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Section 1

INTRODUCTION

1.1 _BACKGROUND

The structural integrity of nuclear steam supply systems is presently assured by
designs that adhere to the ASME Boiler and Pressure Vessel Code and various regu-
latory standards. The requirements imposed by these codes and standards are
based on linear elastic fracture mechanics (LEFM) concepts. LEFM strictly
applies only when the material behavior is dominantly elastic and the fracture
response, brittle., In much or all of the working temperature regime of nuclear
systems, however, the material is being stressed above the brittle—to—ductile
tranq&tion temperature where the fracture response is ductile and the material
capable of considerable plastic deformation. LEFM provides comservative fracture
analyses for these conditions, with the net result that desigms are penalized by
not taking advantage of the material’s full load carrying capabilities. Such
design penalties are not unique to the nuclear industry, as the identical condi-
tions prevail in others, notably power gemeration, chemical plant and aircraft

propulsion,

Recent work in elastic—plastic fracture mechanics has demonstrated that more
realistic measures of fracture behavior and design margin can be obtained through
the use of elastic—plastic analyses. A number of key developments have occurred
over the past several years in this field. References [1-1] - [1-10] are cited

as representative of expressing these developments.

The developers of elastic—plastic fracture mechanics have been successful in
identifying parameters for characterizing the ductile fracture process, develop-
ing experimental techniques for assessing fracture resistance‘;nd defining
methods for fracture analysis. However, the calculations necessary to apply the

_ developed methodology require very sophisticated amalysis, usually accomplished
with the aid of advanced finite element methods. This is expensive, time—

consuming and requires a high degree of expertise to implement. It clearly




represents a major obstacle to the potential user of elastic—plastic fracture

mechanics concepts.

To‘overcome the above difficulties, which would greatly reduce the value and gen—
eral applicability of elastic—plastic fracture mechanics, the present program was
undertaken to develop an engineering approach. This approach will permit frac—
ture evaluations of flawed structures to be carried out by personnel who are not
specialists in fracture mechanics or inelastic analysis. The evaluations will
not require any finite element analysis, rather only desk top calcmlatiomns and
simple graphical procedures. The net result is an inexpensive approach which is

simple to employ for engineering design work,

1.2 _FRACTURE ANALYSIS CONSIDERATIONS

Fracture analysis in the elastic—plastic regime involves a number of complica—
tions not present in the elastic regime. Foremost are the inherent nonlineari-—
ties in the material deformation and large geometry changes. A further complica—
tion is the fact that there is a significant amount of crack tip.blunting prior
to initiation and stable crack extension prior to final fracture., This contrasts
sharply with the brittle mode of fracture (such as cleavage) in which the crack
initiation and rapid crack propagation events are essentially coincident. A
final complication in ductile fracture analysis involves the possibility for

-mixed mode separation: that is, propagation in both flafaand slant modes.

The approach for ductile fracture analysis developed in this work will addreés
all of thg issues discussed above except for the mixed mode fracture pdssibility.
It is restgicted at present to the analysis of flat, ductile tearing type of
fracture, sﬁgh as would occur in thick-walled pressure vessels. The various
stages of thefductile fracture process which can be quantified are illustrated

schematically in Fig. 1-1 and enumerated below:

1. Blunting of the initially sharp crack
2. Crack initiation
3. Siow (stable) crack growth

4. Unstable crack growth.

The instability point in the ductile fracture process is highly dependent on the
loading system. For a load—controlled system in which the load is monotomically
increasing, the attainment of the maximum load carrying capability of the cracked
structure represents the onset of unstable crack propagation, since any further
applied load increment will result in rapid crack propagation. For a
displacement—controlled situation, instability need not develop upon the attain—
ment of the maximum load capacity of the flawed structure. Imnstability may occur
at some point beyond maximum load or may not develop at all. The load-controlled
and displacement—controlled situations represent the extremes of structure and
system compliance. The more general situation involves a compliance between
these extremes. The present approach will permit the user to incorporate the

system compliance in the instability analysis.

1.3 _THE ENGINEERING APPROACH

The engineering approach is based on quantifying the various stages of ductile
fracture process described above through the crack tip characterizing parameter,
J-integral [1-1]. The analytical foundations and limitations for employment of
the J—integral in ductile fracture analysis are described in Section 2 of this
report. Also included therein is a detailed description of how J is incorporated
in the formation of the engineering approach. In summary the approach employs

the following principal elements:

1. A handbook-style compilation of J-integral solutions for fully plas—
tic geometries containing cracks., The compilation also inecludes
solutions for the crack—mouth opening and load—point displacements.

2. An estimation procedure which enables the construction of elastic—
plastic solutions (crack driving force estimates) for cracked
geometries through the combination of results from the handbook for
fully plastic conditions and existing elastic solutioms.

3. Simple methods for predicting crack initiation, stable crack growth
and instability by combining the crack driving force estimates with
a resistance curve determined from standard specimen tests.

The catalogue of fully plastic solutions includes various laboratory specimen
geometries and a number of common structural configurations. The specimens
include the center—cracked plate, double—edge cracked plate, single—edge cracked
plate (tension and bending) and the compact specimen., These solutions are tabu—

lated for both plane stress and plane strain. The structural configurations
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include cylinders with axial and circumferential cracks, and a two-dimensional
model of a mnozzle cormer flaw, A special incompressible finite element method is

employed to develop the fully plastic solutioms.

The estimation procedure essentially combines the elastic and the fully plastic
solutions to produce the elastic—plastic estimates, as illustrated in Fig. 1-2.
Numerous verification studies have been completed in which the estimation pro-
cedure solutions are compared with experimental data and full finite element
crack solutions. In all cases examined, the estimation procedure produced solu-

tions with sufficient accuracy.

The J-integral crack driving force obtained from the estimation procedure is unsed
tbgether with the experimentally determined material J-resistance curve to
predict crack initiation, stable growth and instability in a flawed structure.
Several different analysis diagrams are customarily generated. These are
referred to as the "crack driving force diagram,"” the "stability assessment
diagram' and the "failure assessment diagram.” The crack driving force diagram
allows ome to analyze in detail all stages of the fracture process, from initia-
tion to instability. The remaining two are specialized: the stability assess—
ment diagram defines regions of loading where stable and unstable behavior exist
and the failure assessment diagram allows one to perform a gumick aﬁélysis to
determine whether or not a fracture problem exists, The methodology used in this

report is described in Fig. 1-3,
1.4 _REPORT STRUCTURE

The body of the report is divided into seven sections. The first to follow, Sec—
tion 2, cové&; the theoretical foundations which form the basis of the engineer—
ing approach.&:The J-integral and the concept of J—controlled crack growth are
defined. Defiﬁition is also given for stability analysis in terms of the J—
integral based tearing modulus. The theoretical bases for deriving the fully
plastic solutions, the estimation procedure, and the various fracture analysis
diagrams are briefly explained. The material in Section 2 is supplemented by

Appendix A, which provides considerably more detail on estimation formmlae.

Sections 3, 4 and 5 contain the fully plastic solutions obtained to date: Section
3 provides the solutions for specimen geometries, Section 4 for cylindrical

geometries and Section 5 for the model of the nozzle cormer flaw. Sections 4 and

5 also contain elastic solutions developed in this work because they are not

readily available in the literature. The solutions are presented in tabular form
in each section and in graphical form in Appendix B. Each of the sections pro—
vides technical details for constructing the fully plastic soluations and estima—

tion formulae specific to individual configurations.

The last three sections of the report, 6, 7 and 8, present more detail on con~
structing the various fracture analysis diagrams as well as a number of examples
demonstrating their use. A number of the examples are used to demonstrate verif-—
ication of the engineering approach. Section 6 covers the crack driving force
diagra2‘,8ect10n 7 the stability assessment diagram and Section 8 the failure

assessment diagram.

Many users of the handbook may not need to, or wish to, understand all of the
theoretical foundations and limitations of the approach. This being the case,
the reading of much of Chapter 2 can be omitted. Use of the fully plastic solu-—
tions requires reading omnly Subsections 2.3, 2.4 and 2.5, and the introduction of
the sections where the fully plastic solutions are tabulated. For construction
of the various fracture analysis diagrams, the user should read through Section

6, 7 or 8, whichever is appropriate.
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Section 2
- THEORETICAL BACKGROUND

2.1 _INTRODUCTORY REMARKS

Three recent developments in elastic—plastic fracture mechanics have made the

development of an engineering approach practical. These include the following:

1. Identification of J or COD as suitable characterizing parameters for
ductile fracture, and the development of a resistance curve approach
based on these parameters for crack growth predictions.

2. The development of an elastic—plastic estimation procedure for
cracked bodies.

3. The development of an incompressible finite element suitable for
fully plastic calculations.

The use of the J-integral [2-1, 2-2] for characterizing crack initiation in duc~—
tile materials under large—scale yielding conditions was proposed by Begley and
Landes [2-3]. The suggestion that a relationship exists between the J-integral
and the amount of stable crack growtﬁ was made in studies by Rice [2-4], Paris,
et al. [2-5]1, Hutchinson and Paris [2-61 and Shih, deLorenzi and Andrews [2-7].
Considerable investigation of this possibility has since ensued. Our own work
under EPRI Project RP601-2 [2-8] demonstrated such a relationship. Analyses and
tests indicated that both the onset of crack extension and amount of crack exten—
sion are independent of section size and initial crack lemgth when certain res—
trictions are enforced. These restrictions will be'defined in the discussions to

follow.

