

<u>Fracture mechanics, Damage</u> <u>& Fatigue (MECA0058-1)</u> <u>January 2022</u>

First question

Figure 1: Compact Test Specimen (CTS)

Stee h [m]

	Steel
<i>h</i> [m]	0.036
<i>a</i> [m]	0.02
<i>W</i> [m]	0.08
Thickness t [m]	0.03
Toughness K _{IC}	150
$[MPa.m^{1/2}]$	
Young E [GPa]	210
Yield σ_{ρ}^0 [MPa]	400
Poisson v [-]	0.3
Power law α [-]	1
Power law <i>n</i> [-]	10
Tearing T_R [-]	25

A compact test specimen (CTS) is submitted to a loading Q, see Figure 1. The displacement at the loading pins is denoted by u, and the crack mouth opening is denoted by v_m . The CTS is made of steel, see material properties in Table 1. The steel material follows the power law

$$\sigma_e = \sigma_p^0 \left(\frac{E\varepsilon}{\alpha \sigma_p^0}\right)^{\frac{1}{n}} \tag{1}$$

In the elastic regime, following the norm ASME E399-90, the evolution of the crack mouth opening $v_{m,e}$, and of the stress intensity factor *K* in terms of the loading force *Q* and of the crack size *a*, were calibrated using the finite element method.

For the crack mouth opening, one has in elasticity

$$\begin{cases} U = \frac{1}{1 + \sqrt{\frac{E'tv_{m,e}}{Q}}} \\ \frac{a}{W} = 1 - 4.5U + 13.157U^2 - 172.551U^3 + 879.944U^4 - 1514.671U^5 \end{cases}$$
(2)

and

$$\frac{v_{m,e}}{Q} = \frac{1}{E't} \left[\frac{19.75}{\left(1 - \frac{a}{W}\right)^2} \right] \left[0.5 + 0.192 \frac{a}{W} + 1.385 \left(\frac{a}{W}\right)^2 - 2.919 \left(\frac{a}{W}\right)^3 + 1.842 \left(\frac{a}{W}\right)^4 \right]$$
(3)

For the stress intensity factor, one has in elasticity

$$K_{I} = \frac{Q}{tW^{\frac{1}{2}}} \quad \frac{\left(2 + \frac{a}{W}\right) \left(0.886 + 4.64 \frac{a}{W} - 13.32 \left(\frac{a}{W}\right)^{2} + 14.72 \left(\frac{a}{W}\right)^{3} - 5.6 \left(\frac{a}{W}\right)^{4}\right)}{\left(1 - \frac{a}{W}\right)^{\frac{3}{2}}} \tag{4}$$

In the elasto-plastic regime, the limit load in plane strain is given by

$$Q^{0} = 1.455\sigma_{p}^{0}(W-a)t\left[\sqrt{\left(\frac{2a}{W-a}\right)^{2} + \frac{4a}{W-a} + 2} - \left(\frac{2a}{W-a} + 1\right)\right]$$
(5)

The ratio Q/Q^0 , with Q the applied load, is used to evaluate the fraction

$$\eta = \frac{1}{2} \frac{1}{1 + \left(\frac{Q}{Q^0}\right)^2},\tag{6}$$

of the plastic zone

$$r_p = \frac{1}{3\pi} \left[\frac{n-1}{n+1} \right] \left(\frac{\kappa_I}{\sigma_p^0} \right)^2 \text{ for plane strain state,}$$
(7)

that is used to evaluate the effective crack length

$$a_{\rm eff} = a + \eta r_p. \tag{8}$$

The plastic part of the crack mouth opening displacement reads

$$v_p = \frac{\alpha \sigma_p^0}{E} a h_2 \left(\frac{a}{W}, n\right) \left(\frac{Q}{Q^0}\right)^n \tag{9}$$

and the plastic part of the J-integral reads

$$J_p = \frac{\alpha \sigma_p^{0^2}}{E} (W - a) h_1 \left(\frac{a}{W}, n\right) \left(\frac{Q}{Q^0}\right)^{n+1}$$
(10)

The function h_1 and h_2 are tabulated in the non-linear handbook and are reported in Table 2.

Table 2: Tabulated plastic coefficient for the CTS h_1 , h_2 and h_3 for the compact specimen in plane strain.

