# Fracture Mechanics, Damage and Fatigue Ductile Materials & Safe Life

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Allée de la découverte 9, B4000 Liège L.Noels@ulg.ac.be





Fracture Mechanics – Ductile Materials & Safe Life

- Limit of linear elasticity
  - Safe life design



LEFM: we have assumed the existence of a K-dominance zone



- Elasto-plasticity (small deformations)
  - Beyond a threshold the material experiences irreversible deformations
  - Typical behavior at low/room temperature
    - Curves  $\sigma$ - $\epsilon$  independent of time
    - At higher temperature: creep ...
  - Yield surface

 $f(\boldsymbol{\sigma}) \leq 0 \begin{cases} f < 0: \text{ elastic region} \\ f = 0: \text{ plasticity} \end{cases}$ 

- Plastic flow
  - Assumption: deformations can be added  $d\boldsymbol{\varepsilon} = d\boldsymbol{\varepsilon}^{\mathrm{e}} + d\boldsymbol{\varepsilon}^{\mathrm{p}} \implies d\boldsymbol{\sigma} = \mathcal{H} : d\boldsymbol{\varepsilon}^{\mathrm{e}}$
  - Normal plastic flow  $d\boldsymbol{\varepsilon}^{\mathrm{p}} = d\lambda \frac{\partial f}{\partial \boldsymbol{\sigma}}$
- Path dependency (incremental equations in d)





- Dislocation motion (see previous lecture)
  - Metallic bonds \_\_\_\_
    - FCC or BCC above DBTT
  - A dislocation is characterized by
    - The Burger vector •
    - **Dislocation line** 
      - (line along which the distortion is the largest)
    - Slip plane •







© DoITPoMS, University of Cambridge









Hardening laws lacksquare



Fracture Mechanics – Ductile Materials & Safe Life

5

- Phenomenological explanations
  - Isotropic hardening
    - Dislocations creation due to plastic deformations
      - Irregularities at the grain boundaries (poly-crystalline material)
      - Irregular crystal surface (mono-crystalline material)
    - Increase of the dislocation density
    - Obstruct dislocations motion
      - Long range elastic force between dislocations of same sign
    - Macroscopic yield stress increases
      - In both tension and
      - Compression







- Phenomenological explanations (2)
  - Kinematic hardening
    - Polycrystalline metals ٠
    - 2 possible sources •
      - Dislocations accumulate (pile-up) at barriers (grain boundaries, precipitations)
        - They can move easily in backward **》** direction
        - » Yield is reduced in reverse direction
      - When strains are reversed, dislocation sources produce dislocations of opposite sign
        - Annihilation of dislocations **》**
        - Reduce the strength (as yield is **》** proportional to dislocation density)











- von Mises isotropic hardening (J2-plasticity)
  - Yield surface

$$f = \sqrt{\frac{3}{2}\mathbf{s} \cdot \mathbf{s}} - \sigma_p\left(\bar{\epsilon}^{\mathbf{p}}\right) \le 0$$

f < 0: elastic region f = 0: plasticity

**Deviatoric stress** •

$$\mathbf{s} = \boldsymbol{\sigma} - \frac{\operatorname{tr}\left(\boldsymbol{\sigma}\right)}{3}\mathbf{I}$$









0.0

- von Mises isotropic hardening (2)
  - Yield surface

$$f = \sqrt{\frac{3}{2}\mathbf{s}:\mathbf{s}} - \sigma_p\left(\bar{\epsilon}^{\mathrm{p}}\right) \le 0$$

- Deviatoric stress  $\mathbf{s} = \boldsymbol{\sigma} \frac{\operatorname{tr}(\boldsymbol{\sigma})}{3}\mathbf{I}$
- Plastic flow
  - Normal to yield surface

Inface 
$$d\boldsymbol{\varepsilon}^{\mathrm{p}} = d\lambda \frac{\partial f}{\partial \boldsymbol{\sigma}}$$

$$\begin{cases} \frac{\partial f}{\partial \mathbf{s}} = \sqrt{\frac{3}{2}} \frac{\mathbf{s}}{\sqrt{\mathbf{s}:\mathbf{s}}} = \frac{3}{2} \frac{\mathbf{s}}{\sqrt{\frac{3}{2}} \mathbf{s}:\mathbf{s}} \\ \frac{\partial \mathbf{s}}{\partial \sigma} = \mathbb{I} - \frac{1}{3} \mathbf{I} \otimes \mathbf{I} \end{cases}$$
$$\implies \frac{\partial f}{\partial \sigma} = \frac{3}{2} \frac{\mathbf{s}}{\sqrt{\frac{3}{2}} \mathbf{s}:\mathbf{s}} \implies \frac{\partial f}{\partial \sigma} : \frac{\partial f}{\partial \sigma} = \frac{3}{2}$$

$$\implies d\bar{\varepsilon}^{\rm p} = \sqrt{\frac{2}{3}} d\varepsilon^{\rm p} : d\varepsilon^{\rm p} = d\lambda$$







- von Mises isotropic hardening (2)
  - Yield surface  $f = \sqrt{\frac{3}{2}\mathbf{s} : \mathbf{s}} - \sigma_p \left(\overline{\epsilon}^{\mathbf{p}}\right) \le 0 \begin{cases} f < 0: \text{ elastic region} \\ f = 0: \text{ plasticity} \end{cases}$ 
    - Deviatoric stress  $\mathbf{s} = \boldsymbol{\sigma} \frac{\operatorname{tr}(\boldsymbol{\sigma})}{3}\mathbf{I}$

- Free energy

•  $\Psi(\boldsymbol{\varepsilon}^{e}, \, \bar{\boldsymbol{\varepsilon}}^{p}) = \frac{1}{2}\boldsymbol{\varepsilon}^{e} : \mathcal{H} : \boldsymbol{\varepsilon}^{e} + h(\bar{\boldsymbol{\varepsilon}}^{p})$  $\int \boldsymbol{\sigma} = \frac{\partial \Psi}{\partial \Psi}$ 

$$\begin{aligned} \partial \boldsymbol{\varepsilon}^e \\ \sigma_p &= \frac{\partial \Psi}{\partial \bar{\varepsilon}^p} = h' \end{aligned}$$

- Hardening law

• E.g.: 
$$\sigma_p = \sigma_p^0 + Q \left(1 - e^{-b\bar{\varepsilon}^p}\right)$$







10



- von Mises kinematic hardening ۲
  - Yield surface

 $f(\boldsymbol{\sigma}, \mathbf{X}) \leq 0 \begin{cases} f < 0: \text{ elastic region} \\ f = 0: \text{ plasticity} \end{cases}$ 

