

• Along Γ^- and Γ^+ :

$$\boldsymbol{n}_x = 0$$
 , $\boldsymbol{n}_y = \pm 1$

- Crack is stress free:
$$T_{\alpha} = \sigma_{\alpha y} n_y = 0$$

» If there is no friction at the crack

$$\Longrightarrow \int_{\Gamma^-} = \int_{\Gamma^+} = 0$$

- So one can compute the energy that flows toward the crack tip by

$$J = \int_{\Gamma_1} \left[U(\boldsymbol{\varepsilon}) \, \boldsymbol{n}_x - \boldsymbol{u}_{,x} \cdot \boldsymbol{T} \right] dl = \int_{\Gamma_2} \left[U(\boldsymbol{\varepsilon}) \, \boldsymbol{n}_x - \boldsymbol{u}_{,x} \cdot \boldsymbol{T} \right] dl$$

- It is path independent
- No assumption on linearity has been made (only existence of *U*)
- Does not depend on subsequent crack growth direction

T

 $\partial_N B$

- The J integral can be specialized
 - Back to crack closure integral
 - Potential energy

$$\Pi_{\mathrm{T}} = E_{int} - Qu = \int_{B} U(\varepsilon) \, dB - \int_{\partial_{N}B} \overline{T} \cdot \boldsymbol{u} \, d\partial B$$

• Energy release rate

$$G = -\partial_A \Delta \Pi_T = -\lim_{\Delta A \to 0} \Delta \left[\int_B U(\varepsilon) \, dB - \int_{\partial_N B} \overline{T} \cdot \boldsymbol{u} \, d\partial B \right]$$

 If the crack grows straight ahead, considering a domain moving with the crack tip, it can be shown that (see annex 2)

$$G = \int_{\Gamma} U(\boldsymbol{\varepsilon}(a)) \boldsymbol{n}_{x} dl - \int_{\Gamma} \partial_{x} \boldsymbol{u} \cdot \boldsymbol{T} dl = J$$

- So G=J

- For materials defined by an internal potential (linear response or not)
- AND if the crack grows straight ahead

 $B-\Delta B$

 $u = \overline{u}$

 $\partial_D B$

 $\sigma + \Delta \sigma$

J integral for linear elasticity

- The *J* integral can be specialized ۲
 - For linear elasticity
 - General expression

$$J = \int_{\Gamma} \left[U(\boldsymbol{\varepsilon}) \, \boldsymbol{n}_{x} - \boldsymbol{u}_{,x} \cdot \boldsymbol{T} \right] dl$$

• Linear elasticity $U = \frac{\sigma \cdot \varepsilon}{2}$

$$\implies J = \int_{\Gamma} \left[\frac{\boldsymbol{\sigma}_{ij} \boldsymbol{u}_{i,j}}{2} \delta_{xk} - \boldsymbol{u}_{i,x} \boldsymbol{\sigma}_{ik} \right] \boldsymbol{n}_k dl$$

Arbitrary path \implies choose a circle with $r \rightarrow 0$ •

$$\Rightarrow \text{ asymptotic solution holds and plugged in } J$$

$$\left\{ \begin{array}{l} \boldsymbol{u} = \sqrt{\frac{r}{2\pi}} \sum_{i=I}^{III} K_i \boldsymbol{g}^{\text{mode i}} \left(\boldsymbol{\theta}\right) \\ \boldsymbol{\sigma} = \frac{1}{\sqrt{2\pi r}} \sum_{i=I}^{III} K_i \mathbf{f}^{\text{mode i}} \left(\boldsymbol{\theta}\right) \\ J = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu} \end{array} \right.$$

Linear Elastic Fracture Mechanics (LEFM)

Asymptotic solution governed by stress intensity factors

36

- Cracked body: summary
 - Potential energy $\Pi_T = E_{int} Qu$
 - Crack closure integral
 - Energy required to close crack tip

$$\Delta \Pi_T = \int_{\Delta A} \int_{\boldsymbol{u}}^{\boldsymbol{u} + \Delta \boldsymbol{u}} \boldsymbol{t} \cdot [\boldsymbol{u}'] d\boldsymbol{u}' dA$$

- Energy release rate
 - Variation of potential energy in case of crack growth

$$G = -\partial_{\rm A} \left(E_{\rm int} - W_{\rm ext} \right) = -\partial_{A} \Delta \Pi_{T}$$