	• 1	n = 1	n = 2	n = 3	n = 5	n = 7	n = 10	n = 13	n = 16	n = 20
a/b = 1/4	h h1 h2 h3	2.23 17.9 9.85	2.05 12.5 8.51	1.78 11.7 8.17	1.48 10.8 7.77	1.33 10.5 7.71	1.26 10.7 7.92	1.25 11.5 8.52	1.32 12.6 9.31	1.57 14.6 10.9
a/b = 3/8	h 1 12 13	2.15 12.6 7.94	1.72 8.18 5.76	1.39 6.52 4.64	0.970 4.32 3.10	0.693 2.97 2.14	0.443 1.79 1.29	0.276 1.10 0.793	0.176 0.686 0.494	0.098 0.370 0.266
a/b = 1/2	h	1.94	1.51	1.24	0.919	0.685	0.461	0.314	0.216	0.132
	h2	9.33	5.85	4.30	2.75	1.91	1.20	0.788	0.530	0.317
	h3	6.41	4.27	3.16	2.02	1.41	0.888	0.585	0.393	0.236
a/b = 5/8	h	1.76	1.45	1.24	0.974	0.752	0.602	0.459	0.347	0.248
	h2	7.61	4.57	3.42	2.36	1.81	1.32	0.983	0.749	0.485
	h3	5.52	3.43	2.58	1.79	1.37	1.00	0.746	0.568	0.368
a/b = 3/4	h	1.71	1.42	1.26	1.033	0.864	0.717	0.575	0.448	0.345
	h2	6.37	3.95	3.18	2.34	1.88	1.44	1.12	0.887	0.665
	h3	4.86	3.05	2.46	1.81	1.45	1.11	0.869	0.686	0.514
$a/b \rightarrow 1$	^h 1	1.57	1.45	1.35	1.18	1.08	0.950	0.850	0.730	0.630
	^{h2}	5.39	3.74	3.09	2.43	2.12	1.80	1.57	1.33	1.14
	^h 3	4.31	2.99	2.47	1.95	1.79	1.44	1.26	1.07	0.909

You are requested

- A) To evaluate the force *Q* leading to crack propagation considering the Linear Elastic Fracture Mechanics framework;
- B) To evaluate the force Q leading to crack propagation considering the Small Scale Yielding solution (Linear Elastic Fracture Mechanics framework corrected with the effective crack size (8));
- C) Considering that the force *Q* found in B) is applied to the sample, using the Non-Linear Fracture Mechanics framework, to evaluate the total J integral and to conclude on the crack initiation;
- D) Considering that the force Q found in B) is applied to the sample, using the Non-Linear Fracture Mechanics framework, to assess the crack growth stability;
- E) To comment on the validity of the developments.

Second question

Figure 2: Two-beam system

Two beams of the same material, see Figure 2, with Young modulus *E* and Poisson ratio ν , and with respective symmetric cross sections of inertia I_1 and I_2 , are welded on top of each other on their width *b*. The two beams deformations are unconstrained on a surface $a \times b$ and each beam extremity is submitted to a bending moment *M* yielding deflection angles θ_1 and θ_2 , respectively for each beam.

You are requested

- A) To evaluate the internal energy of the system subjected to the loading M in terms of I_1 , I_2 , b, M, E, a, and to deduce the energy release rate of the system in terms of I_1 , I_2 , b, M, E, a;
- B) To evaluate the compliance of the system subjected to the loading M in terms of I_1 , I_2 , b, E, a, and to deduce the energy release rate of the system in terms of I_1 , I_2 , b, M, E, a;
- C) To evaluate the stress intensity factor of the system;
- D) To discuss the stability of the crack;
- E) In the case of rectangular cross sections $h_1 \times b = 0.01 \times 0.02 \text{ m}^2$ and $h_2 \times b = 0.005 \times 0.02 \text{ m}^2$, for the values of E = 71 GPa, $\nu = 0.22$, a = 0.25 mm and a critical stress intensity factor of 30 MPa $\cdot \text{m}^{\frac{1}{2}}$, to evaluate the maximum bending moment M that can be applied.

Reminder of beam bending theory

For a beam under pure bending (constant bending moment M), see Figure 3:

1) The curvature κ is constant and is related to the neutral axis deflection u and to the bending moment M through

$$\frac{1}{\kappa} = \frac{\partial^2 u(x)}{\partial x^2} = \frac{M}{EI} = cst \tag{1}$$

where E is the Young's modulus and I the cross-section inertia.

2) The deflection angle reads

$$\theta(x) = \frac{\partial u(x)}{\partial x} \tag{2}$$

3) The inertia with the **origin** taken at the **section center of inertia,** reads

$$I = \int_{A} z^2 dz dy; \qquad (3)$$

 The stress distribution of a symmetric profile of uniform Young modulus, with the origin taken at the section center of inertia, reads

$$\sigma_{xx} = \frac{Mz}{l} \qquad (4)$$

5) The internal energy **per unit beam length** of a symmetric profile of uniform Young's modulus reads

Figure 3: Beam under pure bending

$$e_{int} = \frac{M^2}{2EI} \tag{5}$$