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Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– 3 failure modes

– Asymptotic solution governed by stress intensity factors
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Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– Potential energy  PT = Eint - Qu

– Crack closure integral 

• Energy required to close crack tip

– Energy release rate

• Variation of potential energy in case of crack growth

• In linear elasticity

– In linear elasticity & if crack grows straight ahead
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Linear Elastic Fracture Mechanics (LEFM)

• Cracked body: summary

– J-integral

• Strain energy flow

– Exists if an internal potential exists

• Is path independent if the contour G embeds a straight crack tip

• No assumption on subsequent growth direction

• Can be extended to plasticity if no unloading (see later)

– If crack grows straight ahead G=J

– In linear elasticity (independently of crack growth direction):
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• Analytical

– SIF from full-field solution

• Limited cases number

– From energetic consideration

• Growing straight ahead crack

• From J-integral

• Numerical (e.g. FEM)

– bi depends on geometry & crack length

• Tabulated solutions (handbooks)

– http://ebooks.asmedigitalcollection.asme.org/book.aspx?bookid=230

SIF evaluation
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Elastic fracture in mode I

• Crack growth criterion in mode I

– For a crack to grow 

– The energy release rate G depends on

• The geometry, including the crack length

• The loading

– What does the fracture energy Gc depend on ?

• For perfectly brittle materials: this is the energy to break atomic bonding

• Practically: should  account for the inelastic deformations in the process zone

• For (an)isotropic materials, Gc is (not) the same in all the directions

– Examples: wood, composites
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Elastic fracture in mode I

• Crack growth criterion in mode I (2)

– For an initial straight crack under mode I: in an isotropic material

• The crack will grow straight ahead (see next slides)

• So toughness and fracture energy are related

– Toughness is defined for plane e state

• To be conservative

• Near the free surfaces 

– Deformations along thickness 

release the stress state

– The SIF is lower 

– Process zone is not negligible 

(see lecture on NLFM) 

Gc is larger near free surfaces

• There is a thickness effect

a thin specimen is more ductile
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Elastic fracture in mode I

• LEFM validity

– Plane strain & elastic fracture can 

be assumed if the process zone is 

small compared to

• The specimen 

– Thick specimen to be under 

plane strain 

– See lecture on NLFM

• The crack/ligament length

– Crack large enough

– See lecture on NLFM

Plane e
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Elastic fracture in mode I

• Crack growth criterion in mode I (3)

– Toughness & fracture energy of brittle materials

– Toughness and fracture energy are related

• since toughness is defined under plane strain condition 

Material KC [MPa · m½] GC [J · m-2]

Borosilicate Glass 0.8 9.

Alumina 99% polycrystalline 4. 39.

Zirconia-Toughened Alumina 6. 90.

Yttria Partially Stabilized Zirconia 13. 730.

Aluminum 7075-T6 25. 7800.

AlSiC Metal Matrix Composite 10. 400.

Epoxy 0.4 200.
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Elastic fracture in mode I

brittle

ductile

• We know whether the crack grows

• But
– How fast ?

– How far ?

– In which direction ?
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• Crack growth criterion in mode I (4)

– Behavior depends on 
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• Example: High strength 

steel alloys exhibit a DBTT 



Crack grow stability

• Considering a cracked body with G ≥ GC: the crack will grow

– If GC is constant: two possible behaviors as the crack grows

• G decreases            the crack stops growing (unless the loading increases)

• G increases             instability and the specimen fractures

– If GC is not constant: the question becomes

• Which one of G or GC will grow at the highest rate

– The stability of a crack growth depends on

• The geometry

• The loading

• The material behavior
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Crack grow stability

• Example: Delamination of composites (DCB specimen)

– Compliance  (Linear elasticity)

– Prescribed loading

• As the crack is growing: G increases

• For a perfectly brittle material GC is constant

unstable 

– Prescribed displacement

• As the crack is growing: G decreases

• For a perfectly brittle material GC is constant

stable 

– Is it a general rule? What happens for a general loading?
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Crack grow stability

• Statically determinate structure vs. statically indeterminate structure

– Determinate structure: truss load does not depend on compliance

– Indeterminate structure: truss load decreases with the compliance increase
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Crack grow stability

• General loading conditions

– Practically, when a crack propagates

• Part of the structure becomes more compliant

• Part of the load is transferred to other parts

neither fixed load nor fixed displacement

– This corresponds to a compliant machine loading

• Spring of compliance CM

• Generalized loading Q(a) (spring and cracked body)

• Generalized displacement at the cracked body u(a)