Deviatoric part of the stress tensor •

$$\mathbf{s} = \boldsymbol{\sigma} - \frac{\operatorname{tr}\left(\boldsymbol{\sigma}\right)}{3}\mathbf{I}$$

- X is deviatoric by nature
- A new yield surface is defined

Plastic flow  

$$\begin{cases}
d\varepsilon^{p} = d\lambda \frac{\partial f}{\partial \sigma} \\
\frac{\partial f}{\partial \sigma} = -\frac{\partial f}{\partial \mathbf{X}} = \frac{3}{2} \frac{\mathbf{s} - \mathbf{X}}{\sigma_{p}^{0}} \\
d\lambda = d\overline{\varepsilon}^{p} = \sqrt{\frac{2}{3}} d\varepsilon^{p} : d\varepsilon^{p}
\end{cases}$$
• Definition of strain like variable  $\mathbf{X} = \frac{2}{3} C \alpha$ 

 $f = \sqrt{\frac{3}{2} \left( \mathbf{s} - \mathbf{X} \right) : \left( \mathbf{s} - \mathbf{X} \right) - \sigma_p^0 \le 0}$ 



 $\alpha (d\alpha) = 0$ 

- von Mises kinematic hardening (2)
  - Yield surface

• 
$$f = \sqrt{\frac{3}{2} (\mathbf{s} - \mathbf{X}) : (\mathbf{s} - \mathbf{X})} - \sigma_p^0 \le 0$$

- Free energy





• The law governing the evolution of *X* 







- von Mises kinematic hardening (3)
  - Prager linear hardening flow



Armstrong-Frederick non linear hardening law



- General formulation
  - Recourse to N internal variables  $V_k$
  - Yield surface

 $f(\boldsymbol{\sigma}, V_k) \leq 0$   $\begin{cases} f < 0: \text{ elasticity} \\ f = 0: \text{ plastic flow} \end{cases}$ 

- Plastic flow
  - The representative stress state remains on yield surface

$$\implies df(\boldsymbol{\sigma}^*) = \frac{\partial f}{\partial \boldsymbol{\sigma}} : d\boldsymbol{\sigma}^* + \frac{\partial f}{\partial V_k} dV_k = 0$$

Particular cases

|                     | Internal<br>variable | Associated<br>stress |
|---------------------|----------------------|----------------------|
| Isotropic hardening | $\mathcal{E}^{p}$    | $\sigma_{\!p}$       |
| Kinematic hardening | α                    | X                    |





14



- Example: Combination of isotropic and kinematic hardening
  - Yield surface

$$f(\boldsymbol{\sigma}, \boldsymbol{\alpha}, \bar{\varepsilon}^{p}) = \sqrt{\frac{3}{2} \left( \mathbf{s} - \mathbf{X}(\boldsymbol{\alpha}) \right) : \left( \mathbf{s} - \mathbf{X}(\boldsymbol{\alpha}) \right)} - \sigma_{p}\left( \bar{\varepsilon}^{p} \right) \leq 0$$

- Free energy function

• 
$$\Psi (\varepsilon^{e}, \alpha, \bar{\varepsilon}^{p}) = \frac{1}{2} \varepsilon^{e} : \mathcal{H} : \varepsilon^{e} + \frac{1}{3} C \alpha : \alpha + h (\bar{\varepsilon}^{p})$$
  
 $\Leftrightarrow \begin{cases} \sigma = \frac{\partial \Psi}{\partial \varepsilon^{e}} \\ \mathbf{X} = \frac{\partial \Psi}{\partial \alpha} = \frac{2}{3} C \alpha \\ \sigma_{p} = \frac{\partial \Psi}{\partial \bar{\varepsilon}^{p}} = h' \end{cases}$ 

$$\sigma_1$$

Plastic flow

$$\int \left\{ \begin{aligned} d\boldsymbol{\varepsilon}^{\mathrm{p}} &= d\lambda \frac{\partial f}{\partial \boldsymbol{\sigma}} \\ \frac{\partial f}{\partial \boldsymbol{\sigma}} &= -\frac{\partial f}{\partial \mathbf{X}} = \frac{3}{2} \frac{\mathbf{s} - \mathbf{X}}{\sigma_{p} \left(\bar{\varepsilon}^{p}\right)} \end{aligned} \right.$$





Bauschinger effect

\_

- Due to kinematic hardening
- Cyclic loading







- Fatigue hardening/softening
  - The Hysteretic loop is not always directly stabilized
  - Because of changes in material structures
    - Intensity of changes decreases with cycles number
  - The material can exhibit
    - Fatigue hardening
    - Fatigue softening









• Fatigue hardening/softening with accommodation





Cyclic hardening



Fatigue hardening/softening with accommodation 



Controlled  $\Delta \sigma = cst$ 





Cyclic hardening



• Fatigue hardening/softening with accommodation



Cyclic hardening







• Fatigue hardening/softening with accommodation



Controlled  $\Delta \sigma = cst$ 





Fatigue hardening/softening with accommodation 



Controlled  $\Delta \sigma = cst$ 







• Fatigue hardening/softening with accommodation



Controlled  $\Delta \sigma = cst$ 



















## **Fatigue Hardening**

- Usually when initially low dislocation density (annealed materials)
- Example: poly-crystalline iron under low amplitude cyclic loading

#### 0 cycle

#### 200 cycles

2000 cycles



- Dislocations density increases until saturation
- Saturation obtained after a few hundred cycles and no further detectable changes



Mirko Klesnil, Petr Lukáš « Fatigue of metallic materials », Elsevier, 1992







## • Fatigue softening

- Usually when initially high dislocation density (cold worked materials)
- Example: poly-crystalline iron under high amplitude cyclic loading



#### 100 cycles

1000 cycles



- Dislocations localize to form cells (hardening process)
- If increase of amplitude (at constant  $\Delta$  deformation)
  - Cells break down to form persistent slip bands (PSB)
  - Localization of slips in PSB
  - Softening
  - Origin of cracks







- Fatigue hardening followed by softening
  - High amplitude cyclic loading



• Combination of structural and cyclic loading





- Examples
  - Pressure vessels
  - Structures subjected to flow/wind with  $\sigma_m$  &  $\varDelta\sigma$  due to
    - Nominal stress
    - Flow fluctuation
- Stabilized state?