• In linear elasticity

$$G = -\partial_A \Delta \Pi_T = -\lim_{\Delta A \to 0} \frac{1}{\Delta A} \int_{\Delta A} \frac{1}{2} \mathbf{t}^{\mathbf{0}} \cdot \left[\!\left[\Delta \mathbf{u} \right]\!\right] dA$$

- In linear elasticity & if crack grows straight ahead

$$G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu} \qquad E' = \frac{4E}{(1+\nu)(\kappa+1)} = \begin{cases} E & P\sigma \\ \frac{E}{1-\nu^2} & P\varepsilon \end{cases}$$

- Cracked body: summary
 - J-integral
 - Strain energy flow

$$J = \int_{\Gamma} \left[U\left(\boldsymbol{\varepsilon}\right) \boldsymbol{n}_{x} - \boldsymbol{u}_{,x} \cdot \boldsymbol{T} \right] dl$$

- Exists if an internal potential exists
 - Is path independent if the contour Γ embeds a straight crack tip
 - No assumption on subsequent growth direction
 - Can be extended to plasticity if no unloading (see later)
- If crack grows straight ahead \implies G=J
- In linear elasticity (independently of crack growth direction):

$$J = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu} \qquad E' = \frac{4E}{(1+\nu)(\kappa+1)} = \begin{cases} E & P\sigma \\ \frac{E}{1-\nu^2} & P\varepsilon \end{cases}$$

38

Exercise 1

- Exercise 1: Fracture testing of elastomers
 - Infinite strip with semi-infinite crack
 - Plane $\sigma(t \le h)$
 - Questions
 - 1) Compute *J* integral
 - What are the assumptions?
 - 2) Compute *G*
 - Why is it equal to J?
 - 3) When can we deduce the SIF from there?
 - What is the value of K_I ?

- $\Delta u/2$ J integral Assuming an internal potential U _ - J is path independent Thickness t h Γ_{5} → Choose an easy one Γ_3 x \implies Γ_1 , Γ_5 , & Γ_3 far away from crack tip Γ_1 h Γ_2 $\implies J = \sum_{i=1}^{\infty} \int_{\Gamma_i} [U \, \boldsymbol{n}_x - \boldsymbol{u}_{,x} \cdot \boldsymbol{T}] \, dl$ $\Delta u/2$
 - Evaluate the different contributions
 - On $\Gamma_1 \& \Gamma_5$: material unloaded

$$\boldsymbol{\sigma} = 0 \implies U = 0 \quad \& \quad \boldsymbol{T} = \boldsymbol{\sigma} \cdot \boldsymbol{n} = 0 \implies 0 = \sum_{i=1,5} \int_{\Gamma_i} \left[U \, \boldsymbol{n}_x - \boldsymbol{u}_{,x} \cdot \boldsymbol{T} \right] dl$$

• On Γ_2 & Γ_4 : $n_x = 0$ and $u_{x} = 0$ because of clamping

$$\implies 0 = \sum_{i=2,4} \int_{\Gamma_i} [U \boldsymbol{n}_x - \boldsymbol{u}_{,x} \cdot \boldsymbol{T}] dl$$

· What remains is

$$J = \int_{\Gamma_3} \left[U \, \boldsymbol{n}_x - \boldsymbol{u}_{,x} \cdot \boldsymbol{T} \right] dl$$

 $\Delta u/2$

 $\Delta u/2$

y

h

h

Thickness t

X

- Energy release rate G
 - If an internal potential exists $G = -\partial_A (E_{int} - W_{ext}) = -\partial_A \Pi_T$
 - Displacements are prescribed $\implies G = -\partial_A E_{int}$
 - Far behind the crack: unloaded material

$$\implies E_{int} = 0$$

• Far ahead of the crack, U was found to be uniform

$$\implies E_{int} = 2Uth\Delta a$$

• if the crack growth by Δa the change of energy is -2 U t h Δa

- Energy release rate G(2)
 - Displacements are prescribed $\implies G = -\partial_A E_{int}$
 - Crack grows by Δa _

$$\implies \Delta E_{\rm int} = -2Uh \,\Delta a \, t$$

$$\implies G = -\partial_A E_{\text{int}} = -\frac{1}{t} \partial_a E_{\text{int}}$$
$$\implies G \simeq \lim_{\Delta a \to 0} \frac{1}{\Delta a} \ 2Uh\Delta a = 2Uh$$

- G = J as the crack grows straight ahead (by symmetry)