• Internal energy

Q(a)

u(a)

C(a)

uT

Q(a)

CM
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Crack grow stability

• General loading conditions (2)

– This corresponds to a compliant machine loading

• Internal energy

• Prescribed displacement uT at one extremity of the spring

• In terms of the load
Q(a)

u(a)

C(a)

uT

Q(a)

CM
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Crack grow stability

• General loading conditions (3)

– Variation of the energy release rate

• Dead load

– Spring of infinite compliance (CM → ∞)

– Positive ∂AG unstable   

– Since second term is <0, this is maximum of ∂AG

• As the spring stiffens (toward a fixed grip)

– CM decreases 

– ∂AG also decreases, which stabilizes the crack growth

– If ∂AG becomes <0, the crack is stable 

– A fixed grip is always more stable than a dead load

• Fixed grip

• Dead load

Q(a)

u(a)

C(a)

uT

Q(a)

CM
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Crack grow stability

• Non-perfectly brittle material: Resistance curve

– For non-perfectly brittle materials GC depends on the crack surface

• Therefore GC will be renamed the resistance Rc (A)

– Elastoplastic behavior

• Active plastic zone in

front of the crack tip

• Plastic work increases

Resistance increases 

• This effect is more important for 

thin specimens (elasto-plastic 

behavior more pronounced 

under plane s)

• A steady state can be reached 

in which case a crack propagates

in a compressive plastic wake

– Composites

• As the crack propagates, fibers in the wake tend to close crack tip

more and more energy is required for the crack to grow

Plastic 

zone

Blunting

Initial crack 

growth

Steady state

DA=tDa

Rc

Rc fragile

Rc ducile t1

0

Rc ducile t2<t1

Rc ducile t3<< (Plane s)

Active 

plastic zonePlastic wake
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Crack grow stability

• Example: Delamination of composites with initial crack a0

Dead load vs  Fixed grip

– Dead load Q1

• Perfectly brittle materials: unstable

• Ductile materials: stable, but if a is 
larger than a** it turns unstable

– Dead load Q2 > Q1

• This is the limit of stability for ductile 
materials (always unstable for 
perfectly brittle material)

– For Q3: unstable

a

Rc, G

Rc ducile

u increasing

a0

GC brittle

u1

u2

u3

a

Rc, G

Rc ducile

Q increasing

a0 a*  a**

GC brittle

Q1

Q2Q3

– Fixed grip u1 ,u2 or u3  

• The crack is stable for any material
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Crack grow stability

• Crack growth stability criterion

– Crack growth criterion is G ≥ GC

– Stability of the crack is reformulated (in 2D)

• Stable crack growth if

• Unstable crack growth if
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Mixed mode fracture

• In which direction will the crack grow?

– For anisotropic & isotropic material

– Under mixed mode loading

– In composites

• Cracks follow the path of least resistance

– Important to predict this path during the design

– “Fail safe design”

• In the following we assume homogeneous & isotropic materials under 

mixed mode loading
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Mixed mode fracture

• Combination of mode I & mode II loadings

– Loadings in mode I and mode II

• Rotation

• Mode I loading (infinite plate):

• Mode II loading (infinite plate):

– The crack will propagate with a kink angle q

– q=0 only if it corresponds to a weak plane of the material (e.g. delamination)
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b
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Mixed mode fracture

• Method of the maximum circumferential stress

– Erdogan & Sih, 1963

– Assumptions: 

• Direction maximizes mode I SIF in 

the new frame 𝑒𝑥′𝑥′ , 𝑒𝑦′𝑦′

This corresponds to maximizing hoop stress 𝜎𝜃𝜃 in the frame 𝑒𝑟𝑟 , 𝑒𝜃𝜃

𝜃∗ such that                             &

• Crack grows if new mode I SIF 𝐾𝐼
′ reaches the toughness

2a

x

y

s∞
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b
q*

erreqq
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Mixed mode fracture

• Method of the maximum circumferential stress (2)

– Mode I

– Mode II 

– Mixed mode I & mode II loadings
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Mixed mode fracture

• Method of the maximum circumferential stress (3)

– Mixed mode I & mode II loadings in new frame
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Mixed mode fracture

• Method of the maximum circumferential stress (4)

– Maximum hoop stress

•

• Direction of loading defined by                       

In case of the infinite plate b* = b

•

– Particular cases

• For b*=90°:q*=0

• For b*>0: q*<0
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Mixed mode fracture

• Method of the maximum circumferential stress (5)