The elastic-plastic estimation procedure derives from the work of Shih and
Hutchinson [2-9, 2~101, Bucci, et al. [2-11] and Rice, et al., [2-12]. The idea
is to estimate the elastic—plastic solutions by interpolating in a suitable
fashion between the fully plastic solutions and the elastic solutions. The elas-
tic solutions are of course already widely tabulated in existing handbooks. The

estimation procedure provides the methodology for obtaining fracture parameters



pertinent to the elastic—plastic conditions normally encountered in flawed com-
ponents, The present approach is based on the estimation procedure developed in
References [2-9, 2-10].

The concept that fully plastic crack solutions are scalable with respect to
applied load originated from the work of Goldman and Hutchinson [2-13]1. The
development of an incompressible element [2-14 — 2-17] has made it feasible to
accurately and economically make calculations for cracked bodies in the fully
plastic range., (The technical details of these developments are omitted from
this report, but can be found in the references cited.) In the present work,
this finite element was used to develop fully plastic plane strain, plane stress

and axially symmetric solutions for a number of cracked geometries.

The basic technical approach is amplified in the subsections to follow. Details

are presented on the following points:

1. Definition of the J—integral.

2. Restrictions on the application of J in analyzing crack extension,
3. Definition of the tearing modulus for stability analysig.

4. Development of fully plastic solutions.

5. Development of the estimation procedure,

6. Construction of the crack driving force diagrami(

7. Construction of the stability assessment diagram.

8. Construction of the failure assessment diagram,

2.2 _TECHNICAL BASIS FOR THE ENGINEERING APPROACH

The engineering approach is formulated with the J—integral serving as the crack
tip characterizing parameter. Employment of the approach in elastic— plastic
fracture analysis assumes the concept of J—controlled crack growth, The theoret—

ical foundations for J and J—controlled growth are reviewed below.

2.2.1 Crack Tip Parameters

The characterization of near tip stress and strain fields by the J-integral is
analogous to the use of the stress intensity factor K as the characterizing
parameter in linear elastic fracture mechanics. The works of Hutchinson [2-18]
and Rice and Rosengren [2-19] revealed that, for stationary cracks, the stresses
and strains in the vicinity of the crack tip under yielding conditions varying

from small—scale to fully plastic may be represented by

1/n+1

. - [.__E_{_.] 5 (o, m)
ij ol 2 ij
[+3
]

(2-1)

g, = 8 —irgl——— Ei.(e, n)
J c I r J
° ]

J = J-integral,
E = elastic modulus,
e, r = ¢rack tip coordinates (see Fig. 2-1),

= known dimensionless functions of the circumferential position
and the hardening exponent n,

I = constant which is a function of n, and

It

€, co} n yield strain, yield stress and strain hardening exponent,
respectively, in the pure power stress—strain law as given in

Eq. (2-2) below.

Iy (2-2)

In the above a is a material constant. In Eq. (2-1), the J-integral is the

amplitude of the stress and strain singularity: the latter is often referred to

as the "HRR singularity.” J is formally defined by the path independent line
integral [2-1, 2-21: '




J = J}anl - 6ij nj ni, 1)ds (2-3)

where T is any counterclockwise contour encircling the crack tip (Fig. 2-1), u,
i

is the displacement vector, n, is the outward unit normal to I and ds is the

length of the line element.

The crack tip field equations (Eq. (2-1)) can also be expressed in terms of the
crack tip opening displacement. If the crack tip opening displacement, & _, is
defined as the opening distance where 45° 1lines intercept the crack faces as

jllustrated in Fig. 2-2, J and Bt are linked by the relationmnship

_ J
St = dn;" (2-4)
o
%
where dn is a tabulated function of if-and n [2-20]1. Substituting this relation-

ship into Eq. (2-1) will show the singularity in terms of 8£.

When the HRR field encompasses the fracture process zone, the parameters J and 8t
are natural candidates for characterizing fracture. Thus equal values of J mean
equal conditions imposed on the crack—tip region (independent of structure type,
loading, crack length and extent of plastic deformation) as long‘a; Eq. (2-1)
describes the stress and strain fields around the crack tip.

Under small-scale yielding conditions the plastic zomne isxsmall compared to the
crack length and other relevant geometric dimensions, so that the elastic singu-—
larity or stresS*intensity factor (K) field surrounds the plastic zone., More
specifical}y, the K field is a good approximation to the actual fields ;n a

region surfopnding the crack tip. The elastic fields are given by

) K «~
c,, = c..(0)
o fome M
(2-5)
e, = S ~i.(9)
J 2nr J

It is noted from Egs. (2-1) and (2-5) that J characterizes the near—tip stresses

and strains in the plastic zone as K does in the elastic zone. When small-scale

yielding prevails, J and K are related by

2
7 (2-6)

m'ﬁ

where E' = E for plane stress and

for plane strain (v is Poisson's
2
(1 -+v")

ratio).

The small—scale yielding concept is the basis for linear elastic fracture mechan—
jcs. The K field characterization is only asymptotically correct, meaning that
the basis for LEFM is increasingly violated as the load increases. Under large—
scale yielding conditions, thefe is no elastic K field and Eq. (2-5) does mnot
characterize the crack—tip fields. However, the HRR singularity still prevails

at the crack tip.

When the region of dominance of the HRR field is large enough to include the
fracture process zone, the J—integral at the jnitiation of crack growth, denoted

by T can be regarded as a material property. Fimnite element studies have been

Ic’
carried out [2-21, 2221 in an attempt to establish requirements for such a con—
dition to exist. Initiation of the crack growth process will occur when the

applied J equals the material fracture toughmess JIc’ expressed mathematically as

Y(a, P) =7 (2~T)

Ic

2.2.2 J-Controlled Crack Growth

In crack growth situations, the near—crack tip field is far more complex than in
the stationary case, To date there is no complete description of the stress and
strain fields ahead of thé extending crack. Some key features have evolved from
a few of the studies conducted to date [2-23 — 2-27]. Because of the distinctly
nonproportional plastic deformation and the strain-path dependence of elastic—
plastic stress—strain relations, the deformation at the tip of an extending crack
is very different from that associated with a stationary crack. The irreversible
plastic strains near the tip do not refocus at the tip of the growing crack;
hence it is necessary to impose additional deformation on the material to main—
tain a concentrated strain field at the extending crack tip. The additional
deformation required to maintain the appropriate level of strain concentration at

the tip of a growing crack is the source of stable crack growth,
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An expression for the incremental strains during crack growth recently forwarded
by Hutchinson and Paris [2-6] serves as a useful model for discussing crack
growth mechanics and explaining the concept of J—controlled growth., The expres—
sion was derived assuming the deformation theory of plasticity. For an ideally

plastic material, the expression is given by

1 da

_ 1 a7 _
de,, = — e o J 5 B;.(0) (2-8)
(o] T

ij [ 2 S~
J o

£..(8) +
1] 1]

where pij(e) is a dimensionless guantity of order unity. One can argue that J
uniquely characterizes the crack tip field if the first term in Eq. (2-8) dom—

inates over the second. That is, if

o (2-9)

The first term represents proportional increments in the strain field due to an
increment in the applied load or displacement. Thg second term represents the
nonproportional strain increments associated with the advance of the crack tip.
If the first term overwhelms the second term, then the stress and strain fields
in a zome which encloses the crack tip are described by Eq. (2-8). Thus T is

still the appropriate characterizing parameter for limited amounts of crack
growth [2-6].

Several significant features result from the concept of J-controlled growth.
First, when the conditions for J-controlled growth are satiéfied, the'IR curve
obtained from fully yielded specimens will be the same as the JR curve -from
specimens with limited yielding (or small-scale yielding). The IR curve will
also be independent of crack configuration, so that it is a materisl property.
The common figcture toughness parameter, IIc’ represents a single point onm the JR

curve correspanding to the onset of crack extension. JIc is commonly related to
K, through Eq. (2-6) [2-3].

Ic
A second feature is that stable crack growth and crack growth instability can be
analyzed by the R curve approach based on J, which is a generalization of Irwin’s
resistance curve approach for small-scale yielding based on the elastic stress

intensity factor [2-28]. The J-based approach will be applicable for the com—

plete range of elastic—plastic deformation.

As a final point, the J—integral crack driving force can be determined from
analysis using the deformation theory of plasticity. The estimation method to be

discussed is based on deformation theory.

2.2.3 Conditions for J—Controlled Crack Growth

A thorough discussion of the conditioms which ensure the applicability of J—
controlled crack growth is given in Referemces [2-6] and [2-27]. The conditions

are summarized here:
Aa <K R (2-10)
and
' (2-11)
= < R
D JIc/(dJR/da)
The quantities in Egs. (2-10) and (2-11) are defined in Fig. 2-3.

For fully yielded configurations, where the yielding is confined to the remaining
ligament, R is a fraction of the ligament c. For these problems, the condition

expressed by Eq. (2-9) can be restated as

0 = = (dF,/da) > 1 (2-12)
T, R

Shih, Dean and German [2-27] carried out a systematic investigation of the condi—
tions for J—controlled growth. These studies led to quantification of the condi-
tions given in Egs. (2-10) through (2-12). For members subjected primarily to
bending, the conditions expressed in Egs. (2-10) and (2-12) become

Aa < 0.06¢ . (2-13)
w > 10 (2-14)
In addition, the ligament of the member must also satisfy

p = e >
(JRIUO)




Plane strain comstraints are met by the following regquirement on the relevant

structure dimensions B and ¢, where B is the thickness:
B>ec (2-16)
For configurations subjected to temsile loads, it appears that the conditions for
J—controlled growth are more stringent. The analyses in Reference [2-27] suggest
the following conditions (conservatively stated):
o > 80
(2-17)

p > 200

2.2.4 Crack Growth and Stability Analysis with the J-Integral

When J-controlled crack growth is applicable, the condition for continued crack
growth is [2-5, 2-6]

T(a,P) = Tp(a - a) (2-18)

For any given configuration, the crack driving force J ‘is a function of crack
length a and load per unit thickness P. The IR curve isla function of the amount
of crack growth, 2= a., and is obtained experimentally. Therefore, crack growth

is unstable if -

tlg?l/&a)AT b3 dJR/da (2-19)

The subscripf'in Eg. (2-19) denotes a partial derivative with the total displace-
ment AT held fixed, where AT is defined by

Ap=A+C P (2-20)

CM is the compliance of a linear spring placed in series with the cracked body,
as shown in Fig. 2-4. Treating the crack driving force J and load point dis-—

placement as functions of P and a only, the role of system compliance CM is

AR

A TR

revealed through ,

oJ AL - @4y @4 [CM + 34 ]"1 (2-21)

(‘E)AT’"' 3a' P 3P'a ‘9a P 3P a

Tt is convenient in examining stability to introduce nondimensional tearing

moduli after Paris, et al., [2-5]:

dary

8y R (2-22)
da

(=) and T =

da AT JR

[
oqwlm
chlm

The instability criterion, Eq. (2-19), is then simply phrased in terms of these

tearing moduli as

T, > T (2-23)

The stability assessment diagram is based on Egs. (2-22) and (2-23).