Exercise 2

• Exercise 2: Laminated composite

- 2 long thin strips of steel
 - *E* = 200 GPa
 - *h* = 0.97 mm
 - *t* = 10.1 mm
- Bonded with epoxy
 - $G_c = 300 \text{ Pa·m}$
- Central crack 2a
- Questions
 - 1) Critical load for 2a = 60 mm
 - 2) Apply same method for 2a = 70 and 80 mm
 - Report on a P vs u graph the toughness locus
 - 3) Determine the critical energy release rate from that graph

- Compliance method - Beam theory $\frac{u}{2} = \frac{Pa^3}{24EI} = \frac{Pa^3}{2Eth^3}$ $\implies C = \frac{u}{P} = \frac{a^3}{Eth^3}$
 - Energy release rate in linear elasticity

$$G = \frac{P^2}{2} \frac{\partial C}{\partial A} = \frac{P^2}{2} \frac{1}{2} \frac{\partial C}{\partial a} \implies G = \frac{3P^2 a^2}{4Et^2 h^3}$$

2 fronts

- Critical load for
$$2a = 60 \text{ mm}$$

 $P_c(2a = 60 \text{ mm}) = \sqrt{\frac{4EG_c t^2 h^3}{3a^2}} = \sqrt{\frac{4\ 200\ 10^9\ 300\ 0.0101^2\ 0.00097^3}{3\ 0.03^3}} = 90.97 \text{ N}$
 $\implies u_c(2a = 60 \text{ mm}) = \frac{P_c a^3}{Eth^3} = \frac{90.97\ 0.03^3}{200\ 10^9\ 0.0101\ 0.00097^3} = 0.00133 \text{ m}$

- **Failure locus**
 - Assuming the graph is _ deduced from experiments
 - Critical energy release rate •

 $\mathbf{2}$

 $Area = 0.00237\ 77.98 -$

Failure locus

 $Area = 0.00237\ 77.98$

2020-2021

- Assuming the graph is _ deduced from experiments
 - Critical energy release rate •

References

- Lecture notes
 - Lecture Notes on Fracture Mechanics, Alan T. Zehnder, Cornell University, Ithaca, <u>http://hdl.handle.net/1813/3075</u>
 - Fracture Mechanics Online Class, L. Noels, ULg, <u>http://www.ltas-</u> <u>cm3.ulg.ac.be/FractureMechanics</u>
- Book
 - Fracture Mechanics: Fundamentals and applications, D. T. Anderson. CRC press, 1991.
 - S. Suresh, Fatigue of Materials, Cambridge University Press, 2001

- In elasticity (linear or not) and if *b* assumed equal to 0
 - Potential energy variation

$$\begin{cases} \Pi_{T} = \int_{B} U(\boldsymbol{\nabla}\boldsymbol{u}) \, dB - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \boldsymbol{u} d\partial B \\ \Pi_{T} + \Delta \Pi_{T} = \int_{B-\Delta B} U(\boldsymbol{\nabla}\boldsymbol{u} + \boldsymbol{\nabla}\Delta \boldsymbol{u}) \, dB - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot (\boldsymbol{u} + \Delta \boldsymbol{u}) \, d\partial B \\ \Delta \Pi_{T} = \int_{B-\Delta B} U(\boldsymbol{\nabla}\boldsymbol{u} + \boldsymbol{\nabla}\Delta \boldsymbol{u}) - U(\boldsymbol{\nabla}\boldsymbol{u}) \, dB - \int_{\Delta B} U(\boldsymbol{\nabla}\boldsymbol{u}) \, dB - \int_{\partial_{N}B} \bar{\boldsymbol{T}} \cdot \Delta \boldsymbol{u} d\partial B \end{cases}$$

- Stress derives from a potential

$$\int_{B-\Delta B} U(\boldsymbol{\varepsilon} + \Delta \boldsymbol{\varepsilon}) - U(\boldsymbol{\varepsilon}) \, dB = \int_{B-\Delta B} \left\{ \int_0^{\boldsymbol{\varepsilon} + \Delta \boldsymbol{\varepsilon}} \boldsymbol{\sigma}(\boldsymbol{\varepsilon}') : d\boldsymbol{\varepsilon}' - \int_0^{\boldsymbol{\varepsilon}} \boldsymbol{\sigma}(\boldsymbol{\varepsilon}') : d\boldsymbol{\varepsilon}' \right\} \, dB$$