- Combination of structural and cyclic loading under controlled  $\boldsymbol{\sigma}$ 
  - Elastic adaptation
    - For reduced  $\varDelta\sigma$
    - Isotropic or/and linear kinematic hardening
    - Adaptation in 1 cycle



- For slightly higher  $\varDelta\sigma$
- Isotropic and (linear) kinematic hardening
- Adaptation after a few cycles





- Combination of structural and cyclic loading under controlled  $\boldsymbol{\sigma}$ 
  - Elastic adaptation
    - For reduced  $\varDelta\sigma$
    - Isotropic or/and linear kinematic hardening
    - Adaptation in 1 cycle



- For slightly higher  $\varDelta\sigma$
- Isotropic and (linear) kinematic hardening
- Adaptation after a few cycles





- Combination of structural and cyclic loading under controlled  $\boldsymbol{\sigma}$ 
  - Elastic adaptation
    - For reduced  $\varDelta\sigma$
    - Isotropic or/and linear kinematic hardening
    - Adaptation in 1 cycle



- For slightly higher  $\varDelta\sigma$
- Isotropic and (linear) kinematic hardening
- Adaptation after a few cycles






- Combination of structural and cyclic loading under controlled  $\boldsymbol{\sigma}$ 
  - Elastic adaptation
    - For reduced  $\varDelta\sigma$
    - Isotropic or/and linear kinematic hardening
    - Adaptation in 1 cycle



- For slightly higher  $\varDelta\sigma$
- Isotropic and (linear) kinematic hardening
- Adaptation after a few cycles







- Combination of structural and cyclic loading under controlled  $\boldsymbol{\sigma}$ 
  - Elastic adaptation
    - For reduced  $\varDelta\sigma$
    - Isotropic or/and linear kinematic hardening
    - Adaptation in 1 cycle

- For slightly higher  $\varDelta\sigma$
- Isotropic and (linear)  $\sigma_m$  kinematic hardening
- Adaptation after a few cycles







- Combination of structural and cyclic loading under controlled  $\boldsymbol{\sigma}$ 
  - Elastic adaptation
    - For reduced  $\varDelta\sigma$
    - Isotropic or/and linear kinematic hardening
    - Adaptation in 1 cycle

- For slightly higher  $\varDelta\sigma$
- Isotropic and (linear)  $\sigma_m$  kinematic hardening
- Adaptation after a few cycles







- Combination of structural and cyclic loading under controlled  $\boldsymbol{\sigma}$ 
  - Elastic adaptation
    - For reduced  $\varDelta\sigma$
    - Isotropic or/and linear kinematic hardening
    - Adaptation in 1 cycle

- For slightly higher  $\varDelta\sigma$
- Isotropic and (linear)  $\sigma_m$  kinematic hardening
- Adaptation after a few cycles







- Combination of structural and cyclic loading under controlled  $\sigma$ 
  - **Elastic adaptation** 
    - For reduced  $\Delta \sigma$ •
    - Isotropic or/and • linear kinematic hardening
    - Adaptation in 1 cycle ٠

- For slightly higher  $\Delta \sigma$ •
- Isotropic and (linear)  $\sigma_m$ • kinematic hardening
- Adaptation after • a few cycles









- Combination of structural and cyclic loading under controlled  $\boldsymbol{\sigma}$ 
  - Elastic adaptation
    - For reduced  $\varDelta\sigma$
    - Isotropic or/and linear kinematic hardening
    - Adaptation in 1 cycle

- For slightly higher  $\varDelta\sigma$
- Isotropic and (linear)  $\sigma_m$  kinematic hardening
- Adaptation after a few cycles









- Combination of structural and cyclic loading under controlled  $\sigma$  (2)
  - Accommodation
    - Large  $\varDelta \sigma$
    - Can be modeled by linear kinematic hardening (accommodation after 1 cycle)





2021-2022

43

• Combination of structural and cyclic loading under controlled  $\sigma$  (2)

 $\sigma_m$ 

- Accommodation
  - Large  $\varDelta \sigma$
  - Can be modeled by linear kinematic hardening (accommodation after 1 cycle)





2021-2022



- Combination of structural and cyclic loading under controlled  $\sigma$  (2)
  - Accommodation
    - Large  $\Delta\sigma$
    - Can be modeled by linear kinematic hardening (accommodation after 1 cycle)







• Combination of structural and cyclic loading under controlled  $\sigma$  (2)

 $\sigma$ 

 $\sigma_m$ 

- Accommodation
  - Large  $\varDelta \sigma$
  - Can be modeled by linear kinematic hardening (accommodation after 1 cycle)

 $\Delta \sigma$  $2\sigma_{\!p}{}^0$  $X^2$  $\sigma_p^{0}$  $X^2$ t Е 2'  $\Delta \sigma$  $2\sigma_{\!p}{}^0$  $X^2$  $\sigma_{p}$  $\sigma_{m}$  $X^{2'}$ E<sup>p</sup>

 $\sigma$ 





• Combination of structural and cyclic loading under controlled  $\sigma$  (2)

 $\sigma$ 

 $\sigma_m$ 

- Accommodation
  - Large  $\varDelta \sigma$
  - Can be modeled by linear kinematic hardening (accommodation after 1 cycle)

 $\Delta \sigma$  $2\sigma_{\!p}{}^0$ X Max  $\sigma_p^{0}$  $X^{\mathrm{mi}}$ Е  $\sigma$  $\Delta \sigma$  $2\sigma_{\!p}{}^0$ X Max  $\sigma_{p}$  $\sigma_{m}$  $\Delta \varepsilon^{\mathsf{p}^*}$  $X^{\min}$ E<sup>p</sup>

 $\boldsymbol{\sigma}$ 



2021-2022



• Combination of structural and cyclic loading under controlled  $\sigma$  (3)

 $\sigma'$ 

 $\sigma_m$ 

- Ratcheting (or Rochet)
  - Large  $\Delta \sigma \& \sigma_m \neq 0$
  - Threatens life
  - Non-linear kinematic hardening leads to ratcheting

$$d\mathbf{X} = \frac{2}{3}Cd\boldsymbol{\varepsilon}^p - \gamma \mathbf{X}d\bar{\varepsilon}^p$$

If  $|X|^{\min} \neq |X|^{\max}$ curves of back-stress are not reversible







• Combination of structural and cyclic loading under controlled  $\sigma$  (3)

 $\sigma'$ 

 $\sigma_m$ 

- Ratcheting (or Rochet)
  - Large  $\Delta \sigma \& \sigma_m \neq 0$
  - Threatens life
  - Non-linear kinematic hardening leads to ratcheting

$$d\mathbf{X} = \frac{2}{3}Cd\boldsymbol{\varepsilon}^p - \gamma \mathbf{X}d\bar{\varepsilon}^p$$

If  $|X|^{min} \neq |X|^{Max}$ curves of back-stress are not reversible







• Combination of structural and cyclic loading under controlled  $\sigma$  (3)