The stability of crack growth can also be analyzed through the use of the crack
opening displacement parameter [2-20, 2-27] by utilizing Eq. (2-4).

2.3 FULLY PLASTIC SOLUTIONS

As indicated earlier, the key to developing the engineering approach rests in the
ability to tabulate fully plastic crack solutions for a broad range of represen—
tative structural configurations. Such tabulations are of course already avail-
able for linear elasticity [2-29, 2-30]. It will be discussed later in this sec-
tion that it is also feasible to tabulate fully plastic solutions for the crack
tip parameters corresponding to specific values of crack lemgth to width ratio

and strain hardening exponent.
In linear elasticity, crack parameters like the J—integral, the crack or mouth

opening displacement & and the load line displacement Ac (due to crack) can be

scaled with respect to load according to

’ _ 2 Ae
I/ & a) = [P/Po] I°(a/b)
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7
2t

e
AR

R lRoE]
e

it

Ae
8/(e_ ) [P/PO] 8 (a/b) (2-24)

1

A /(ey @) = [p/p ] A% (asb)

where the superscript e denotes elastic quantities., In Eq. (2-24) P is a gen—
eralized load per unit thickness, a/b is the crack length to width ratio, o, is
the yield stress, reference stress or in some applications the flow stress and g,
is the corresponding strain (the connection o, = E e, can always be made, but is
not necessary). The quantities J, § and Ac are functions of a/b only. P0 is the

1limit or reference load per unit thickness based on the stress o defined by
P =Nco (2-25)

where /\ is the constraint factor which may depend on the ratios of relevant

structure dimensions, and ¢ is the length of the uncracked ligament.

Consider now an incompressible nonlinear or fully plastic material where the
strain is related to the stress in uniaxial tension by Eq. (2-2). Generalizationm

of Eq. (2-2) to multiaxial stress states using J, deformation theory gives

2
€., S, .
i _3 a[,, /o ]n 1 _ij (2-26)
€ 2 e o o
o o
1/2

where Sij and o, = (%-S S..) are the stress deviator and effective stress,

respectively. Ilynshinliz-;i] noted that solution of the boundary value problems
based on Eq;'(2—26) and involving only a single load or displacement parameter
whichzis increasing monotonically has two important properties. First, the field
quantii%gs increase in direct proportion to the load or displacement parametef
raised £6 some power dependent on n. For example, if the applied load or sfress

is cm, theén the field solution has the simple functional forms

c..
i3 _ o A
5 = [0 /cro] Gij(-{’ n)
fii~= a[dwla ]n . .(x, n) (2-27)
e, o ij =’ :

2-10

i a[cm/co]n Qi{zg n)

where u, is the displacement, 1 is a length parameter, and cij’ sij’ and u, are

dimensionless functions of spatial position_f_and strain hardening exponent n,

The second property follows from the first two equations of Eq. (2-27). Since
the stress and strain at every point increase in exact proportion, the fully
plastic solution based on the deformation plasticity theory is also the exact

solution to the same problem posed for flow theory of plasticity.

The simple functional dependence of the field gquantities on the applied load or
displacement also means that quantities such as the J—integral, the crack opening

displacement 8, and other crack parameters have the following forms [2-13]:

1

S [P/Po]n+1 T (a/b, n)

[P,Po]n 82 (a/b, n) (2-28)

1

—_e [P/Po]n ﬁ‘§<a/b, n)

where the applied load appears explicitly in the manner shown and the superscript

p denotes fully plastic quantities. The dimensionless gquantities JP, 6P and Ag

are functions only of a/b and n and are independent of the applied load.

The functional forms in Eq. (2-28) are similar to those for linear elasticity,

Eq. (2-24), except for the additional dependence on n. Comsequently, it is

feasible to tabulate the fully plastic solutions Ip, Sp, and Ag corresponding to
specific values of a/b and n for crack configurations similar to those tabulated
in handbooks based on elastic conditions. The fully plastic solutions in plane
stress are readily obtained from conventional finite element techniques as dis—
cussed in References [2-9] and [2-15]. In plane strain, the incompressible
deformation introduces constraints on the displacement gradients, and special
techniques are required to handle fully plastic problems. An efficient technique

for solving incompressible nonlinear problems is given in References [2-14] -
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[2-17]; this technique was used in the present work. Fully plastic solutions for

a wide range of crack configurations are presented in later sectiomns in this

report,

2.4 _ELASTIC-PLASTIC ESTIMATION PROCEDURE

Fully plastic crack solutions and analyses are applicable to situations where the
cracked configurations are completely yielded, i.e., the plastic strains are
large compared to elastic strains everywhere in the body. Most crack problems of
practical interest are iﬁ the elastic—plastic regime; in this regime an estima-

tion procedure is employed.

By exploiting the functional forms of the fully plastic solutioms, Eq. (2-28),
and the linear elastic solutioms, Eq. (2-24), simple approximate formulae are
obtained for quantities such as J, &, and Ac which allow interpolation over the
range from small-scale yielding to fully plastic conditions. For a Ramberg-

Osgood material characterized by

g _ © g.n
T T e (2-29)
[¢] [+] [+

the interpolation formulae combine in essence the linear elastic and the fully

plastic conditions and are of the form [2-9, 2-10]

J = Ie(ae) + 7P(a, n)

5 = Se(ae) + 5%(a, n) " (2-30)
T _ A€ P
~AAc = Ag(ae) + Ac(a, n)

e e
J (ae), & (ae) and Az(ae) are the elastic contributions based on an adjusted
crack length 2 .; the latter is Irwin’s effective crack length modified to account
for strain hardening. a_is givea by [2~32]

a, = a+ ¢ ry (2-31)

where

2-12

. 1] (—];I——)2 (2-32)

and

¢ = 1

= 5 (2-33)
1+ (P/Po)

For plane stress B = 2 and for plane strain § = 6.

7P(a, n), 6 (a, n) and Aﬁ(a, n) in Eq. (2-29) are the plastic contributions based
on the material hardening exponent n. Using the quantities defined in Egs. (2—
24) and (2-28), a detailed expression for the estimation method, Eq. (2-29), can
be readily obtained. Such formulae for various crack configurations will be

given in the following sections.

In small-scale yielding, the plastic comtribution is small compared to the elas-
tic contfibution and hence Eq. (2-30) reduces to the well-known elastic solutions
adjusted by Irwin's effective crack length. At the other extreme in the fully
plastic range, the plastic contribution is the dominant term, Analyses employing
Eq. (2-30) have been found to be in good agreement with finite element calcula—
tions and ezperimental results for the complete range of elastic—plastic deforma—
tion and material hardening properties for a number of crack configurations.

Example comparisons are presented in subsequent sections of this report.

The user of the Handbook may desire to express the material flow properties in a
form other than that given by Eg. (2-29). Estimation formulae can be derived for
other representations of the stress—strain law. A number of these are developed

in Appendix A.

2.5 FRACTURE ANALYSIS USING THE ENGINEERING APPROACH

In employing the engineering approach for fracture analysis of a flawed body, the
crack driving force in terms of "applied” J (or COD) is computed by combining the
elastic and fully plastic solutions via the estimation method as discussed above.
Following the crack growth and stability comnditions as posed by Egs. (2-18) and
(2-19), this is then compared with the material resistance to crack growth (the
JR curve) determined experimentally to obtain prgdictions for crack initiation,

stable growth, instability and other guantities relevant to the overall fracture
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behavior. Depending upon the application, several different analysis diagrams
can be generated. These are customarily referred to as the crack driving force

diagram, the stability assessment diagram and the failure assessment diagram.

The crack driving force diagram allows one to perform a comprehensive analysis of
the crack growth process, from initiation to instability. This diagram is actu—
ally the graphical solution to crack growth stability as posed by Egs. (2-18) and
(2-19) ., The strain hardening properties of the material and the system compli—
ance are accounted for in the driving force term. A detailed discussion of this

diagram with several illustrative examples will be presented in Section 6.

Tﬁe stability assessment diagram is typically employed if one desires to analyze
whether a flawed structure is stable or unstable, This diagram is basically a
compression of the information contained in the crack driving force diagram via
Eqs. (2-22) and (2-23). The customary plot is made on coordinates of J-integral
versus the tearing modulus T_. Further details on this diagram and examples of

J
its use will be given in Section 7.