– Kink angle obtained when hoop stress is maximum

•

• Maximum hoop stress for q* with

– Prediction in good agreement

with experimental results 

• (Erdogan and Sih, 1963)
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Mixed mode fracture

• Method of the maximum circumferential stress (6)

– Mode I SIF associated to maximum hoop-stress 

• New mode I SIF                                             

at failure 

with kink angle from  

– Failure envelope

• Resolution of this linear system of 

2 equations with 2 unknowns 

• Toughness tests for different

loading directions 

• Maximum circumferential stress

theory is conservative 0 0.2 0.4 0.6 0.8 1
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Mixed mode fracture

• Method of the maximum circumferential stress (7)

– Pure mode II theory (b * = 0, KI = 0)

• For pure mode II the case of a plate in tension is meaningless 𝛽∗ ≠ 𝛽
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Mixed mode fracture

• Method of the maximum circumferential stress (8)

– Pure mode II theory (b * = 0, KI = 0)

• Maximum hoop stress direction                     

• Negative kink angle             q*|b*=0 ~ -70.53°

• New mode I SIF after kinking

• At failure
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x

y
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q*
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Mixed mode fracture

• Method of the maximum circumferential stress (9)

– Pure mode II: plate under shearing

• Circumferential stress:

–

– Maximum for q =-45°

• Theory predicts a kink angle q*|b*=0 ~ -70.53°

• Why is there a difference?

– Due to the stress field at crack tip

the maximum circumferential stress

is at -70.53° crack will grow

with this angle

– As it grows, the crack will not remain

under pure mode II loading

– Crack will turn until growing

with a -45-degree angle

2a
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y
t∞

t∞

2a
x

y
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Mixed mode fracture

• Method of the maximum circumferential stress (10)

– Observation

• For a plate in shearing the kink |angle| 

decreases with the propagation

• What is the general rule?

– Second order theory

• Full field solution  

• Hoop stress at distance 𝑟𝑐 actually reads

• Kink angle q * which maximizes the hoop stress depends on 𝑇

– q * (b*, T, rc, KI) depends on stress field at rc

– rc determined by experiment (Aluminum alloy: rc ~1.5 mm)

2a

x

y

T

T

b*

q*
erreqq
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Mixed mode fracture

• Method of the maximum circumferential stress (11)

– Second order theory (2)

• Results obtained numerically can be summarized as: after initial kinking

– For compression (T < 0) or low traction: crack will tend to be aligned with T

– For traction of the order of KI /rc
1/2 or larger: there is bifurcation

2a

2a2a
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Mixed mode fracture

• Method of the maximum energy release rate

– In thermodynamics: equilibrium corresponds to the lowest potential energy

• So the crack will propagate to minimize the potential energy

• Since the energy release rate is defined by

the crack will grow in the direction maximizing G

– Energy release rate

• 𝐾𝑖: SIFs at the crack tip before kink propagation

• 𝐾𝐼
′: SIFs at extremity of a kink of infinitesimal length and angle 𝜃

• 𝐾𝐼
′(𝜃) can be deduced from Ki: (Cotterell & Rice, 1980)

– First order accurate in 𝜃

• Since the kink grows straight ahead:

KI & KII
𝜃

𝐾𝐼
′ & 𝐾𝐼

′
I
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Mixed mode fracture

• Method of the maximum energy release rate (2)

– Energy release rate fro mixed mode loading

• with    

• Kinking such that                                &

• Propagation if 

2a

x

y

s∞

s∞

b
q*

erreqq
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Mixed mode fracture

• Method of the maximum energy release rate (3)

– Comparison against the method of maximum hoop stress

• Remember we used a formula first order accurate in q

– < 5% error for  q < 40°

– ~ 5% error on KI for  q > 40° (Cotterell & Rice, 1980)

– For the method of maximum energy release rate:

• Before the crack propagates: KI & KII can be ≠ 0

• After kinking: 𝐾𝐼𝐼
′ = 0 the crack propagates under pure mode I
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Fatigue failure

• Under cyclic loading a crack can 

– Be initiated for loadings with s < sp
0

– Propagate for Ki < KC

• Total life approaches

– Unable to account for inherent defects

• Example: design of the De Havilland Comet

using total life approach. Defects resulting

from punched riveting of square windows

caused failure of aircrafts

– Unable to predict crack propagation

P

P

a
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Fatigue failure

• Microscopic observations for cycling loading

– I. Crack initiated at stress concentrations (nucleation)

– II. Crack growth resulting into surface striations

– III. Failure of the structure when the crack reaches a critical size

– Example of a crank axis

• Development of damage tolerant design

– Assume cracks are present from the beginning of service

– Predict crack growth and end of life
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Fatigue failure