2

 $\sigma'$ 

 $\sigma_{m}$ 

- Ratcheting (or Rochet)
  - Large  $\Delta \sigma \& \sigma_m \neq 0$
  - Threatens life
  - Non-linear kinematic hardening leads to ratcheting

$$d\mathbf{X} = \frac{2}{3}Cd\boldsymbol{\varepsilon}^p - \gamma \mathbf{X}d\bar{\varepsilon}^p$$

If  $|X|^{min} \neq |X|^{max}$ curves of back-stress are not reversible









• Combination of structural and cyclic loading under controlled  $\sigma$  (3)

 $\sigma$ 

 $\sigma_{m}$ 

- Ratcheting (or Rochet)
  - Large  $\Delta \sigma \& \sigma_m \neq 0$
  - Threatens life
  - Non-linear kinematic hardening leads to ratcheting

$$d\mathbf{X} = \frac{2}{3}Cd\boldsymbol{\varepsilon}^p - \gamma \mathbf{X}d\bar{\varepsilon}^p$$

If  $|X|^{\min} \neq |X|^{\max}$ curves of back-stress

are not reversible









• Combination of structural and cyclic loading under controlled  $\sigma$  (3)

 $\sigma$ 

 $\sigma_m$ 

- Ratcheting (or Rochet)
  - Large  $\Delta \sigma \& \sigma_m \neq 0$
  - Threatens life
  - Non-linear kinematic hardening leads to ratcheting

$$d\mathbf{X} = \frac{2}{3}Cd\boldsymbol{\varepsilon}^p - \gamma\mathbf{X}d\bar{\varepsilon}^p$$

If  $|X|^{\min} \neq |X|^{\max}$ curves of back-stress are not reversible









- Combination of structural and cyclic loading under controlled  $\sigma$  (4)
  - Bree diagram
    - For a given material •
    - Remarks ٠
      - Non-linear kinematic hardening always predicts ratcheting
        - (if  $\sigma_m \neq 0$ )
      - Linear kinematic hardening never predicts ratcheting
    - Laws should be enhanced
      - Threshold
      - Chaboche (1991)













# • Different stages

- Example: IN100 &  $T = 1000^{\circ}$ C under different constant tensile stresses
- Primary creep





2021-2022



- Different stages
  - Example: IN100 &  $T = 1000^{\circ}$ C under different constant tensile stresses
  - Primary creep





- Different stages
  - Example: IN100 &  $T = 1000^{\circ}$ C under different constant tensile stresses
  - Primary creep







- Primary creep
  - Dislocations accumulate (pile-up) at barriers (grain boundaries ...)
    Hardening
  - Primary creep can exist at temperature below 30%  $T_m$ 
    - E.g. annealed 304 stainless steel





Michael E. Kassner, Kamia Smith, Low temperature creep plasticity, Journal of Materials Research and Technology, Volume 3, Issue 3, 2014, Pages 280-288, https://doi.org/10.1016/j.jmrt.2014.06.009.





- Secondary creep: dislocation slip and climb
  - If atoms
    - Have enough energy (Temperature and strain energy)
    - Are in close packed lattice

They self-diffuse and fill vacancies

- This corresponds for a blocked dislocation
  - To climb normal to its slip plane by atoms self-diffusion
  - To lie on an unobstructed slip plane
  - To move and to annihilate with a dislocation of opposite sign









Material behavior: Creep

- Secondary creep
  - Constant  $\varepsilon^p$
  - Norton law \_\_\_\_

• 
$$\dot{\bar{\varepsilon}}^p = \left(\frac{\sigma}{\lambda}\right)^n$$

Lemaître law \_

2021-2022

• 
$$\dot{\bar{\varepsilon}}^p = \left(\frac{\sigma}{K(\bar{\varepsilon}^p)^{\frac{1}{m}}}\right)^n$$









# • Tertiary creep

- Grain boundary sliding is activated
- Formation of voids under shearing



Nimonic 80A, 1023 K and 154 MPa









## Material behavior: Creep

- Recovery: strain driven test
  - Quenched AU4G alloy
  - At 200 °C





2021-2022



• Effect of creep during cyclic loading under constant  $\varDelta\sigma$ 



- Holding time
- Temperature
- Frequency





- Example of creep during cyclic loading under constant  $\varDelta\sigma$ 
  - HP turbine blade
    - Long working phases at high temperature (axial loading)
    - Long rest phases at room T°
    - Inter-crystalline fracture mode and voids













- Effect of creep during cyclic loading under constant  $\Delta \varepsilon$ 
  - IN 100 Super alloy, first cycle with holding time, 900°C \_



- Kinematic hardening ٠
- Visco-plasticity







## Material behavior: Creep

 $\sigma$ Model of creep during cyclic loading  $\sigma_{v}(\overline{e^{p}})$  Stabilized cycle During holding time  $|\sigma_p(\vec{e^p})|$  $\overline{\mathscr{B}}^p$  increases (so  $\sigma_p$ )  $\vec{e}^p$  decreases (so  $\sigma_v$ ) • Ę X  $\alpha$  increases Model requires (Isotropic) Kinematic hardening Visco-plasticity Lemaître & Chaboche Use a dissipation potential  $\Omega\left(\sqrt{\frac{3}{2}}\left(\mathbf{s}-\mathbf{X}\left(\boldsymbol{\alpha}\right)\right):\left(\mathbf{s}-\mathbf{X}\left(\boldsymbol{\alpha}\right)\right)-\sigma_{p}\left(\bar{\varepsilon}^{p}\right)\right)$ 

If <0, there should not be a plastic flow  $\implies$  If  $\bullet$ >0:  $<\bullet> = \bullet$ , if not  $<\bullet> =0$ 

$$\implies \Omega = \frac{K}{n+1} \left\langle \frac{\sqrt{\frac{3}{2} \left( \mathbf{s} - \mathbf{X} \right) : \left( \mathbf{s} - \mathbf{X} \right)} - \sigma_p \left( \bar{\varepsilon}^p \right)}{K} \right\rangle^{n+1}$$



66



- Visco-plasticity model
  - Plastic flow direction & amplitude?
    - Dissipation potential

$$\implies \dot{\boldsymbol{\varepsilon}}^p = \frac{3}{2} \dot{\bar{\varepsilon}}^p \frac{\mathbf{s} - \mathbf{X}}{\sqrt{\frac{3}{2} \left( \mathbf{s} - \mathbf{X} \right) : \left( \mathbf{s} - \mathbf{X} \right)}}$$