The failure assessment diagram is convenient in a preliminary investigation of
the satety margin of a flawed structure. The concept of a failure assessment
diagram has mainly evolved from work at the Central Electricity Genérating Board
(CEGB) of the United Kingdom; and is based on the "two criteria” approach of
Dowling and Townley [2-33]. The present form, also referred to as the R—6
diagram, is due to Harrison, Loosemore and Milne [2-34]. ﬁécently, Shih, Kumar
and German [2~35A— 2-36] employed the estimation procedure and the J-controlled
crack growth apprbach to derive a failure assessment curve which accounts for, in
a rationallganner, the geometry of a cracked body, the type of loading and
material fléﬁ;properties. Similar developments have also been carried out by
Bloom [2—37].$3Further discussion of this subject with several examples is given

in Section 8.
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Figure 2-1,

Definition of crack tip
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coordinates,

Figure 2-2. Definition of the crack tip opening displacement (CTOD) denoted by

St.
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Figure 2-3.

" Definition of terms in conditions for J-controlled crack growth.
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Figure 2-4.

P, Aq

Cm (TESTING MACHINE OR
SYSTEM COMPLIANCE)

Schematic of a cracked boy. The spring represents compliance of

the system.
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Section 3

FULLY PLASTIC SOLUTIONS FOR TEST SPECIMEN CONFIGURATIONS

3.1 _INTRODUCTION

The fully plastic crack solutions for common fracture toughness test specimen

configurations are presented in this section. The solutions cover a wide range

of values of crack length—to—specimen width ratio, a/b, and strain hardening

exponent, n. Both plane stress and plane strain conditioms are considered. The
solutions are presented in tabular form here; graphs are provided in Appendix C.
For given crack length to width ratios, uniaxial stress—strain properties

(E, v, a, o, and n), and applied loadings, fully plastic solutjons for the J-
jntegral, crack mouth opening displacement and load—point displacement can be
readily computed by simply using the relevant fotmulae and values of functionms

from the tables or graphs.

The solutions were obtained numerically by employing the incompressible finite

element computer code INFEM. This code was developed specifically for the fully

plastic crack analyses conducted in this program [3-1 — 3-4]. The finite element
meshes and other pertinent details are discussed in References [3-21 - [3-4].
Results for the elastic cases (n = 1) were compared with solutions available in
literature, such as the handbooks of elastic stress intensity factors [3-5, 3-6].
These comparisons are briefly summarized here with further details given in

References [3-21 -~ [3-4].

Elastic—-plastic solutions for J and the other parameters are obtained by combin-

ing elastic and fully plastic contributions as discussed in Section 2. The LEFM

handbooks typically contain solutions for the stress—intensity factor KI; these

can be converted to J via the relationship given in Eq. (2-6):

.

J '-‘-‘*E-;-

where E' = E for plane stress and E' = E/(1 - vz) for plane strain. Using




detailed expressions for elastic and fully plastic contributions, one can arrive
at explicit forms of estimation formulae. These are provided in this section.
Example problems illustrating applications and verification of the estimation

procedure and fully plastic solutions will be discussed in Section 6.

Although fully plastic solutions for the crack tip opening displacement parameter
St are not catalogued here, these can be calculated from the J solutions using
Eq. (2-4), TUnder fully plastic conditions Eq. (2-4) can be conveniently

rewritten as

h4 = dn hl (3-1)
dn in the above equation can be obtained from Figs. 3-1 and §~2. h4 and hl are
the fully plastic solutions corresponding to J and St and will be defined in sub-

sequent parts of this section.

F
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3.2 _COMPACT SPECIMEN .

3.2.1 Fully Plastic Solutions

Consider the standard ASTM compact specimen (CS) as shown in Fig. 3-3. The fully

plastic solutions for this test specimen are given in [3-7],

n+1

\T=ao_ e chla/b, n)(P/P) (3-2)
8=as_ah(al/b, n)(B/P)" ‘ Y
Ap = a5 ah(alb, n) (P/P_)" (3-4)
5,=ae oh,la/b, n)(@/p )" (3-5)

where P is the applied load per unit thickness, a is the crack length, b the
specimen width and ¢ = b — a is the uncracked ligament. It is noted that hl, h2
and h, in the above expressions are functions of a/b and n alome. Po is the

3
1imit load per unit thickness and is given by

P =1455n¢c o (3-6)
o o
for plane strain and by
P0 =1.071 q ¢ o (3-7)
for plane stress., In the above, n‘is defined as

n = [2are)? + 22870) + 2]12

- [2ate + 1] (3-8)
In Eq. (3-3), & is the mouth opening displacement of the crack at the outer edge,
i.e., & = Uy(O, 0+) - Uy(O, 0 ). In Eq. (3-4) the COD at the load line is given
by AL
by St in Eq. (3-5) was defined earlier in Section 2.

+ —
= Uy(d’ 0) ~ Uy(d, 0 ). The crack tip opening displacement CTOD denoted

The functions h,, h_, and h, in Egqs. (3-2) - (3-4) are presented for a wide range

1’ 2 3
of a/b and n values in Table 3-1 for plane strain and Table 3-2 for plane stress.
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The function h4 is obtained from h1 by using Eq. (3-1). For the purposes of

interpolation and extrapolation, plots of hl’ h2 and h3 versus n with a/b as the

parameter are given in Appendix C.

The fully plastic solutions tabulated above were obtained by using the incompres—
sible finite element program INFEM, The present results for K, 8§ and AL for the
elastic case corresponding to n = 1 were found to be within 2% of the results by
Newman [3-8], except for extreme a/b ratios where the difference was of the order
of 4%, The numerical accuracy of the above solutions for n > 3 was assessed by
comparing the present results with the J-integral expressions for deep cracks by
Merkle and Corten [3-9] and Rice, Paris and Merkle [3-101. It was concluded that
for a/b > 3/8 and n > 3 the present solutions for J are within 3% of the Merkle
and Corten analysis. For further details, the reader is referred to the Refer-

ence [3-71.

3.2.2 Elastic—Plastic Estimation Formulae

As discussed in Section 2, for material fitting the Ramberg—Osgood stress—strain
law, Eq. (2-2), the fracture parameters J, 8§ and AL are given by the sum of the

adjusted linear elastic and the fully plastic contributions.

The elastic solutions are available from several elastic crack handbooks and are

generally tabulated in the following format:

a Fi(a/b) 9 1 1 '
.T = **-E-TT—-’P , =E—,—V1(8/b)P, AL = E—;VZ(a/b)P

where E' = E*for plane stress and E' = E/(1 - v2) for plane strain, The func-
tions Fl, Vi aﬁd V2 are tabulated for example in Reference [3-5]. For purposes
here these expréssions are more conveniently written as

2

T=f () &y (3-9)
5 = £,(a) 27 (3-10)
A = £y(a) = (3-11)
a Fi
where f1 = bz , f2 = V1 and f3 = Vé.
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Using the quantities defined in Egs. (3-2) — (3-5) and (3-9) - (3-11), the esti-
mation formulas for the entire range of elastic-plastic deformation have the

specific forms:

P2 n+l
J = fl(ae) §7~+ @ac e ¢ hl(a/b, n)(P/PO) (?—12)
§=f(a)—+ae ah (a/b, n)(®/P )" (3-13)
2 "¢’ E' o 2 ’ o
AL = £y(a) -}-33-’,- +ae ahylalb, n) (/P )" (3-14)

Here 2 _ is effective crack length as defined by Egs. (2-31) - (2~33). The above
equations have been used successfully in a variety of test situations involving
elastic—plastic stable crack growth, and these are discussed later in Section 6

and in Reference [3-7].




3.3 _CENTER-CRACKED PLATE IN TENSION

3.3.1 Fully Plastic Solutions

Consider a cénter—cracked plate (CCP) of width 2b with a crack of length 2a as

shown in Fig. 3-4. A uniform stress distribution

[+3

is imposed at
strip. ¢ =1

fully plastic

(x, £ L) = P/2b (3-15)
yy

the ends where P is the load per unit thickness carried by the
— a denotes the uncracked ligament on either end of the crack. The

solutions for this crack configuration are given by

T=ao, e alc/b) b (a/b, n)(@/P )™ (3-16)
8 =ae_ ah(alb, n)(@/P )" (3-17)
A =ae_ ahy(alb, n) (P/Po)n (3-18)
5, = a e ale/b) b (a/b, n) (/P )" (3-19)

+ —
where & = U&(O, 0) - Uy(O, 0 ) is the mouth opening displacement at the center

of the crack. In the above, Ac is the load-point displacem@nt due to the crack

and is defined as

no crack

Here A is theutemote load—point displacement defined by

for plane strain and by

3-6

A, = A(L) - A(L) - (3-20)

= 1 - -
A(L) =53 f’b [Uy(x, L) Uy(x, L)]dx (3-21)
A(L)no crack is the load-point displacement in the absence of a c¢rack and is
given by
n
_ P
ALY o crack = 13 @ o L[{?;ifﬁiiii (3-22)

. n
A(L) 2 a'e L[P/Z b o’o] (3-23)

no crack

for plane stress. In Egs. (3-16) - (3-19), Po is the limit load per unit thick-

ness and is given by the following:

o
Il

4c Golfg—for plane strain (3-24)

and

r
[

2c s, for plane stress. (3-25)

The expressions for h in Egs. (3-16) — (3-19) are functions of a/b and n oxnly,
and are catalogued for several values of a/b and n in Table 3-3 for plane strain
and Table 3—4 for plane stress. As before, the function h4 is obtained from hl
by using the Eq. (3-1). For ease in obtaining the h's for desired a/b and n
values by interpolation or extrapolation, plots of h versus n with a/b as a

parameter are presented in Appendix C.

The CCP solutions were also obtained using INFEM. For the elastic case (n = 1),

the results were found
tor less than 3%. The

n can be assessed by a

to agree with solutions given in Referemce [3-5] by a fac-—
numerical accuracy of these solutions for large values of

comparison with the J—integral expression by Rice, Paris

and Merkle [3-10] for deeply—cracked situations. These comparisons are discussed

in detail in References [3-21, [3-3], [3-11] and [3-12].