• I. Crack initiation  

– Nucleation: cracks initiated for K << KC

• Surface: deformations result from 

dislocations motion along slip planes

• Can also happen around a

bulk defect

P

P

a

N cycles

PminPmax

2020-2021 Fracture Mechanics – LEFM – Crack Growth  38



Fatigue failure

• II. Crack growth  

– Stage I fatigue crack growth:

• Along a slip plane

– Stage II fatigue crack growth:

• Across several grains 

– Along a slip plane in each grain

– Straight ahead macroscopically

• Striation of the failure surface:

corresponds to the cycles

Perfect crystal

C
ra

c
k
 g

ro
w

th
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Fatigue failure

• III. Structure failure 
– As the crack growth K tends toward KC

– For a critical size of the crack there is a 

static failure
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Fatigue failure

• Crack growth rate

– Tests: conditioning parameters 

• DP &

• Pmin / Pmax

– SSY assumption

• Fatigue occurs for 𝐾𝑖 < 𝐾𝐶

• SSY usually satisfied, at least

during crack growth stage II

– Since SSY assumption holds, 

• Fatigue failure can be 

described solely by

– DK = Kmax- Kmin & 

– R = Kmin/Kmax
Interval of striations

P

P

a

a
(c

m
)

Nf  (105)
1 2    3      4 5      6     7

5

4

3

2

DP1

DP2 > DP1

Structure inspection  

possible (for DP1)
Rapid crack 

growth 

Failure
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Fatigue failure

• Crack growth rate (2)

– Zone I: Stage I growth

• Existence of a threshold

• Crack grows only if Δ𝐾 > Δ𝐾𝑡ℎ 𝑅

– Zone II: Stage II growth

• 1963, Paris-Erdogan

–

– Depends on the  geometry, the loading, the frequency

– Be careful: K depends on a integration needed to get a(Nf)

– Infinite plate, mode I :

– Zone III: Rapid crack growth

• Until failure

• Static behavior (cleavage) due to the effect of Kmax(a)

• There is failure once af is reached, with af such that Kmax(af) = Kc

lo
g

 d
a

/ 
d

 N
f

logDKDKth

Zone I Zone II Zone III

R

1

m
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Fatigue failure

• Experimental results

– Norm: ASTM E647 

– Parameters in Paris law

Material DKth [MPa · m½] m [-] C [m (MPa . m1/2)-m]

Mild steel 3.2-6.6 3.3 0.24 . 10-11

Structural steel 2.0-5.0 3.85-4.2 0.07-0.11 . 10-11

Structural steel is sea water 1.0-1.5 3.3 1.6 . 10-11

Aluminum 1.0-2.0 2.9 4.56 . 10-11

Aluminum alloy 1.0-2.0 2.6-2.9 3-19 . 10-11

Copper 1.8-2.8 3.9 0.34 . 10-11

Titanium alloy (6Al-4V, R=0.1) 2.0-3.0 3.22 1 . 10-11
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Fatigue failure

• Experimental fatigue curve

– Specimen

• Samples: CTS

• Fatigue pre-cracked 

– Fatigue curves

• SIF evaluated following the norm

• Crack length 𝑎 evolution by 

measuring on both sides

– Control of Δ𝑃: 2 methods

• K-decreasing           Δ𝑃 decreases

• K-increasing             Δ𝑃 constant

– Check SSY valid:
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Fatigue failure

• Ex: S355 J0 steel

– Known properties

– Extraction of fatigue curves

• Loading ration R=0.1

Toughness  DKC [MPa · m½] 40

Yield  𝜎𝑝
0 [MPa] 355
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Specimen A Specimen B

Stanislav Seitl, Petr Miarka, Jan Klusák, Zdeněk Kala, Martin Krejsa, Sergio Blasón, Alfonso F. Canteli, Evaluation of fatigue 

properties of S355 J0 steel using ProFatigue and ProPagation software, Procedia Structural Integrity,13, 2018, 1494-1501,



Fatigue failure

• Effect of R=Kmin/Kmax: crack closure 

– During loading phases at maximum stress

• There is an active plastic zone (phase transformation can happen)

• Crack opening allows fluid or products to enter

– If R <0.7 or negative, at low stress crack lips can enter into contact due to

• Plasticity

– Residual plastic strain resulting

from plastic wake will close 

the crack

• Roughness

– Non flat lips prevent sliding (mode II)