- Visco-plasticity model
  - Plastic flow direction & amplitude

• 
$$\Omega = \frac{K}{n+1} \left\langle \frac{\sqrt{\frac{3}{2} \left( \mathbf{s} - \mathbf{X} \right) : \left( \mathbf{s} - \mathbf{X} \right)} - \sigma_p \left( \bar{\varepsilon}^p \right)}{K} \right\rangle^{n+1}$$

• Hardening laws

$$\begin{cases} \dot{\mathbf{X}} = \frac{2}{3}C\dot{\boldsymbol{\varepsilon}}^p - \gamma \mathbf{X}d\dot{\boldsymbol{\varepsilon}}^p \\ \sigma_p = \sigma_p^0 + Q\left(1 - e^{-b\bar{\boldsymbol{\varepsilon}}^p}\right) \end{cases}$$

- Parameters are temperature dependent
- Normality  $\dot{\boldsymbol{\varepsilon}}^p = \frac{\partial \Omega}{\partial \boldsymbol{\sigma}}$

$$\Omega^{*>0}$$

$$\implies \dot{\varepsilon}^p = \left\langle \frac{\sqrt{\frac{3}{2} \left( \mathbf{s} - \mathbf{X} \right) : \left( \mathbf{s} - \mathbf{X} \right)} - \sigma_p}{K} \right\rangle^r$$

• Relation viscous stress - strain rate

$$\implies J_2 = \sqrt{\frac{3}{2} \left( \mathbf{s} - \mathbf{X} \right) : \left( \mathbf{s} - \mathbf{X} \right)} = \sigma_p^0 + Q \left( 1 - e^{-b\bar{\varepsilon}^p} \right) + \left( K \bar{\varepsilon}^{p\frac{1}{n}} \right) \sigma_p$$

 $\sigma_1$ 





### Introduction to damage





Fracture Mechanics – Ductile Materials & Safe Life





## Introduction to damage

- Failure mechanism by fatigue
  - Crack nucleation at persistent slip bands
  - Stage I crack growth
    - Along slip planes
    - Stage II crack growth
      - Across several grains
        - Along a slip plane in each grain,
        - Straight ahead macroscopically
      - Striation of the failure surface: corresponds to the cycles







nechanics

Fracture

Fracture Mechanics - Ductile Materials & Safe Life

70

### Introduction to damage

- Failure mechanism by creep
  - Inter-granular void formation







Interaction between damage sources





Safe-life design: evaluation of a resulting damage






#### Introduction to damage

- Model (1D) F Change of elastic properties • Virgin section  $S \implies \sigma_{xx}^{\text{virgin}} = \frac{F}{S} = \sigma_{xx}$ • Damage of the surface is defined as  $D = \frac{S^{\text{holes}}}{S}$ So the effective (or damaged) surface is actually  $\hat{S} = S - S^{\text{holes}} = (1 - D) S^{\text{holes}}$ And so the effective stress is  $\hat{\sigma}_{xx} = \frac{F}{S(1-D)} = \frac{\sigma_{xx}}{1-D}$  Apparent macroscopic stress Resulting deformation
  - Hooke's law is still valid if it uses the effective stress  $\varepsilon_{xx} = \frac{\hat{\sigma}}{E} = \frac{\sigma_{xx}}{E(1-D)}$
  - So everything is happening as if Hooke's law was multiplied by (1-D)
  - Isotropic 3D linear elasticity  $\boldsymbol{\sigma} = (1 D) \mathcal{H} : \boldsymbol{\varepsilon}$
  - Failure criterion:  $D=D_C$ , with  $0 < D_C < 1$
- But how to evaluate D in ductility, safe-life design etc?





- Evolution of damage *D* for isotropic elasticity
  - Equations
    - Stresses  $\boldsymbol{\sigma} = (1 D) \mathcal{H} : \boldsymbol{\varepsilon}$
    - Example of damage criterion  $f(\varepsilon, D) = (1 D) \frac{\varepsilon : \mathcal{H} : \varepsilon}{2} Y_C \le 0$ 
      - $Y_C$  is an energy related to a deformation threshold
    - There is a time history  $f\dot{D} = 0$ 
      - Either damage is increased if f = 0
      - Or damage remains the same if f < 0
  - Example for  $Y_c$  such that damage appears for  $\varepsilon = 0.1$





• Interaction between damage sources









- Failure mechanism
  - Plastic deformations prior to (macroscopic) failure of the specimen
    - Dislocations motion > void nucleation around inclusions > micro cavity coalescence > crack growth
  - How to account for these complex effects?







Fracture Mechanics - Ductile Materials & Safe Life



• Ductile failure mechanism



2021-2022

Fracture Mechanics – Ductile Materials & Safe Life



- Ductile failure mechanism (2)
  - Void nucleation (dislocations, particle/matrix decohesion, particle cracking...)



Void growth of existing voids (because of plastic incompressibility)



- Void coalescence (crack growth by shrinking of ligaments between voids)









- Ductile failure: complex coalescence scenarios
  - What does happen inside a « ductile » material under large strain ?







- Ductile failure: complex coalescence scenarios (2)
  - What does happen inside a « ductile » material under large strain ?









• Ductile failure: complex coalescence scenarios (3)

0

- Localization band perpendicular to the main loading direction
  - Shrinking of ligaments between voids

D

Internal necking coalescence

Micro shear bands inclined to the main loading direction

- Joining primary voids
- Possibly with secondary voids nucleating in these micro bands



(Weck & Wilkinson 2008)



- Ductile failure: stress-state dependent fracture strain
  - Stress triaxiality dependent

$$\eta = \frac{p'}{\sigma_{\rm eq}} \in [-\infty \infty]$$
  $p' = \frac{\operatorname{tr}(\boldsymbol{\sigma})}{3}$   $\sigma_{\rm eq} = \sqrt{\frac{3}{2}\operatorname{dev}(\boldsymbol{\sigma}) : \operatorname{dev}(\boldsymbol{\sigma})}$ 

• Lode dependent  

$$\theta = \frac{1}{3} \arccos\left(\frac{27J_3}{2\sigma_{eq}^3}\right)$$
  $J_3 = \det\left(\det\left(\boldsymbol{\sigma}\right)\right)$ 





(Bai & Wierzbicki 2010)



F

# • Gurson's model, 1977

- Assumptions
  - Given a rigid-perfectly-plastic material with already existing spherical microvoids
  - Extract a statistically representative sphere *V* embedding a spherical microvoid
    - Porosity: fraction of voids in the total volume and thus in the representative volume:

$$f_V = \frac{V_{\text{void}}}{V} = 1 - \frac{\hat{V}}{V}$$

with  $\hat{V}$  the material part of the volume

Material rigid-perfectly plastic lastic deformations negligible

- Define
  - Macroscopic strains and stresses:  $\varepsilon$  &  $\sigma$
  - Microscopic strains and stresses:  $\hat{\varepsilon} \& \hat{\sigma}$
  - Link the 2 scales