3.3.2 Elastic—Plastic Estimation Formulae

In the linear elastic range, the simple functional dependence of J, & and Ac on

the applied load per unit thickness P for the CCP is expressed explicitly by

=12 F2(a/b)P? (3-26)
E' 4b
5 = =22_ V. (a/b)P (3-27)
E b 1
A ==22_V (a/b)P (3-28)
c E'Db 2

where the dimensionless functioms, F, Vi and VZ’ are tabulated in elastic

3~7




handbooks such as [3-5]. For the convenience of introducing Egs. (3-26) - (3-28)

into the estimation procedure, the above equations are expressed alternately by

PZ
J= fl(a) 7 (3-29)
P
& = fz(a) B (3-30)
A = £.(a) = (3-31)
c 3 E’
_ ma 2 _ 2a - 28
where f1 = ;;E‘F , f2 7;-Vi and fs 7;-Vé.

In the fully plastic state, Egs. (3-16) — (3-19) apply. 1In the elastic— plastic

deformation range the estimation formulae are expressed as follows:

P2 : n+1l
J = fl(ae) E7-+ e o & a(c/b) hl(a/b, n)(P/PO) (3-32)
8= f,(a) -E?,-+ a e ahy(alb, n)(R/P )" (3-33)
A, = £5(a) 5+ a e aha/b, n)(B/R )" : (3-34)

where 2 is again the adjusted crack length as defined by Egs. (2-31) - (2-33).
JTllustrative examples demonstrating the application and vé;ification of these

equations are discussed in Referemces [3-21, [3-11] and [3-131].

3.4 _SINGLE-EDGE CRACKED PLATE IN THREE-POINT BENDING

v

3.4.1 Fully Plastic Solutions

Next, consider a single—edge cracked plate (SECP) of length 2L, width b and with
a crack of length a. The plate is subjected to three—point bending as shown in
Fig. 3-5. The various crack parameters in the fully plastic state are expressed

as follows:

n+l

J=0a0 €& ¢ h (a/b, n)(P/P) (3-35)
c o 1 [ .
5§ =as ah (a/b, n)(®/P )" (3-36)
o 2 o
A =a¢ ah,(a/b, n)(P/P )n (3-37)
c o 3 o
_ n+l _
St =as o h4(a/b, n)(P/Po) ‘ (3-38)

Here P is the load per unit thickness and ¢ = b — a is the remaining ligament.
Po is the limit load per unit thickness for perfectly plastic material
corresponding to n = «, For plane strain the Green and Hundy solution [3-14]

gives P0 as
P_=0.728 ¢ ¢2/L (3-39)

Po for plane stress conditions is obtained from the Lord and Lianis slip-line

field solution [3-15] and is expressed as
P = 0.53 o o2/L (3-40)
o o

In Eq. (3-36), & = Uy(O, 0+) - Uy(O, 0 ) is the mouth opening displacement at
the edge of the specimen. Ac in Eq. (3-37) is the load-point displacement due to

crack and is defined as

A =A-A ‘ (3-41)
c nc

where Anc is the load-point displacement of an uncracked bar. For the limear

elastic case (n = 1) A;c is given by [3-16]
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_ PL [3 _ _.v]_ 0.21P )
AT D lae 1o YEl T TE® - (3-42)

e PL PL [3 3

where G = E/2(1 + v) is the shear modulus and I = b3/12. It is noted that the
shear deformation effects are included in this equation as these may be quite
significant for small L/b values, particularly for the L/b = 2 case considered in

this work.

The functions h1 h3 and h3 in Eqs. (3-35) - (3-38) are presented here for L/b =
2 covering a wide range of a/b and n values. The plane strain solutions are
catalogued in Table 3-5 and the plane stress solutions in Table 3-6. Again, h4

is obtained from h1 by using Eq. (3-1). Plots of these fnnctions are illustrated

in Appendix C.

The SECP solutions were obtained by using the finite element code INFEM. In the
elastic case (n = 1) these solutions are within 5% of the results given in Refer-
ence [3-5], except for a/b = 3/4, where the difference was about 8%. (This sug-
gests that deep cracks under three—point bending require finer meshes than used
here.) For larger values of n, the numerical accuracy of the solutions reported
herein was assessed by a comparison with the J—integral expression for deep
cracks given in Reference [3-10]. For further details, ome is referred to Refer—
ences [3-2] and [3-31.

3.4.2 Elastic—Plastic Estimation Formulae
The estimation formulae for SECP crack parameters imn the elastic—plastic range
are presehted below. The parameters J, 8 and Ac in the linear elastic range are

commonly given by

97 a L4

r=222L 2armp’ (3-43)
E' b
5 = —1-33—12: v, (a/b)P (3-44)
E' b
2 .
A, = —§-L-§ V,(a/b)P (3-45)
E'D

where F, Vi and V2 are as tabulated in Reference [3—51. These expressions are

rewritten as

PZ
J = fl(a) =7 (3-46)
P
5 = fz(a) B (3-47)
A = £,(a) = (3-48)
c 3 E' : »
2 2
9 mal® 2 _12a L _ 6L
where f1 = b4 F : f2 = bz V1 and f3 = :;f-Vé.

Substituting the elastic relationships, Egs. (3-46) —~ (3-48), and the fully plas—
tic formulae, Egs. (3-353) — (3-37), into the estimation formulae, Egs. (2-30),

one gets the following expressioms:

2
= P n+l
I = fl(ae) Frtec, e ¢ hl(a/b, n)(P/Po) (3-49)
_ P - n '
8 = f2(ae) Frtec 2 hz(a/b, n)(P/PO) (3-50)
A = f,(a) g+ a e a byla/b, n)(B/P )" (3-51)

where a, is again the effective crack length defined by Egqs. (2-31) - (2-33).
Examples showing the application and verification of these formulae are dis—

cussed in Reference [3-2].
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3.5 _SINGLE-EDGE CRACKED PLATE IN UNIFORM TENSION

3.5.1 Fully Plastic Solutions

A SECP specimen under remotely applied uniform tension is illustrated inm Fig, 3-
6. The crack length is denoted by a, the plate width by b and the length of the
plate by 2L. The plate is subjected to a uniform stress field at its ends given

by
6 (x, £+L) = o = P/b (3-52)
¥y

where P is the load per unit thickness. The fully plastic solutions for this

crack configuration are given by the following expressions:

a+l

T=ao, e, cla/b) by(a/b, )(P/R) (3-53)
8=ac_ a ﬁz(a/b, n) (B/P )" (3-54)
A, =a s ahylal/b, n)(B/R)" ' | (3-55)
5, = a e, cla/b) b (a/b, n)(@/P )" (3-56)

@ =ae h_(a/b, n)(®/P )
o5 o

vhere Gc js the relative rotation at the ends due to crack. Here ¢ =b - a is
the remaining ligément and P0 is the 1limit load per unit thickness for the per—
fectly plastic case (n = «), A limit load analysis of this configuration is dis-

cussed in sd@g detail in Reference [3-2]. It is found that Po for this case is

given by
P =1.455n ¢ o_; plane strain (3-57)
P =1.072 n ¢ o_; plane stress (3-58)

where 1 is defined as

2]1/2 _

n= [1 + (a/c) alc (3-59)

3-12

In Eq. (3-54) & = Uy(O, 0+)J— Uy(O, 0 ) is the mouth opening displacement at the
edge of the specimen and Ac is the remote load point displacement due to the
crack along the centerline of the specimen width (i.e., x = b/2, y=L)., A is

c
defined by

A =A-A (3-60)
c n

c

where Anc is the load point displacement in the absence of crack and is given by

n
A =13acs LLiE;gl (3-61)

nce o] I.Zb O'OJ

for plane strain and by

A =2ac L[ £ ] (3-62)

for plane stress.

The functions hl’ h2, h3 and h5 in Eqs. (3-53) - (3-55) are tabulated for a broad
range of a/b and n values in Table 3-7 for plame strain and Table 3-8 for plane

stress. Appendix C provides plots of the h functioms,

The fully plastic solutions tabulated above were computed by employing the
jncompressible finite element program INFEM. For the linear elastic case

corresponding to n = 1 these results compare within 6% of the solution given in

‘Reference [3-5]. A detailed discussion on the numerical accuracy of the above

solutions for n > 1 is provided in Referemces [3-2] and [3-3].