• Corrosion

– Corrosion products fill the opening

• Viscous fluid

– Lubricant fluids fill the opening

• Phase transformation

– Phase transformation put crack tip under compression

Plastic wake Active plastic 
zone
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Fatigue failure

• Effect of crack closure on fatigue

– When the loading decreases          local compressive effects        parts of the 

cracks are kept opened 

• The stress intensity factor at the minimum of the cycle is more important than 

predicted         the effective DK is actually reduced

• The crack closure effect is therefore beneficial to structure life

t

smax

smin

Ds = smax-smin

t

Kmax

Kmin

DK DKeff
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Fatigue failure

• Effect of R=Kmin/Kmax on threshold (Zone I) 

– Due to Plasticity Induced Crack Closure (PICC)

– DKth decreases when R increases
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Fatigue failure

• Effect of R=Kmin/Kmax on crack growth rate (Zone II) 

– Due to crack closure life of structure is improved for low R

• Example of 2024-T3 aluminum alloy*

– DKeff depends on many parameters (loading, environment, …)

• Example: model of Elber & Schijve for Al. 2024-T3 

– DKeff = (0.55 + 0.33 R + 0.12 R2)  DK for -1<R<0.54

• Models can be inaccurate in non-adequate circumstances

*J.C. Newman Jr, E.P. Phillips, M.H. Swain, Fatigue-life prediction methodology using small-crack theory,  International Journal of Fatigue 21 (1999)

2020-2021 Fracture Mechanics – LEFM – Crack Growth  49



Fatigue failure

• Overload effect

– What happens if there is a few (or a moderate) number of overloads ?

• Plastic wake is temporarily increased

• Until active plastic zone at crack tip passes the extended zone due to the overload 

– So which effect ?

t

Kmax

Kmin

DK
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Fatigue failure

• Overload effect (2)

– As the plastic wake is temporarily increased, DKeff is reduced due to PICC

there is a retard effect in the crack propagation

• Infrequent overloads help

• Frequent overloads may help

• Too frequent overloads are 

damaging, as it actually 

corresponds to increasing Kmax

– There exist overload models 

• Wheeler e.g.

– N.B. 1952, a fuselage of the Comet was tested against fatigue

• Static loading at 1.12 atm, followed by 

• 10 000 cycles at 0.7 atm (> cabin pressurization at 0.58 atm)

• Production fuselage without the static loading failed after a few 1000 cycles 

(pressurization at 0.58 atm)

a
(c

m
)

Nf  (105)
1 2    3      4 5      6     7

5

4

3

2

Overloads

Retards
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Fatigue failure

• Cyclic loading under mode II

– We consider 

• Cyclic loading under mode II: DKII &

• Static loading under mode I:KI

– It is possible to have mode II crack growth, e.g.

• SUJ2 steel (Japanese norm of 52100-steel)

• Image**: Fully reverted mode II loading (𝑅=-1) under mode I compression

2020-2021 Fracture Mechanics – LEFM – Crack Growth  52

*K. Okazaki, K. Wada, H. Matsunaga, M. Endo, , Engineering Fracture Mechanics, 174 (2017), 127-138

**Y. Murakami, T. Fukuhara, S. Hamada Journal Society Material Sciences, 51 (8) (2002), 918-925

***A. Otsuka, Y Fuji, K. Maeda. Fatigue Fracture Engineering Material Structures, 27 (2004), 203-212 

Δ𝐾𝐼𝐼 𝑡ℎ as a function of 𝐾𝐼* 

Mode II Mode I

𝑑𝑎

𝑑𝑁
for function of 𝐾𝐼 < 0** 

𝑑𝑎

𝑑𝑁
for function of 𝐾𝐼 > 0*** 



Fatigue failure

• Mixed mode cyclic loading 

– We consider 

• Cyclic loading under mode I: DKI

• Static loading under mode II: DKII &

• Proportional loading

– Threshold

• Depends on DKI & DKII   

– Direction

• Predicted from KI and KII as for static case

• E.g. maximum hoop stress

Not always validated*

– Crack growth rate

• Adapt Paris’ law:

• Different approaches** to evaluate Δ𝐾𝑒𝑓𝑓

– E.g. Tanaka: 
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*Pook, L. P., A failure mechanism map for mixed mode I and II fatigue crack growth thresholds. Int. J. Fracture, 1985, 28, R21-23.