- Gurson's model, 1977 (2)
  - Macroscopic strains

$$\dot{\boldsymbol{\varepsilon}} = \frac{1}{V} \int_{V} \hat{\boldsymbol{\varepsilon}} dV = \frac{1}{V} \int_{\hat{V}} \dot{\hat{\boldsymbol{\varepsilon}}} dV + \frac{1}{V} \int_{V_{\text{void}}} \dot{\hat{\boldsymbol{\varepsilon}}} dV$$

- Stresses
  - In  $\hat{V}$  microscopic stresses  $\hat{\sigma}$  are related to the microscopic deformations  $\hat{\varepsilon}$

In terms of an energy rate 
$$\hat{\sigma} = rac{\partial W}{\partial \hat{\epsilon}}$$

• As the energy rate has to be conserved  $\dot{W}(\dot{\varepsilon}) = \frac{1}{V} \int_{\hat{V}} \dot{\hat{W}}(\dot{\hat{\varepsilon}}) dV$ 

$$\implies \boldsymbol{\sigma} = \frac{\partial \dot{W}}{\partial \dot{\boldsymbol{\varepsilon}}} = \frac{1}{V} \int_{\hat{V}} \frac{\partial \dot{\hat{V}}}{\partial \dot{\hat{\boldsymbol{\varepsilon}}}} : \frac{\partial \dot{\hat{\boldsymbol{\varepsilon}}}}{\partial \dot{\boldsymbol{\varepsilon}}} dV = \frac{1}{V} \int_{\hat{V}} \hat{\boldsymbol{\sigma}} : \frac{\partial \dot{\hat{\boldsymbol{\varepsilon}}}}{\partial \dot{\boldsymbol{\varepsilon}}} dV$$

- Gurson solved these equations
  - For a rigid-perfectly-plastic microscopic behavior
  - Which leads to a new macroscopic yield function depending on the porosity

$$f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p^0}\right)^2 + 2f_V \cosh \frac{\operatorname{tr}(\boldsymbol{\sigma})}{2\sigma_p^0} - f_V^2 - 1 \le 0$$







- Gurson's model, 1977 (3)
  - Shape of the new yield surface  $f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_n^0}\right)^2 + 2f_V \cosh \frac{\operatorname{tr}(\boldsymbol{\sigma})}{2\sigma_n^0} f_V^2 1 \le 0$



- Normal flow  $\dot{\boldsymbol{\varepsilon}^{\mathrm{p}}} = \dot{\lambda} \frac{\partial f}{\partial \boldsymbol{\sigma}}$
- What remains to be defined is the evolution of the porosity  $f_V$







- Gurson's model, 1977 (4)
  - Evolution of the porosity  $f_V$ \_
    - Volume of material  $\hat{V} = (1 f_V) V$  is constant as •
      - Elastic deformations are neglected
      - Plastic deformations are isochoric



Void porosity and macroscopic volume variation are linked ۲

$$0 = (1 - f_V) \, dV - df_V V \implies \dot{f}_V = (1 - f_V) \, \frac{\dot{V}}{V}$$

But volume variation can be expressed from the deformation tensor ٠  $\frac{dV}{V} = \operatorname{tr}\left(d\boldsymbol{\varepsilon}\right) = \operatorname{tr}\left(d\boldsymbol{\varepsilon}^{\mathrm{p}}\right) \quad \text{as elastic deformations are neglected}$ 







- Gurson's model, 1977 (5)
  - Eventually
    - The porosity is actually not an independent internal variable

• Yield surface 
$$f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p^0}\right)^2 + 2f_V \cosh \frac{\operatorname{tr}(\boldsymbol{\sigma})}{2\sigma_p^0} - f_V^2 - 1 \le 0$$

• Normal flow 
$$\dot{\boldsymbol{\varepsilon}^{\mathrm{p}}} = \dot{\lambda} \frac{\partial f}{\partial \boldsymbol{\sigma}}$$
 with  $\dot{f}_{V} = (1 - f_{V}) \operatorname{tr} \left( \dot{\boldsymbol{\varepsilon}^{\mathrm{p}}} \right)$ 

- Assumptions were
  - Rigid perfectly-plastic material
  - Initial porosity (no void nucleation)
  - No voids interaction
  - No voids coalescence
- More evolved models have been developed to account for
  - Hardening
  - Voids nucleation, interactions and coalescences







- Hardening
  - Yield criterion  $f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p^0}\right)^2 + 2f_V \cosh \frac{\operatorname{tr}(\boldsymbol{\sigma})}{2\sigma_p^0} f_V^2 1 \le 0$  remains valid but one has to account for the hardening of the matrix  $\Longrightarrow \sigma_p^0 \to \sigma_p(\hat{\varepsilon}^p)$ 
    - In this expression, the equivalent plastic strain of the matrix  $\hat{\varepsilon}^p$  is used instead of the macroscopic one  $\bar{\varepsilon}^p$
  - Values related to the matrix and the macroscopic volume are dependent as the dissipated energies have to match  $\implies (1 - f_V) \sigma_p (\hat{\varepsilon}^p) \dot{\varepsilon}^p = \boldsymbol{\sigma} : \dot{\boldsymbol{\varepsilon}}$
- Voids nucleation
  - Increase rate of porosity results from
    - Matrix incompressibility
      Creation of new voids  $\hat{V} \operatorname{cst}$   $\hat{f}_V = (1 f_V) \operatorname{tr} (\hat{\varepsilon}^p) + \dot{f}_{\operatorname{nucl}}$ For the nucleation rate can be modeled as strain controlled  $\Longrightarrow \dot{f}_{\operatorname{nucl}} = A(\hat{\varepsilon}^p) \dot{\varepsilon}^p$







- Voids interaction
  - 1981, Tvergaard
    - In Gurson model a void is considered isolated
    - The presence of neighboring voids decreases the maximal loading as the stress distribution changes

$$f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p\left(\hat{\varepsilon}^{\mathrm{p}}\right)}\right)^2 + 2f_V \cosh\frac{\operatorname{tr}\left(\boldsymbol{\sigma}\right)}{2\sigma_p\left(\hat{\varepsilon}^{\mathrm{p}}\right)} - f_V^2 - 1 \le 0$$
$$\int f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p\left(\hat{\varepsilon}^{\mathrm{p}}\right)}\right)^2 + 2qf_V \cosh\frac{\operatorname{tr}\left(\boldsymbol{\sigma}\right)}{2\sigma_p\left(\hat{\varepsilon}^{\mathrm{p}}\right)} - q^2 f_V^2 - 1 \le 0$$