3.5.2 Elastic—Plastic Estimation Formulae

In the linear elastic range, the fracture parameters are commonly expressed by

2
=12t ¢ (3-63)
b® B’
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5 = 7;3F1~P (3-64)
4a Vé
Ac = W P (3"65)

where the dimensionless functioms F, Vi and V2 are tabulated functions [3-5]. On

rewriting the above relationships in the alternate form, used here, omne gets

2

T=f(a) &7 (3-66)
5= £,(a) o | (3-67)
A, = £(a) 2 (3-68)
where fl =X azFZ, f2 = 4abV1 and f3 = 4abV2

The elastic solutions, Eqs. (3-66) — (3-68), and the fully plastic solutionms,
Eqs. (3-53) - (3-55), are substituted into the estimation formulae to give the

following elastic—plastic formulae for a Ramberg—Osgood stress—strain law:

Pz n+1
J= fl(ae) grtaec e c{a/b) hl(a/b, n) (P/Po) .v (3-69)
5=f,(a)gr+ae aha/b, n)@/P)" (3-70)
_ : P n .
Aq = fs(ae) grtoes e hs(a/b, n)(P/PO) ] . (3-71)

a, is the effgptive crack length given by Egs. (2-31) — (2-33).
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3.6 _DOUBLE-EDGE CRACKED PLATE IN TENSION

3.6.1 Fully Plastic Solutions

Figure 3-—7 shows a double—edge cracked plate (DECP) specimen with crack length a,
width 2b, length 2L and remaining ligament 2¢ = 2b — 2a. A uwniform stress figld

is applied at the ends amnd is given by
6 (x, £ L) = o= = P/2b (3-72)
yy

where P is the load per unit thickness. In the fully plastic state, the crack

parameters are given by

n+l

F=ao0 € ¢ h, ,(a/b, n)(P/P) (3-73)
o o 1 0o
8 =ae ch (a/b, n)(@/P)H" (3-74)
o 2 o
A =ae c¢h,(a/b, n)(®/P )" o (3-75)
c 0 3 0
5. =ae ch (a/b, n)e/p ) (3-76)
t o 4 o

where Po is the limit load per unit thickness. The 1limit load is given below and

derived in Reference [3-4]. It is given by

P = (0.72 +1.82 2o _ b (3-77)
5] b" o

" for plane strain and

P = o (3-78)

4
o i:: €%
3 .
for plane stress.
In Eq. (3-74), & = Uy(b, 0+) - Uy(b, 0 ) is the mouth opening displacement of the
crack at the edge of the plate. Ac in Eq. (3-75) is the load-point displacement

due to the crack along the centerline of the specimen (i.e., x = 0, y = L) and is

defined by
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A =A-A (3-79)
c nc

The load point displacement in the absence of crack is given by

n
~ [1—3—1?] ) , -
A= {3 a e, Lizp AR plane strainm (3-80)
n
A =2ace L[ P ] . plane stress (3-81)
ne o LZ‘D O'OJ ’ :

The h functions in Eqs. (3-73) — (3-75) are listed in Tables 3-9 and 3-10 for
plane strain and plane stress, respectively. In the linear elastic case, n =1,
these solutions compare within less than 5% of those given in Reference [3-5].
An assessment of the accuracy of the above results for large a/b and n values is
given in Reference [3-3]. Solutions presented here were obtained by using the
code INFEM. Plots of hl’ h2 and h3 vérsus n are shown in Appendix C.

3.6.2 Elastic—Plastic Estimation Formulae

The linear elastic solutions for the DECP are given by

2
y-naF ; F_ p? : (3-82)
4v° E'
2a V1
8 = TET— P (3-83)
. 2a V2 '
A = P (3-84)

¢ bE'

where the funcfions F, V, and V,

1 , are given in [3-5]. After the customary recast-—

ing they appearvas:

PZ
J = fl(a) B (3-85)
— P —
8 = fz(a) B (3-86)

3-16

G g
= %
o

i

:
:

where f1 =3 1, =3 3 5

Combining the linear elastic solutions with the fully plastic solutions in accor-

* dance with the estimation procedure, the following expressions are obtained:

2
IT=f(a) 27-+ e o e c¢h (a/b, n)(P/P )n+1 (3-87)
1 ¢ E o o 1 o
8 =£,(a)gr+ac ohyla/b, n)(@/R)" (3-88)
A =f(a)—+ae ch,lalb, n)(@/P )" (3-89)
c 3'3¢ E7 o g, ¢ n3ta/b, o

In the above, a_ is the effective crack length as defined in Eqs. (2-31) - (2-
33).
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Section 4

ELASTIC AND FULLY PLASTIC SOLUTIONS FOR FLAWED CYLINDERS
4.1 _INTRODUCTION

This section presents elastic and fully plastic solutions for c¢ylimdrical confi-
gurations containing two-dimensional axial and circumferential flaws. In the
case of the axially cracked cylinder shown in Fig. 4~1, the loading is due to
internal pressure, which also acts on the crack face. This crack geometry is
analyzed as a two-dimensional plane strain problem., The circumferentially
cracked cylinder is loaded by applying uniform tension at its ends, as illus-—
trated in Fig. 4-2. This is treated as an axisymmetric problem. It is noted
that the formulation of the J—integral for these crack problems, which involve
either crack face loading or axisymmetric deformation, are different from the
conventional two—dimensional expressiom, Eq. (2-2) [4-1, 4-21. Modifications
accounting for these effects are summarized in Appendix B and discussed in
greater detail in References [4-3] — [4-6]1. The solutions reported in this sec—
tion are calculated using these modified forms of J-integral; this point should

be kept in mind when applying the material given here to specific problems.

The solutions cover a broad range of values for inside radius—to—wall thickness
ratio Ri/b’ crack length—to—wall thickness ratio a/b and strain hardening
exponent n. The results reported here were obtained using the incompressible
finite element code INFEM [4-7 - 4-10]. Solution details, such as the finite
element meshes employed, are described in Reference [4-10]. Since elastic solu-
tions for the present crack geometries are not available in the literature for
all the values of Ri/b and a/b examined, the elastic results obtained from INFEM
are also compiled here. These solutions were compared with literature solutiomns
when available:; in some cases comparisons were made with alternate finite element
calculations from the ADINA computer code [4~10]. Accuracy of the elastic solu-
tions was thus assessed through these comparisons and other consistency checks

obtained in Reference [4-10].



For given material properties following the Ramberg—Osgood stress—strain law and
structure dimensions Ri/b and a/b, the elastic and fully plastic solutions can
readily be obtained by using the relevant formulae, and tables givem in this sec—
tion. (For convenience' sake the solutions tabulated in the present section are
plotted.against 1/n in Appendix C.) Elastic—plastic solutions can then be
obtained by superposing the elastic and fully plastic contributions according to
the estimation procedure, Eq. (2-30). Other representations of uniaxial stress—
strain properties can be utilized and estimation formulae for a number of others
are given in Appendix A. Various illustrative examples are discussed in Section
6 and in Reference [4-10]. Using the material presented here, stability and

failure assessment diagrams can be easily constructed as described with several

_ examples in Sections 7 and 8.

4.2 INTERNALLY PRESSURIZED CYLINDER WITH AN INTERNAL AXTAL CRACK

4.,2,1 Elastic Solutions

Fig. 4-1 describes a long, thin-walled cylinder containing an internal radial

axial crack of length a, with internal radius Ri and outer radius Ro' The crack

" front is parallel to the axis of the cylinder. A uniform pressure p acts on the

inside of the cylinder and on the crack face. The wall thickness is denoted by
b = Ro - Ri’ and ¢ = b — a is the uncracked ligament. The configuration is
assumed to be in plane strain, In the linear elastic ignge, the stress intensity

factor KI, the J—-integral and the mouth opening displacehent 8 can be written as

2p Ri na "
KI =m~*F(8/b. Ri/RO) (4-1)
o i
. 8p Ri a
8 =~ V_(a/b, R_/R ) (4-2)
(R? _ R%)E' 1 i'"o
o i
= w2 me
I = K1/E (4-3)

where E' = E/(1 - vz). It is noted that the dimensionless functions F and V1

depend upon two ratios, a/b and Ri/Ro'

FElastic analyses of the above problem were carried out using the finite element
code INFEM, The pertinent details are presented in Reference [4-10]. The solu-
tions for F and V1 thus obtained are catalogued in Table 4-1, Three values of
the wall thickness—to—inside radius ratio b/Ri are considered, namely 1/5, 1/10
and 1/20. For each b/Ri’ the crack length—to—wall thickness ratio a/b is taken

to be 1/8, 1/4, 1/2 and 3/4.

For some combinatioms of a/b and b/Ri the results for KI and therefore F have
also been reported by Bowie and Freese [4-11], Rooke and Cartwright [4-121,
Buchalet and Bamford [4-13] and Labbens, et al. [4-14]. The results given here
were compared with these solutions at the available reference points. As dis-
cussed in Reference [4-10] the numerical error in the presented solutions is

assessed to be in the range of 1% — 4%.

4.2.2 Fully Plastic Solntions

The fully plastic solutions for J and 8 are expressed as*

n+1

J = g o, &, c(a/b) hl(a/b, n; Ri/Ro)(p/po) (4-4)

o
It

@& a hz(a/b, n; Ri/Ro)(P/po)n (4-5)

where P, is the limit pressure for this geometry in the perfectly plastic case

(n = @), A lower bound value for this is given by

(4-6)

where Rc = Ri + a is the radial distance from the centerline to the crack tip.

The dimensionless functioms h1 and h2 in Eqs, (4-4) and (4-5) are functioms of

a/b and n with Ri/Ro as the parameter. The computed h functions are catalogued
for a wide range of a/b and n values in Tables 4-2 — 4-4 for b/Ri = 1/5, 1/10 and
1/20, respectively. Plots of h, and h, versus 1/n are shown in Appendix C.

1 2
These figures are useful for interpolating and extrapolating the values of h for

#* Solutions for the CTOD &, are not catalogued here since the relationship
between J and & is not completely established in the presemce of crack
face loading.




required value.
4.2.3 Elastic~Plastic Estimation Formulae

The elastic and fully plastic solutions can be readily incorporated into the
estimation procedure. For a material governed by Ramberg-Osgood stress—strain
representation in uniaxial temnsion, this procedure gives the following expres—

sions for J and &:

2
= . P . n+1 _
J= fl(ae’ Ri/Ro) grrec e c(a/b) hl(a/b, n; Ri/Ro)(P/po) (4-7)
= . LB . n -
8§ =1f,(a; R/R)g-+ace a b,(a/b, n; Ri/Ro)(P/po) (4-8)

a is the effective crack length defined by Egs. (2-31) - (2-33). The functions

fl and f2 in Eqs. (4-7) and (4-8) are related to F and V1 defined in Egs. (4-1)

and (4-2) in the following manner:

R2 2 .
£ (a/b, R,/R) = 4nal—=—2--] F>(a/b, R./R) (4-9)
1 i o 2 2 io

R - R
o i
[ Ri ]

Fz(a/b, Ri/RO) = Samj Vl(a/b, Ri/RO) (4-10)

[+ i i

Results obtained umsing the above elastic-plastic formulae (Eés. (4-7) and (4-8))
compare favorably:with detailed finite element elastic—plastic computations of
the J—integral for an axially cracked cylinder. The comparison and further

applicationsqu the above are given in Section 6 and Reference [4-10].