• Since
$$\nabla \cdot \boldsymbol{\sigma} = 0$$
 (as $\boldsymbol{b} = 0$)
$$\int_{B-\Delta B} U(\boldsymbol{\varepsilon} + \Delta \boldsymbol{\varepsilon}) - U(\boldsymbol{\varepsilon}) dB = \int_{B-\Delta B} \int_{\boldsymbol{u}}^{\boldsymbol{u} + \Delta \boldsymbol{u}} \boldsymbol{\nabla} \cdot (\boldsymbol{\sigma}^T (\boldsymbol{u}') \cdot d\boldsymbol{u}') dB$$

Applying Gauss theorem

$$\int_{B-\Delta B} U(\boldsymbol{\varepsilon} + \Delta \boldsymbol{\varepsilon}) - U(\boldsymbol{\varepsilon}) \, dB = \int_{S+\Delta S+\partial_N B+\partial_D B} \int_{\boldsymbol{u}}^{\boldsymbol{u}+\Delta \boldsymbol{u}} [\boldsymbol{\sigma}(\boldsymbol{u}') \cdot \boldsymbol{n}] \cdot d\boldsymbol{u}' d\partial B$$

- In elasticity (linear or not) and if *b* assumed equal to 0 (2)
 - Study of term

$$\int_{B-\Delta B} U(\boldsymbol{\varepsilon} + \Delta \boldsymbol{\varepsilon}) - U(\boldsymbol{\varepsilon}) \, dB = \int_{S+\Delta S+\partial_N B+\partial_D B} \int_{\boldsymbol{u}}^{\boldsymbol{u}+\Delta \boldsymbol{u}} [\boldsymbol{\sigma}(\boldsymbol{u}') \cdot \boldsymbol{n}] \cdot d\boldsymbol{u}' d\partial B$$

• Traction is constant on $\partial_N B$ & displacement is constant on $\partial_D B$

• On the cavity surface S: t is defined as $\sigma \cdot n$

$$\int_{B-\Delta B} U\left(\boldsymbol{\nabla}\boldsymbol{u} + \boldsymbol{\nabla}\Delta\boldsymbol{u}\right) - U\left(\boldsymbol{\nabla}\boldsymbol{u}\right) dB = \int_{S+\Delta S} \int_{\boldsymbol{u}}^{\boldsymbol{u}+\Delta\boldsymbol{u}} \boldsymbol{t}\left(\boldsymbol{u}'\right) \cdot d\boldsymbol{u}' d\partial B + \int_{\partial_N B} \bar{\boldsymbol{T}} \cdot \Delta \boldsymbol{u} d\partial B$$

• Be careful: $S + \Delta S$ is stress free, but only in the final configuration

-
$$(\sigma + \Delta \sigma) \cdot n = 0$$
 on $S + \Delta S$ but,

- $\sigma(\varepsilon) n \neq 0$ on $S + \Delta S \implies$ so the integral does not vanish
- However, S remains stress free during the whole process

$$\Longrightarrow \int_{B-\Delta B} U\left(\nabla u + \nabla \Delta u\right) - U\left(\nabla u\right) dB = \int_{\Delta S} \int_{u}^{u+\Delta u} t\left(u'\right) \cdot du' d\partial B + \int_{\partial_{N}B} \bar{T} \cdot \Delta u d\partial B$$

- Eventually
$$\Delta \Pi_T = \int_{\Delta S} \int_{\boldsymbol{u}}^{\boldsymbol{u} + \Delta \boldsymbol{u}} \boldsymbol{t}(\boldsymbol{u}') \cdot d\boldsymbol{u}' d\partial B - \int_{\Delta B} U(\boldsymbol{\nabla} \boldsymbol{u}) dB$$

• If instead of a cavity we have a crack, the change of volume is zero and the last term disappears

2020-2021

52

53

- Involves the whole body B
- However, as $\Delta a \rightarrow 0$, the non vanishing contributions are around the crack tip
 - The equation is then limited to the FIXED region D of boundary Γ

$$G = \lim_{\Delta a \to 0} \frac{1}{\Delta a} \left\{ \int_D U(\boldsymbol{\varepsilon}) - U(\boldsymbol{\varepsilon} + \Delta \boldsymbol{\varepsilon}) + (\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma}) : \Delta \boldsymbol{\varepsilon} dD \right\}$$