• With 1 < q < 2 depending on the hardening exponent







- Voids coalescence
  - 1984, Tvergaard & Needleman
    - When two voids are close  $(f_V \sim f_C)$ , the material loses capacity of sustaining the loading
    - If  $f_V$  is still increased, the material is unable to sustain any loading

$$f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p\left(\hat{\varepsilon}^{\mathrm{p}}\right)}\right)^2 + 2f_V \cosh\frac{\operatorname{tr}\left(\boldsymbol{\sigma}\right)}{2\sigma_p\left(\hat{\varepsilon}^{\mathrm{p}}\right)} - f_V^2 - 1 \le 0$$

Π

$$\int f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p\left(\hat{\varepsilon}^{\mathrm{p}}\right)}\right)^2 + 2qf_V^*\cosh\frac{\operatorname{tr}\left(\boldsymbol{\sigma}\right)}{2\sigma_p\left(\hat{\varepsilon}^{\mathrm{p}}\right)} - q^2f_V^{*2} - 1 \le 0$$

• with 
$$f_V^* = \begin{cases} f_V & \text{if } f_V < f_C \\ f_C + \frac{\frac{1}{q} - f_C}{f_F - f_C} (f_V - f_C) & \text{if } f_V > f_C \end{cases}$$







• Softening response (2)



Interaction between damage sources









#### Before fracture mechanics

- Design with stresses lower than
  - Elastic limit ( $\sigma_p^0$ ) or
  - Tensile strength ( $\sigma_{\rm TS}$ )
- ~1860, Wöhler

 $\sigma$ 

- Technologist in the German railroad system
- Studied the failure of railcar axles
  - Failure occurred
    - After various times in service
    - At loads considerably lower than expected



- Failure due to cyclic loading/unloading
- « Total life » approach
  - Empirical approach of fatigue











- Life of a structure depends on
  - Minimal & maximal stresses:  $\sigma_{\min}$  &  $\sigma_{\max}$  & mean stress:  $\sigma_m = (\sigma_{\max} + \sigma_{\min})/2$
  - Amplitude:  $\sigma_a = \Delta \sigma/2 = (\sigma_{max} \sigma_{min})/2$
  - Plastic increment  $\overline{\Delta e}$
  - Load Ratio:  $R = \sigma_{\min} / \sigma_{\max}$ 
    - See lecture on crack propagation
  - Under particular environmental conditions (humidity, high temperature, ...):

creep

- Frequency of cycle
- Shape of cycle (sine, step, ...)





## Safe-life design

- No crack before a determined number of cycles: life of the structure
  - At the end of the expected life the component is changed even if no failure has occurred
  - Emphasis on prevention of crack initiation
  - Approach theoretical in nature
    - Assumes initially crack free structures
- Components of rotating structures vibrating with the flow cycles (blades)
  - Once cracks form, the remaining life is very short due to the high frequency of loading









### Introduction to safe-life design

- How to estimate the time-life?
  - Based on empirical approaches
    - Macroscopic material responses (fatigue tests ...)
    - Does not directly compute the microstructure evolution
  - Requires
    - Accurate knowledge of response fields
      - Stress
      - Stress concentration
        - » Factor K<sub>t</sub>
      - Plastic strain
      - Temperature
    - Accounting for non-linear material behavior
    - Use of security factor
      - As low as possible





Fracture Mechanics – Ductile Materials & Safe Life



#### Introduction to safe-life design

## Inaccurate estimation of plastic strain

- Low-cycle fatigue of a blade from stage 1 of the high-pressure turbine
- Cracking at stress concentration in the internal cooling passages
- Blade failed and impacted other blades, which separated from platform

Failed blade in-situ

Failed HPT

blade at position 21



Source: Australian Transport Safety, Engine Failure, Boeing Co 717-200, VH-VQA, Near Melbourne, Victoria, Report – Final, <u>http://www.atsb.gov.au/publications/investigation\_reports/2004/aair/aair200402948.aspx</u>

2021-2022

Intact blade platform

Fracture Mechanics - Ductile Materials & Safe Life

HPT 1



- First kind of total life approach: « stress life » approach
  - For high cycle fatigue
    - Structures experiencing (essentially) elastic deformations
    - Life > 10<sup>4</sup> cycles
  - Fatigue limit
    - For  $\sigma_a < \sigma_e$  (endurance limit): infinite life (>10<sup>7</sup> cycles)
    - For  $\sigma_a > \sigma_e$ , finite life
    - Materials with fatigue limit
      - Mild/low strength steel
      - Ti-Al-Mg alloys
      - With  $\sigma_e \sim [0.35; 0.5] \sigma_{TS}$
    - Materials without fatigue limit
      - Al alloys
      - Mg alloys
      - High strength steels
      - Non-ferro alloys







- First kind of total life approach: « stress life » approach (2)
  - Life of structure
    - Assumptions
      - $-\sigma_m = 0$  &
      - $N_f$  identical cycles before failure
    - For  $\sigma_a < \sigma_e$  (endurance limit): infinite life (>10<sup>7</sup> cycles)
    - For  $\sigma_a > \sigma_e$ , finite life
    - With  $\sigma_e \sim [0.35; 0.5] \sigma_{TS}$
    - 1910, Basquin Law

$$\frac{\Delta\sigma}{2} = \sigma_a = \sigma_f' \left(2N_f\right)^b$$

- $\sigma_{f}$  fatigue coefficient (mild steel  $T_{amb}$  : ~ [1; 3] GPa)
- *b* fatigue exponent (mild steel  $T_{amb}$ : ~ [-0.1; -0.06])
- Parameters resulting from experimental tests
- If endurance limit exists: use  $N_f = 10^7$  and  $\sigma_a = \sigma_e$  in Basquin Law







• First kind of total life approach: « stress life » approach (3)







• First kind of total life approach: « stress life » approach (4)



- $n_i$  cycles of constant amplitude lead to a damage  $D_i = \frac{n_i}{N_{fi}}$
- 1945, Miner-Palmgreen law

- At fracture: 
$$D = \sum_{i} D_{i} = D_{c}$$

- Does not account for the sequence in which the cycles are applied
- Only if low variation in cycles
- Only if pure fatigue damage





- Second kind of total life approach: « strain life » approach
  - For low cycle fatigue
    - Structures experiencing (essentially)
      - Large plastic deformations
      - Stress concentration
      - (High temperatures)

- For  $N_f$  identical cycles before failure

• 1954, Manson-Coffin  $\frac{\Delta \bar{\varepsilon}^p}{2} = \varepsilon'_f (2N_f)^c$ 