4.3 CYLINDER WITH AN INTERNAL CIRCUMFERENTTAL CRACK UNDER REMOTE TENSION

4.3.1 Elastic Solutions

Consider a cylinder with inner radius Ri’ outer radius Ro, wall thickness
b = R0 - Ri and length 2L, containing an internal axisymmetric part—through crack

of length a (Fig. 4-2). b = RO - Ri denotes the wall thickness and ¢ = b — a the

uncracked ligament, The cylinder is subjected to a uniform tensile stresé field

at its ends given by

.

6 (r, +L) = o = P/n(R® - B%) (4-11)
ZZ [+ 1

where P is the total temsile load carried by the cylinder. In the limear elastic

case, the fracture parameters K_, & and Ac are given by

K, = o | na F(a/b, R./R ) (4-12)
_ 4o a -
8 =25= ¥ (a/b, R./R ) (4-13)
A =32 2y (a/b, R,/R) (4-14)
c E 2 i o

where E' = E/(1 - v2) and F, V,, V, are dimensionless functions of a/b and Ri/Ro'
Sneddon and Lowengrub [4-15] and Rice [4-2] have shown that the singular stress
and strain fields in the crack—tip vicinity of an axisymmetric crack correspond
to those in plane strain. Consegquently, J is related to KI via the plane straism
relationship, namely :

T=(1-+v) Ki/E (4-15)

The finite element code INFEM with axisymmetric elements was employed to perform
the analysis of this problem. The mesh used and other computational aspects of
the analysis are described in [4-10]. Similar to the axiélly cracked cylinder of
the previous section, three values of the wall thickness—to—inside radius ratio
b/Ri were chosen, namely 1/5, 1/10 and 1/20. For each b/Ri’ the crack length—
to—wall thickness ratio a/b is taken to be 1/8, 1/4, 1/2 and 3/4. The calculated
values F, Vi and V2 are presented in Table 4-5.

The accuracy of the above solution for F can be assessed by comparing with a
solution by Buchalet and Bamford [4-13] for b/Ri = 1/10. This is carried out in
Reference [4-10]. For other values of b/Ri’ the accuracy was assessed by a com—
parison with independent finite element calculations wsing the computer code
ADINA. As described in Reference [4-10] the error in the above results for F is
estimated to be less than 1% ~ 4%.




4.3.2 Fully Plastic Solutions

The fully plastic solutions are given by

T=ao e cla/b) h (a/b, n: R,/R )(B/P )21 (4-16)
o o© 1 i 7o o

8 =ae_ ahy(a/b, n; R/R)(P/P )" (4-17)

A =ae_ ah(a/b, n: R,/R )P/ (4-18)

c ) 3 * i o 0

8, = @ s cla/b) b (a/b, n; R /R )(R/P )" (4-19)

where P0 is the 1limit load for perfectly plastic material (n = @), A lower bound
expression for this is

P =26 a® -RY (4-20)
[¢] [+

(¢] {_3' (o]

Here Rc = Ri + a is the radial distance from the centerline to the crack tip.

In Eq. (4-17), & = Uz(Ri’ 0+) - Uz(Ri’ 0 ) is the mouth opening displacement. St
in Eq. (4-19) is the crack-tip opening displacement as defined by Eq. (2-4). Ac

in Eq. (4-18) is the load-point displacement due to the crack and is given by
A =A-A (4-21)
c ne ]

where Anc is the load-point displacement in the absence of crack, " It is written

as

E ~ 2 2. 1n
‘Anc = 2a e, L[P/n(RO - Ri)ﬁo] (4-22)

The functions hl’ hz, h3 and h4 depend upon a/b, n and Ri/Ro' These were com—

puted using INFEM; details of the analysis are given in Reference [4-10].

The calculated h functions are presented in Tables 4-6 — 4-8 for b/Ri = 1/5, 1/10

and 1/20, respectively, h4 is obtained from h1 through the relatioanship

4-6

h =d h . (4-23)
n

where d corresponds to the plane strain value as given in Fig. 3-1., Plots of
n N

hl’ h2 and h3 versus 1/n as the parameter are given in Appendix C.

4.3.3 Elastic-Plastic Estimation Formulae

The elastic—plastic formulae obtained through the estimation procedure are as

follows:
T (a/b) h,(a/b, n; R./R)(@®/P O™ (4-24)
T==f(a, RJ/R) grt oo, e, cla 11870, By R IR, o
P n
8 =£,(a, R/R) g7+ ce ahy(alb, n; Ri/Ro)(P/Po) (4-25)
A =f0a, RJR) =+ ace ah,a/b, n: R,/R )(P/P )" (4-26)
c 3 e i" 0" E 0 3 * i o o

In the above, a, is the effective crack length as defined by Egs. (2-31) - (2-
33). The functions fl’ f3 and f3 in Eqgs. (4-24) -~ (4-26) are obtained from F, Vi
and V2 as follows:

a F2(a/b, R./R )
1 o

f.(a/b, R,/R) (4-27)
1 i’ o

K(R? - R.)2
[ i
_ 4a _
fz(a/b, Ri/Ro) = 3 Vl(a/b, Ri/Ro) (4-28)
n(R” - R))
o i
4a

f,(a/b, R,/R ) = V,(a/b, R,/R) (4-29)
3 i o "(Ri _ Ri) 2 i'To

Examples illustrating the application and verification of the above elastic—

plastic formulae are described in Section 6 and Reference [4-10].
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Table 4-1 Table 4-3
h. and h, for am axially cracked cylinder under

F and V1 for an axially cracked cylinder under internal pressure. 1
in%ernal pressure with blRi = 1/10.

alb = 1/8 | a/b = 174 | a/b = 172 | a/b =373
n=1 n= 2 n=3 n=1>5 n =17 n = 10
F 1.19 1.38 2.10 3.30
b/R. = 1/5 b 5.22 6.64 7.59 | 8.76 9.34 9.55
v 1.51 1.83 3.44 7.50 a/b = 1/8
U, 5.31 6.25 6.88 | 7.65 8.02 8.09
F 1.20 1.44 2.36 4,23
b/R, = 1/10 n | 6.16 | 7.49 | 7.96 | 808 | 7.78 | 6.98
v 1.54 1.91 3.96 10.4 a/b = 1/4 ~
b, 5.56 6.31 6.52 | 6.40 6.01 5.27
F 1.20 1.45 2.51 5.25
b/R, = 1/20 ‘ | n | 105 | 116 | 107 [ 647 | 3.5 | 2.27
v, 1.54 1.92 4.23 13.5 - al/b = 1/2
- b, 7.48 7.72 7.01 | 4.29 2.58 1.37
h, | 16.1 8.19 3.87 | 1.46 1.05 0.787
a/b = 3/4
b, 9.57 5.40 2.57 | 0.706 | 0.370 | 0.232
Table 4-2 L
h1 and h, for an axially cracked cylinder under Table 4-4
ié%ernal pressure with b/R, = 1/5.
: : hl and h, for an axially cracked cylinder under
in%ernal pressure with b/Ri = 1/20.
n=1 n=2 n=3 n=235 n=17 n =10
b, 6.32 7.93 | 9.32 | 11.5 | 13.12 | 14.94 . n=1]|n=2]an=3]a=5]n=17 |n=10
a/b = 1/8 . .
h, | 5.8 | 7.01 | 7.9 9.49 | 10.67 | 11.96 h, | 4.50 | 5.79 | 6.62 | 7.65 | 8.07 | 7.75
: a/b = 1/8 .
B 7.00 8.34 | 9.03 9.59 9.71 | 9.45 b, 4.96 571 ] 6.20 | 6.82 | 7.02 6.66
a/b = 1/4 "
' b, 5.92 8.72 | 7.07 7.26 7.14 6.71 b, 5.57 6.91 7.37 | 7.47 | 1.21 6.53
. a/b = 1/4
3 b | 9.79 | 10.37 | 9.07 5.61 3.52 2.11 f h, | 5.29 | 5.98 | 6.16 | 6.01 | 5.63 4.93
a/b = 1/2 -
: b, 7.05 6.97 | 6.01 3.70 2.28 1.25 b, | 10.8 12.8 12.8 8.16 | 4.88 2.62
a/b = 1/2
b, | 11.00 5.54 | 2.84 1.24 0.83 0.493 hy, | 7.66 8.33 8.13 | 5.33 | 3.20 1.65
a/b = 3/4
hy | 7.35| 3.8 | 1.86 0.556 | 0.261 | 0.129 h, | 23.1 | 13.1 5.87 | 1.90 | 1.23 0.883
a/b = 3/4
b, | 12.1 7.88 3.84 | 1.01 | 0.454 | 0.240
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Table 4-5 Table 4-7

F, V. and V, for a circumferentially

., b, and h, for a circumferentially cracked
cracked cylinder in temsion. 1" c31linder’in temsion with B/R. = 1/10.

alb =178 [ a/b =174 | a/b = 1/2 | alb = 374 D By w=m e e e )

F 1.16 1.26 1.61 2.15 n | 400 |5.13 | 6.09 | 7.69 | 9.09 |11.1

b/R, =1/5 ¥ 1.49 1.67 2.43 3.76 a/b = 1/8 wtlag1 | 563 | 6.5 | 7.85 | 9.09 | 10.9
V; 0.117 0.255 0.743 1.67 h§ 0.548 | 0.733 | 1.13 | 2.07 | 3.16 5.07