**J. Qian, A. Fatemi, Mixed mode fatigue crack growth: A literature survey, Engineering Fracture Mechanics 55(6), 1996, 969-990
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Stress corrosion cracking

• A crack can grow due to the combination of stress and chemical attack

– This is not only for fatigue but also for static stress with K<KC

– It happens in particular environments

• Salt water

• Hydrogen

• Chlorides

• …

– Mainly for metals

• Steel in salt water, chloride, hydrogen

• Aluminum alloys in salt water 

Steel AISA 

4335V
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Simulation of crack propagation

• A simple method is a FE simulation where the crack is used as BCs

– The mesh is conforming with the crack lips
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Simulation of crack propagation

• A simple method is a FE simulation where the crack is used as BCs (2)

– Mesh the structure in a conforming way with the crack

– Extract SIFs Ki (see lecture on SIF)

– Use criterion on crack propagation: e.g. the maximal hoop stress criterion

• Crack growth criterion: new SIF with crack in mode I after kinking

• With crack propagation direction (kinking) obtained by

&

– If the crack propagates

• Move crack tip by Da in the q*-direction

• A new mesh is required as the crack has changed (since the mesh has to be 

conforming)

– Involves a large number of remeshing operations (time consuming)

– Is not always fully automatic

– Requires fine meshes and Barsoum elements

– Not used
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eXtended Finite Element Method

• How to get rid of conformity requirements?

• Key principles

– For a FE discretization, the displacement field

is approximated by

• Sum on nodes a in the set I (11 nodes here) 

• ua are the nodal displacements

• Na are the shape functions

• x i are the reduced coordinates

– XFEM 

• New degrees of freedom are introduced to account for the discontinuity

• It could be done by inserting new nodes (   ) near the

crack tip, but this would be inefficient (remeshing)

• Instead, shape functions are modified 

– Only shape functions that intersect the crack

– This implies adding new degrees of freedom

to the related nodes (   )
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eXtended Finite Element Method

• Key principles (2) 

– New degrees of freedom are introduced to account for the discontinuity

• J, subset of I, is the set of nodes whose shape-function

support is entirely separated by the crack (5 here)

• u*a are the new degrees of freedom at node a

– Form of Fa the shape functions related to u*a?

• Use of Heaviside’s function, and we want

+1 above and -1 below the crack

• In order to know if we are above or below 

the crack, signed-distance has to be computed

• Normal level set lsn(x i, x i*) is the signed distance between a point x i of the solid 

and its projection x i* on the crack

with H(x) = ±1 if x >< 0 

lsn(x i, x i*)
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eXtended Finite Element Method

• Key principles (3) 

– Example: removing of a brain tumor 

(L. Vigneron et al.)

– At this point

• A discontinuity can be introduced in the mesh

• Fracture mechanics is not introduced yet

– New enrichment with LEFM solution

• Zone J of Heaviside enrichment is reduced (3 nodes)

• A zone K of LEFM solution is added to the nodes

(  ) of elements containing the crack tip

• LEFM solution is asymptotic        only nodes close to crack tip can be enriched

• yb
a is the new degree b at node a (more than one see next slide)

• Yb is the new shape function b (more than one see next slide)
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eXtended Finite Element Method

• Key principles (4) 

– New enrichment with LEFM solution (2)

– Yb and  yb
a from LEFM solutions
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• Key principles (5) 

– New enrichment with LEFM solution (3)

• But

• We still have

– We have determined 4 independent shape functions Yb

eXtended Finite Element Method
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eXtended Finite Element Method

• Key principles (6) 

– New enrichment with LEFM solution (4)

• Vectors of unknowns yb and shape functions Yb are now defined

• We have 12 new degrees of freedom on the LEFM-enriched nodes

• Remark: as Y1 is discontinuous we do not need Heaviside functions for K-nodes 
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eXtended Finite Element Method

• Key principles (7) 

– How are                                evaluated?

• New level sets

– Normal level set lsn(x i, x**) is the normal 

signed distance between a point x i of the

solid and the crack tip x i**

– Tangent level set lst(x i, x**) is the tangential 

signed distance between a point x i of the 

solid and the crack tip x i**

•

lsn(x i, x**)

lst(x i, x**)
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eXtended Finite Element Method

• Crack propagation criterion

– Requires the values of the SIFs

• Using yb
a as 

was substituted by 
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eXtended Finite Element Method

• Crack propagation criterion

– Requires the values of the SIFs (2)

• A more accurate solution is to compute J

– But KI, KII & KIII have to be extracted from                                      

» Define an adequate auxiliary field uaux

» Compute  Jaux(uaux) and J s(u+uaux)

» On can show that the interaction integral (see lecture on SIFs)

» If uaux is chosen such that only Ki
aux ≠ 0, Ki is obtained directly

– Then the maximum hoop stress criterion, e.g., can be used

•

with                             &
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eXtended Finite Element Method

• Numerical example

– Crack propagation (E. Béchet)

– Advantages:

• No need for a conforming mesh (but mesh has still to be fine near crack tip)

• Mesh independency

• Computationally efficient

– Drawbacks:

• Require radical changes to the FE code
– New degrees of freedom

– Gauss integration
– Time integration algorithm
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• Edge notch specimen under cyclic loading
– Assume titanium alloy 6%Al - 4%V

• See figures below

– Cyclic loading between 
• Minimum value: 12 MPA

• Maximum value: 120 MPa

– What is the structure life ?