- $\varepsilon_{f}$ : fatigue ductility coefficient ~ true fracture ductility (metals)
- c : fatigue ductility coefficient exponent ~ [-0.7, -0.5] (metals)
- plastic strain increment during the loading cycles  $\Delta \bar{\varepsilon}^p$







General relation



• Interaction between damage sources









## Introduction to damage approach

# • Experiments



• Damage (in 1D)

- Fatigue 
$$dD_f = \left[1 - (1 - D_f)^{1 - \frac{1}{b}}\right]^{\alpha(\sigma_m, \sigma_{\max})} \left(\frac{\sigma_a}{\sigma'(\sigma_m, \sigma_{TS})}\right)^{-\frac{1}{b}} 2dN$$

- Ductility 
$$dD = \left\langle \frac{\sigma - \sigma_D}{(1 - D)S} \right\rangle^s \frac{d\sigma}{S}$$

Material, temperature dependent, parameters obtained from 1D experiments

- Creep (Kachanov-Rabotnov) 
$$\dot{D} = \left( \overbrace{A}^{\sigma} (1-D) \overbrace{k(\sigma)}^{r} \right)$$





- 1952, De Havilland 106 Comet 1, UK (1)
  - First jetliner, 36 passengers, pressurized cabin
    - 1954, January, flight BOAC 781 Rome-Heathrow
      - Plane G-ALYP disintegrated above the sea
      - After 1300 flights



- Total life approach failed
  - Fuselages failed well before the design limit of 10000 cycles





## Design using total life approach

- 1952, De Havilland 106 Comet 1, UK (2)
  - 1954, August, retrieve of the ALYP roof
    - Origin of failure at the communication window
    - Use of square riveted windows
    - Punched riveting instead of drill riveting
      - Presence of initial defects



FIG. 12. PHOTOGRAPH OF WRECKAGE AROUND ADF AERIAL WINDOWS-G-ALYP.

- The total life approach accounts for crack initiation in smooth specimen but does not account for inherent defects
  - The initial defects of the fuselage tested against fatigue could have hardened after the initial static test load, which was not the case with the production planes
  - Life time can be improved by
    - "Shot-peening" : surface bombarded by small spherical media
      - Residual stresses of compression in the surface layer
      - Prevents crack initiation
    - Surface polishing (to remove cracks)






### Design using total life approach

# Economically inefficient

- PW F100 (F15 & F16)
- Using total life approach against LCF
  - All disks replaced when statistically •
    - 1 disk had a fatigue crack (*a*<0.75 mm)
  - Studies indicate that at least 80% • of parts replaced have at least a full order of magnitude of remaining fatigue life
  - Extra cost for US Air force: > \$50 000 000 /year •



http://www.grc.nasa.gov/WWW/RT/RT1996/5000/5220bo1.htm

http://ocw.mit.edu/courses/materials-science-and-engineering/3-35-fracture-and-fatigue-fall-2003/lecture-notes/fatigue crack growth.pdf (Subra Suresh)







- Economically inefficient (2)
  - Air-force starts using Retirement For Cause approach in 1986
    - Periodic nondestructive evaluation to assess the damage state of components
    - Components with no detectable cracks: returned to service
  - Allows
    - Parts with low life
      - Detected and discarded before they can cause an incident
    - Parts with high life
      - Used to their full potential
  - Basic to an RFC program \_\_\_\_
    - Calculation of crack-growth rates under the expected service loads (mechanical and thermal)
    - The results are used to define safe-use intervals between required (nondestructive) inspections



http://www.grc.nasa.gov/WWW/RT/RT1996/5000/5220bo1.htm

http://ocw.mit.edu/courses/materials-science-and-engineering/3-35-fracture-and-fatigue-fall-2003/lecture-notes/fatigue crack growth.pdf (Subra Suresh)







- « Damage tolerant design »
  - Assume cracks are present from the beginning of service
  - Characterize the significance of fatigue cracks on structural performance
    - Control initial crack sizes through manufacturing processes and (non-destructive) inspections
    - Estimate crack growth rates during service (Paris-Erdogan)
    - Schedule conservative inspection intervals (e.g. every so many cycles)
    - Verify crack growth during these inspections
    - Predict end of life  $(a_f)$
    - Remove old structures from service before predicted end-of-life (fracture) or implement repair-rehabilitation strategy
  - Non-destructive inspections
    - Optical
    - X-rays
    - Ultrasonic (reflection on crack surface)







# Exercice 1

- Shot-peened metallic material
  - Properties before shot-peening
    - Young modus E = 210 GPa
    - HCF parameters  $\sigma_f = 1100$  MPa, b = -0.08
    - LCF parameters  $\varepsilon_f = 1$ , c = -0.63
  - Due to shot-peening
    - Compressive residual stress of 250 MPa
    - Tensile strength  $\sigma_{TS} = 500$  Mpa
  - What is the life improvement due to shoot-peening?









Before shot peening 

$$\frac{\Delta \bar{\varepsilon}}{2} = \frac{\sigma_f'(2N_f)^b}{E} + \varepsilon_f'(2N_f)^c$$

$$\implies \frac{\Delta\bar{\varepsilon}}{2} = \frac{1100}{210000} (2N_f)^{-0.08} + (2N_f)^{-0.63} = 5.24 \, 10^{-3} \, (2N_f)^{-0.08} + (2N_f)^{-0.63}$$

After shot peening 

- Residual stress acts like a compressive mean stress  $\implies \Delta \sigma \rightarrow \Delta \sigma \left(1 - \frac{\sigma_m}{\sigma_{TS}}\right)$ 

$$\implies \frac{\Delta \bar{\varepsilon}}{2} = \frac{\left(1 - \frac{\sigma_m}{\sigma_{TS}}\right) \sigma'_f (2N_f)^b}{E} + \varepsilon'_f (2N_f)^c$$

$$\implies \frac{\Delta \bar{\varepsilon}}{2} = \left(1 + \frac{250}{500}\right) \frac{1100}{210000} (2N_f)^{-0.08} + (2N_f)^{-0.63}$$

$$\implies \frac{\Delta \bar{\varepsilon}}{2} = 7.86 \, 10^{-3} (2N_f)^{-0.08} + (2N_f)^{-0.63}$$







Comparison



- Improve mainly the HCF regime





### References

### References

- Mechanics of Solid Materials. Jean Lemaître, Jean-Louis Chaboche, Cambridge University press, 1994
- Plasticity and viscoplasticity under cyclic loadings. Jean-Louis Chaboche, ATHENS – Course MP06 – 16 – 20 March 2009