- Energy release rate (3)
 - As *D* is fixed, let us define D^* moving with the crack tip: $D = D^* + \Delta D_L \Delta D_R$
 - First part of energy release rate becomes

$$\lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_{D} U(\varepsilon) - U(\varepsilon + \Delta \varepsilon) dD =$$
$$\lim_{\Delta a \to 0} \frac{1}{\Delta a} \left\{ \int_{D} U(\varepsilon(a)) dD - \int_{D^* + \Delta D_L - \Delta D_R} U(\varepsilon(a + \Delta a)) dL \right\}$$

• Since $D^* \rightarrow D$, this relation tends toward

$$\begin{split} \lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_D U\left(\boldsymbol{\varepsilon}\right) - U\left(\boldsymbol{\varepsilon} + \Delta \boldsymbol{\varepsilon}\right) dD &= \lim_{\Delta a \to 0} \left\{ \int_D \frac{U\left(\boldsymbol{\varepsilon}\left(a\right)\right) - U\left(\boldsymbol{\varepsilon}\left(a + \Delta a\right)\right)}{\Delta a} dD - \frac{1}{\Delta a} \int_{\Delta D_L - \Delta D_R} U\left(\boldsymbol{\varepsilon}\left(a + \Delta a\right)\right) dD \right\} \end{split}$$

• N.B.: Formally, one should use derivatives & limits of integrals with non-constant intervals

Energy release rate (4) - First part of energy release rate becomes (2) • Homogeneous materials $(\partial_{x}, U=0)$
$$\begin{split} \lim_{\Delta a \to 0} \int_D \frac{U\left(\boldsymbol{\varepsilon}\left(a\right)\right) - U\left(\boldsymbol{\varepsilon}\left(a + \Delta a\right)\right)}{\Delta a} dD &= -\int_D \partial_a U dD \\ \bullet & \text{Considering the opened curve } \boldsymbol{\varGamma}_L \text{, at the limit} \end{split}$$
 $\int_{\Delta D_L} U dD = \int_{-\Gamma_L} U \boldsymbol{n}_x \Delta a dl \Longrightarrow$ $\lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_{\Delta D_L} U \left(\boldsymbol{\varepsilon} \left(a + \Delta a\right)\right) dD = -\int_{\Gamma_L} U \left(\boldsymbol{\varepsilon} \left(a\right)\right) \boldsymbol{n}_x dl$ Δa Γ_I * Considering the opened curve Γ_R^* , at the limit $\int_{\Delta D_{\mathcal{P}}} U dD = \int_{\Gamma_{*}^{*}} U \boldsymbol{n}_{x} \Delta a dl \Longrightarrow$ Λa $\lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_{\Delta D_R} U\left(\boldsymbol{\varepsilon} \left(a + \Delta a\right)\right) dD = \int_{\Gamma_r^*} U\left(\boldsymbol{\varepsilon} \left(a\right)\right) \boldsymbol{n}_x dl$ 2020-2021 Fracture Mechanics – LEFM – Energetic Approach 57

- Energy release rate (5)
 - First part of energy release rate becomes (3)
 - As $\Gamma_L + \Gamma_R^* \to \Gamma$, it yields

$$\lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_{D} U(\boldsymbol{\varepsilon}) - U(\boldsymbol{\varepsilon} + \Delta \boldsymbol{\varepsilon}) \, dD \quad = \quad -\int_{D} \partial_a U \, dD + \int_{\Gamma} U(\boldsymbol{\varepsilon}(a)) \, \boldsymbol{n}_x \, dl$$

And as

$$G = \lim_{\Delta a \to 0} \frac{1}{\Delta a} \left\{ \int_{D} U(\boldsymbol{\varepsilon}) - U(\boldsymbol{\varepsilon} + \Delta \boldsymbol{\varepsilon}) + (\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma}) : \Delta \boldsymbol{\varepsilon} dD \right\}$$

• with $\lim_{\Delta a \to 0} \frac{1}{\Delta a} \int_{D} (\boldsymbol{\sigma} + \Delta \boldsymbol{\sigma}) : \Delta \boldsymbol{\varepsilon} dD = -\int_{\Gamma} \partial_{x'} \boldsymbol{u} \cdot \boldsymbol{T} dl + \int_{D} \partial_{a} U dD$
• The energy rate is rewritten $G = \int_{\Gamma} U(\boldsymbol{\varepsilon}(a)) \boldsymbol{n}_{x} dl - \int_{\Gamma} \partial_{x} \boldsymbol{u} \cdot \boldsymbol{T} dl = J$

- So *G*=*J*
 - For materials defined by an internal potential (linear response or not)
 - AND if the crack grows straight ahead