Exercise 1
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Half width 𝑊 [m] 0.03

Half width ℎ [m] 0.1

Thickness 𝑡 [m] 0.0125

Initial crack 𝑎0 [m] 0.003



• Initial SIF

– SIF from handbook 

• with

– For initial crack length

•

•

– 𝐾𝐼max
<< toughness so no static failure

Exercise 1: Solution
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𝐹
𝑎

𝑊
=

1.122 − 0.561
𝑎
𝑊

− 0.205
𝑎
𝑊

2
+ 0.471

𝑎
𝑊

3
− 0.190

𝑎
𝑊

4

1 −
𝑎
𝑊

𝐾𝐼 = 𝜎 𝜋𝑎𝐹
𝑎

𝑊

𝐾𝐼min
𝑎 = 0.003 m = 12 106 𝜋0.003𝐹 0.1

= 1.31 MPa ⋅ m
1
2.

Half width 𝑊 [m] 0.03

Half width ℎ [m] 0.1

Thickness 𝑡 [m] 0.0125

Initial crack 𝑎0 [m] 0.003

𝐾𝐼max
𝑎 = 0.003 m = 120 106 𝜋0.003𝐹 0.1

13.1 MPa ⋅ m
1
2.



• Assumptions
– Material properties at room temperature

– Plane strain & linear elasticity

• Initially plain strain: OK

• Initially in K-dominance zone: OK

• Plane strain at failure: OK

• K-dominance zone at failure: check later

Exercise 1: Solution
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Toughness 𝐾𝐶 [MPa · m½ ] 55

Yield 𝜎𝑝
0 [MPa] 830

𝑡 > 2.5
𝐾𝐼max

𝜎𝑝
0

2

= 0.62 mm

𝑎 > 2.5
𝐾𝐼max

𝜎𝑝
0

2

= 0.62 mm

𝑡 > 2.5
𝐾𝐶

𝜎𝑝
0

2

= 11 mm

𝑎𝑐𝑟, 𝑊 − 𝑎𝑐𝑟 >? 2.5
𝐾𝐶

𝜎𝑝
0

2

= 11 mm



• Fatigue law

– Parameters in Paris’ law

•

• For Δ𝐾 < 16MPa · m½

– 𝑚 = 7.38

• For Δ𝐾 > 16MPa · m½

– 𝑚 = 3.22

– Threshold Δ𝐾𝑡ℎ < 11 MPa · m½

•

crack propagation by fatigue

Exercise 1: Solution
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16 MPa ⋅ m1/2

8.7 10−8 m
8.7 10−8 ⋅ 𝑚−1 = 𝐶 167.38

𝐶 = 1.13 10−16

m ⋅ MPA ⋅ m −7.38

8.7 10−8 ⋅ 𝑚−1 = 𝐶 163.22

𝐶 = 1.15 10−11

m ⋅ MPA ⋅ m −3.22

𝑑𝑎

𝑑𝑁𝑓
= 𝐶 Δ𝐾𝑚

Δ𝐾𝐼 𝑎 = 0.003 m = 11.8 MPa ⋅ m
1
2.



• Critical crack length

– When is toughness reached

• with

• Resolution by iterations or graphical

Exercise 1: Solution
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x

s∞

2W
h

a

s∞

a

y

𝐹
𝑎

𝑊
=

1.122 − 0.561
𝑎
𝑊

− 0.205
𝑎
𝑊

2
+ 0.471

𝑎
𝑊

3
− 0.190

𝑎
𝑊

4

1 −
𝑎
𝑊

𝐾𝐼max
= 𝜎max 𝜋𝑎𝑐𝑟𝐹

𝑎𝑐𝑟

𝑊
= 𝐾𝐶

𝐾𝐶

𝑎𝐶𝑟 = 24.6 𝑚𝑚

– K-dominance zone at failure?

