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Table 1: Properties of the cylinder
4#" b TTT under uniaxial tension
Steel
Internal radius Ri [m] 1.20
External radius Ro [m] 1.32
Crack a [m] 0.03
Young E [GPa] 210
S Yield 5,° [MPa] 620
Poisson v [-] 0.3
Hardening exponent n [-] 10
Hardening parameter o [—] 1
Toughness K, [MPavm] 150
) Tearing Tr [-] 10
i Load 0% 350 MPa
"y 22

Figure 1: cylinder under uniaxial tension

We consider a cylinder under uniaxial tension, see Figure 1, with the dimensions reported in
the Table 1, and submitted to a loading o*, see Table 1. The results of a tension test on the
material are also reported in this table. The material follows a power law
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In the elastic regime, the stress intensity factor K; is given as
K, = c*Vma F (%,g) : (2)

where the correction F is tabulated in the non-linear fracture mechanics handbook, see also
Table 2.

In the elasto-plastic regime, the limit load, is given by
Py =\/2_§7TO_1?(R3_R3) with R, = R; + a. ©)

The ratio P/Po, with P = 0®m(R2 — R?) the applied load, is used to evaluate the fraction
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of the plastic zone
1 [n-11 (k;\?
= L[t (K .
=3, [n - (ag> for plane strain state, (5)

that is used to evaluate the effective crack length
Qegr = a + nTp. (6)
The plastic part of the J-integral is obtained from
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where the function hs is tabulated in the non-linear fracture mechanics handbook, see Table 4-
Table 5.
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You are requested, considering the loading force ¢*:

A) To evaluate whether the crack will propagate using the Linear Elastic Fracture
Mechanics framework;

B) To evaluate whether the crack will propagate using the Small Scale Yielding solution
(Linear Elastic Fracture Mechanics framework corrected with the effective crack size
(6));

C) To evaluate whether the crack will propagate using the Non-Linear Fracture Mechanics
framework;

D) In the case of crack propagation, to assess the crack growth stability using the Non-
Linear Fracture Mechanics framework;

E) To comment on the validity of the developments.

Table 2: F,V4,V, for the cylinder under uniaxial tension

F, V. and V, for & circumferentially
cracked cylinder in tension.

afbt = 1/8 | a/b = 1/4 | a/b = 1/2 | a/b = 3/4

¥ 1.16 1.26 1.61 2.15

b/R. = 1/5 ¥ 1.49 1.67 2,43 3.76
1 vi 0.117 0.255 0.743 1.67

F 1.19 1.32 1.82 2,49

b/R, = 1/10 V 1.55 1.76 2.84 4.72
i vi 0.180 0.290 0.885 2.09

F 1.22 1.36 2.03 2.89

B/R. = 1/20 V 1.59 1.81 3,26 5.99
1 v; 0.220 0.315 1.04 2.74
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Table 4: hq, h,, hs for the cylinder under uniaxial tension, % =1

h,, b

5

and h, for & circumferentially cracked

nzylindara in tension with bIRi = 1/5.

n=1 n=32 n=23 n=25 n=17 n= 10
hl 3.78 5.00 5,94 7.54 8.99 11.1
‘l'l2 4.56 5.55 6.37 7.7% 9.10 11.0
I:m3 0.369 | 0.700 1.07 1.96 3.04 4.94
hl 3,88 4.95 5.64 6.49 6.94 7.22 -
]12 4.40 5.12 5.57 6.07 6.28 6.30
I:l3 0.673 1.25 1.79 2.79 3.61 4,52
hl 4.40 4.78 4.59 3.79 3.07 2.34
]12 4,36 4.30 3.n1 3.00 2,26 1.55
hE! 1.33 1.93 2.21 2.23 1.94 1.46
111 4.12 3.03 2.23 1.546 1.30 1,11
hz 3.46 2,19 1.36 0.638 0.436 0.325
h.'i 1.54 1.39 1.04 0.686 0.508 0.366
Table 3: hy, hy, hs for the cylinder under uniaxial tension, % = %
h_, ].-.2 and h, for a circumferentially cracked
1 cylinder” in tension with I:u.l'l?Li = 1/10.
n=1]n=2]n=3]|n=35]|n=17]|n=10
h 4.00 5.13 6.09 7.69 9.09 11.1
ny [ 4.71 | 5.63 | 6.45 | 7.85 | 9.00 |10.9
]13 0.548 0.733 1.13 2.07 3.16 5.07
hl 4.17 5.35 6.09 6.93 7.30 7.41
_‘u2 4. 58 5.36 5.84 6.31 6 .44 6.31
ha 0.757 1.35 1.93 2,96 3.78 4 .60
hl 5.40 5.90 5.63 4.51 3.49 2.47
h 4,99 5.01 4,59 3.48 2.56 1.67
k2 | 1.555 | 2.26 | 2.59 |2.57 |2.18 | 1.56
h1 5.18 3.78 2.57 1,59 1.31 1.10
h2 4,22 2.79 1.67 0.725 0.48 0.300
ha 1.86 1.73 1.26 0.775 0.561 0.360
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Table 5: hq, h,, h; for the cylinder under uniaxial tension, % =21
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and h, for a circumferentially cracked
cylinder”in tension with hIRi = 1/20.