•

• Ligament too short so analysis valid up 

to 

𝑎𝑐𝑟, 𝑊 − 𝑎𝑐𝑟 >? 2.5
𝐾𝐶

𝜎𝑝
0

2

= 11 mm

𝑎𝑙𝑖𝑚 = 19 mm



• Structure life

– Paris’ law

•

• Graphical resolution 

Exercise 1: Solution
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𝑑𝑎

𝑑𝑁𝑓
= 𝐶 Δ𝐾𝑚

𝑎𝐶𝑟 = 24.6 𝑚𝑚

𝑎𝑙𝑖𝑚 = 19 𝑚𝑚

𝑁𝐹

𝑎0 = 3 𝑚𝑚

𝑁𝑓 =  𝑎0

Δ𝐾=16 𝑑𝑎′

𝐶 Δ𝐾𝑚 𝑎′
+

 Δ𝐾=16

𝑎 𝑑𝑎′

𝐶 Δ𝐾𝑚 𝑎′



• Flawed cylinder

– A piston is used to increase 

inner pressure

• From 0 to 55 MPa

– Cylinder made of

• Peaked-aged aluminum alloy

– 7075-T651

• Yield sp
0 = 550 Mpa

• Toughness KIC = 30 MPa m1/2

– Malfunction

• Cylinder burst

• Post failure analysis reveals an 

initial elliptical flaw at inner wall

– 4.5 mm long

– 1.45 mm deep

– Normal to hoop stress

– Origin of burst?

Exercise 2

L
=

 2
0

 cm

t = 1 cm

Din = 9 cm

2
c 

=
 4

.5
 m

m

a = 1.45 mm

sqqsqq
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• Stress field

– Consider thick cylinder with

• rin = 0.045 m & rout = 0.055 m

• Inner pressure p

Exercise 2: Solution
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L
=

 2
0

 cm

t = 1 cm

Din = 9 cm

2
c 

=
 4

.5
 m

m

a = 1.45 mm

sqqsqq



• SIF

– Use SIF for semi-elliptical crack in large plate

• See SIF handbook

• Geometrical effect

• Using 

– Check LEFM validity

• Initial crack                                                        ?

• At failure                                                               ?

• We need a plastic correction

Exercise 2: Solution
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2
c 

=
 4

.5
 m

m

a = 1.45 mm

sqqsqq

𝐾𝐼 =
1.12𝜎𝜃𝜃 𝜋𝑎

Ψ

𝐾𝐼 =
1.12𝜎𝜃𝜃 𝜋𝑎

Ψ
= 0.27392 𝑝 m

𝐾𝐼 𝑝 = 55 MPa = 15 MPa ⋅ m

𝑡, 𝑎0 > 2.5
𝐾𝐼

𝜎𝑝
0

2

= 1. 9 mm

𝑡 − 𝑎𝑐𝑟 > 2.5
𝐾𝐶

𝜎𝑝
0

2

= 7. 4 mm



• SIF (2)

– Use SIF for semi-elliptical crack with plastic correction

• See SIF handbook

• Geometrical effect

• Plastic correction

• Using 

– Limit load

•

• Maximum pressure in the cylinder is 55MPa                failure by fatigue

Exercise 2: Solution
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2
c 

=
 4

.5
 m

m

a = 1.45 mm

sqqsqq

𝐾𝐼 =
1.12𝜎𝜃𝜃 𝜋𝑎

𝑄



• Cyclic loading

– p from 0 to 55 Mpa

• Hoop stress from 0 to

– SIF evolution

• Assuming a/c remains constant:

• At each cycle the pressure vanishes

Exercise 2: Solution
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Δ𝐾 𝑎 = 417.42 MPa ⋅ 𝑎



• Cyclic loading

– p from 0 to 55 Mpa

– Due to initial flaw

•

• Assuming curves are valid for R=0 

• We are in Paris regime

crack propagation

– Critical crack:

•

– Life of cylinder

• Number of cycles?

Exercise 2: Solution
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Δ𝐾 𝑎 = 417.42 MPa ⋅ 𝑎

𝐾max 𝑎 = 417.42 MPa ⋅ 𝑎

𝑎𝑐𝑟 =
𝐾𝐼𝐶

417.42 MPa

2

=5.17 mm

Δ𝐾 𝑎0 = 15.89 MPa ⋅ m



• Cyclic loading (2)

– Cylinder life

•

• Assuming curves are valid for R=0 

• We are in Paris regime

• !!!Life strongly depends on the maximum pressure reached during accidents

Exercise 2: Solution
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Δ𝐾 𝑎 = 417.42 MPa ⋅ 𝑎
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