20

n=1 n=2 n=3 n=25 n=1"17 o= 10
4 .04 5.23 6.22 T.82 9.19 11.1
4 .82 5.69 6.52 7.90 9,11 10.8
0.680 0.759 1,17 2,13 3.23 5.12
4.38 5.68 6 .45 7.29 T.62 7.65
4.71 5.56 6 .05 6.51 6.59 6.39
0.818 1.43 2.08 3.10 3.91 4.69
6.55 7.17 6 .89 5.46 4,13 2.77
5.67 5.717 5.36 4.08 2.97 1.88
1.80 2.59 2.99% 2.08 2.50 1.74
6 .64 4,87 3.08 1.68 1.30 1,07
5.18 3.57 2.07 0.808 0.472 0.316
2.306 2.18 1.53 0.772 0.494 0.330
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Figure 2: Schematics of the DCB test.

Table 6: Geometry of the DCB test.

DCB sample
h [mm] 2.5
L [mm] 250
Thickness 20
t [mm]
Manufactured crack 60
ad [mm]
Initial crack 65
ao [mm]

In order to determine the mode | critical energy release rate G¢ related to composite laminate
delamination, a Double Cantilever Beam (DCB) test is performed, see the geometry reported
in Figure 2 and Table 6. The specimens were cut from an autoclave consolidated unidirectional
laminate panel at Odeg, with an initially delaminated zone of length aq obtained using adhesive.

The sample is first loaded up to crack initiation before being unloaded so that the delamination
test is performed from a new initial crack length ap whose crack front is not affected by the
manufacturing process. When applying the displacement 6 on the specimen, the evolution of

the loading P is recorded as well as the evolution of the crack lengt
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Figure 3: Delamination test: (left) evolution of the loading in terms of the displacement; (right) evolution of the
crack length in terms of the displacement
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The double cantilever beam theory leads to an expression of the displacement ¢&'in terms of the

load P as

8Pa3
= Zens (1)

where E is an equivalent Young’s modulus along the beam axis.

You are requested to evaluate the evolution of the mode I critical energy release rate Gc) related
to the delamination of the composite laminate, with respect to the crack advance. To do so, you
are invited to follow the following steps:

A) Using Eq. (1), show that the critical energy release rate Gci can be expressed in terms
of the thickness t, P reached during crack growth, the crack length a, and a parameter «
defined as

()
- ()

a
B) For the different (5) recorded values in Figure 3, and using the expression of A) compute
successively
a. Thevalue ¢;
b. The critical energy release rate Gc.
C) What can you conclude from these values evolutions with the crack size, with in
particular
a. Why is it convenient to express the critical energy release rate Ge) in terms of
the parameter « ?
b. How can you explain the evolution of the parameter « with the crack length a?
c. How can you explain the evolution of Gci with the crack length a, what is the
relevant value for a practical application?
D) Using the toughness locus represented by Figure 3, evaluate the critical energy release
rate Gei directly from the figure information and from the thickness t. In particular
a. Justify theoretically your approach;
b. Evaluate the critical energy release rate Gci directly from the figure by
considering two discrete recorded values (2 out of 5) of your choice;
c. Compare to the previously computed values.
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