F 1.19 1.32 1.82 2.49 n | 4107 | 5.35 | 6.09 | 6.903 | 7.30 7.41

b/R, = 1/10 ¥ 1.55 1.76 2.84 4.72 a/b =1/4 bt | 458 | 5.36 | 5.84 | 6.31 | 6.44 6.31
Vi 0.180 0.290 0.885 2.09 h§ 0.7571 | 1.35 | 1.903 | 2.96 | 3.78 4.60

F 1.22 1.36 2.08 2.89 | 5.40 | 5.90 | 5.63 | 4.51 | 3.49 2.47

b/R, = 1/20 ¥ 1.59 1.81 3.26 5.99 a/b = 1/2 il 499 |5.01 | 4.50 | 3.48 | 2.56 1.67
’ V; 0.220 0.315 1.04 2.74 h§ 1.555 | 2.26 | 2.50 | 2.57 | 2.18 1.56

| 518 | 3.78 | 2.5 | 159 | 1.31 1.10
a/b = 3/4 h; 2422 | 2.79 | 1.67 | 0.725 | 0.48 0.300
w2 | 1.86 | 173 | 1.26 | 0.775 | 0.561 | 0.360

Table 4-6

Table 4-8
h,, h, and h, for a circumferentially cracked

¢ylinder in tension with b/Ri = 1/5, h., h, and h, for a circumferentially cracked

cylinder” in tension with b/Ri = 1/20.

n=1 n=2 n=3 n=2=5 n="717 n =10
n=1 n=2 n=3 n=235 n=717 n = 10
h1 3.78 5.00 5.94 7.54 8.99 11.1
a/b = 1/8 h2 4.56 5.55 6.37 7.79 9.10 11.0 . h1 4.04 5.23 6.22 7.82 9.19 11.1
h3 0.369 0.700 1.07 1.96 3.04 4.94 a/b = 1/8 ]12 4.82 5.69 6.52 7.90 9.11 10.8
h3 0.680 0.759 1.17 2.13 3.23 5.12
hl 3.88 4.95 5.64 6.49 6.94 7.22
a/b'.__= 1/4 h2 4.40 5.12 5.57 6.07 6.28 6.30 L : 111 4.38 5.68 6.45 7.29 7.62 7.65
- h3 0.673 1.25 1.79 2.79 3.61 4.52 ; a/b = 1/4 h2 4,71 5.56 6.05 6.51 6.59 6.39
| hs 0.818 1.43 2.03 3.10 3.91 4.69
: h1 4.40 4.78 4.59 3.79 3.07 2.34
a/b = 1/2 112 4.36 4.30 3.91 3.00 2.26 1.55 h1 6.55 7.17 6.89 5.46 4.13 2.77
' hS 1.33 1.93 2.21 2.23 1.94 1.46 a/b = 1/2 h2 5.67 5.77 5.36 4.08 2.97 1.88
]13 1.80 2.59 2.99 2.98 2.50 1.74
hl 4.12 3.03 2.23 1.546 1.30 1.11 |
a/b = 3/4 h2 3.46 2.19 1.36 0.638 0.436 0.325 hl 6.64 4.87 3.08 1.68 1.30 1.07
h3 1.54 1.39 1.04 0.686 0.508 0.366 a/b = 3/4 h2 5.18 3.57 2.07 0.808 0.472 0.316
h3 2.36 2.18 1.53 0.772 0.494 0.330
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Figure 4-1.

Axially cracked cylinder under internal pressure,

4-14

Figure 4-2.
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Circumferentially cracked cylinder in tension.
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Section 5
TWO-DIMENSIONAL FLAT PLATE MODEL OF A NOZZLE CORNER FLAW

5.1 _INTRODUCTION

In this section fully plastic solutions are presented for a nozzle cormer flaw
modeled by a flat plate with a central hole and a single radial crack., This
model is due to Yukawa [5-1] and is illustrated in Figs., 5-1 — 5-2. The analysis

assumes plane stress conditions. The plate is subjected to uniform stress dis-

tributions of different magnitude in the x and y directions. This crack confi-

" guration may be employed for two—dimensional modeling of & nozzle cormer flaw if
the hoop and axial stresses are simulated by imposing appropriate boundary condi-
tions on the plate. In many situations, especially for relatively thin reactor
vessels, the axial stress is typically half the hoop stress: therefore, in the
present study applied stress in the x direction was taken to be one—half the y

direction stress.

It is recognized that the nozzle corner flaw problem is truly three—dimensional
in nature. However, a two—dimensional model such as the one analyzed here may be
utitized for preliminary investigations, especially when three—dimensional

elastic-plastic calculations are extremely complicated and not available to date.

5.2 _FULLY PLASTIC SOLUTIONS

The plate is of width 2b containing a hole of radius R and radial crack of length
a (Fig., 5-2). The loading consists of a uniform stress distribution of magnitude
6 in the y direction and A o in the x direction. The fully plastic solutions

are given by the following expressions:

o n+l

T=ao e abh(a/R, n A (o /op) (5-1)

a e ahy(a/R, n; SICNE Sk




8§ =ae ah(a/R, n: Mo /o)?
o 3 ’ L

t (5-3)

where & = Uy(a, 0+) - Uy(a, 0 ) is the crack mouth opening displacement at the

hole. St denotes the crack tip opening displacement as before, a; and A c; are
the stresses corresponding to the limit load situation. From a lower bound

analysis 6; is given by

(2b - 2R - a) 50{'3_

op = 7oy ' » (5-4)

For a given A, the h functions in Egs. (5-1) - (5-3) are functions of a/R and n

only., In the present analysis A was taken to be 0.5 and plane stress assumed.

The solutions in this example were obtained employing the ADINA [5~2] computer
code, In the elastic case (n = 1), results presented here were found to agree
within 0.5% — 3% in K. with those given in Reference [5-3]. Finite element

I
meshes and other solution details can be found in Reference [5-4].

The functioms h1 and h2 are catalogued for several values of a/R and n in Table
5-1. Using the relationship between J and Gt discussed in Section 2, h3 can be
calculated from h, as follows: :

h, =d & 4 (5-5)
n 5

where dn is obtained from Fig. 3-2.

5.3 ELASTIC—PLASTIC ESTIMATION FORMULAE

In the linear elastic range, J and § can be written as

ﬁa 2 w2
=5 F (a/R:; Ao (5-6)
8 =% V,(a/R; Mo (5-7)

where the dimensionless function F is given in referemce [5-31]. Vi as a function
of a/R for A = 0.5 can be obtained from Table 5~2. For convenience, the above

equations are rewritten in the form

PR

J= fl(a; A =5 (5-8)

8 = £2(a; ) % (5-9)

2 -
where fl =g a F~ and f2 =aV

1°
By combining elastic terms given by Egs. (5-8) - (5-9) and fully plastic solu—
tions given by Egqs. (5-1) - (5-2), one obtains the following forms for elastic—

plastic formulae:

2
0@

. o a . w, o n+l _
J = fl(ae, A) 5—teo e ah 653 n; M) (o lop) (5-10)
= . s. 2 . e )2 -

5 = fz(ae, v) - tes a hz(b’ n; A (o /aL) (5-11)

where a, is the adjusted crack length as defined by Egs. (2-31) - (2-33).
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Table 5-1 -
h1 and 112 for the two—dimensional model of nozzle corner flaw.
n=1 n=2 n=3 n=3
h1 10.2 11.9 10.5 9.0
a/R = 1/8
h2 9,50 | 10.8 10.1 8.80
hl 7.71 8.98 7.50 6.85
a/R = 1/4
112 8.30 8.73 7.59 6.74
h1 4,91 5.39 4.30 2.73
a/R = 1/2 ’
h, | 6.51 | 6.17 | 4.94 | 3.01 ) @
n | 3.63 | 3.82 | 3.03 [ 1.88 ‘ FLAWS
a/R = 3/4
h2 5.48 4.84 3.80 2,23
111 2.93 3.04 2.41 1.48
a/R=1 /)
h2 4,78 4.06 3.14 1.80 {\M
Figure 5-1. Schematic of a nozzle corner flaw,
\J
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Figure 5-2. Two—~dimensional flat plate model of a nozzle corner flaw.
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Section 6
CRACK DRIVING FORCE DIAGRAM: APPLICATIONS AND VERIFICATION OF THE
ENGINEERING APPROACH

6.1 INIRODUCTION

As discussed in the earlier sections, the J—integral crack driving force for a
given flawed body can be obtained by superposing the elastic and fully plastic
solutions according to the estimation procedure. By comparing the crack driving
force with the material resistance to crack growth, ome can predict various quan-—
tities of interest associated with the fracture behavior. As indicated in Sec-
tion 2, several different types of diagrams can be computed depending upon the
specific application. In this section attention will be focused on the crack
driving force diagram, which is basically a plot of the J-integral or the CIOD
versus crack length and applied load (or displacement). In this section atten—
tion will be focused on the crack driving force diagram. Constrﬁction of the
diagram and applications will be discussed in detail. In most éases, predicted
results obtained from analyses using the diagram are compared with experimental
data and/or detailed finite element calculations, Hence, the material presented

serves to provide a verification of the engineering approach.

When the crack driving force diagram is used together with the material J-
resistance (IR) curve, a complete history of deformation and crack growth
behavior is predicted. This includes a prediction of the load at crack initia-
tion (i.e., omnset of crack propagation), extent of stable growth prior to insta—
bility, load at instability, maximum load carrying capacity and load-displacement
behavior. In many instances a complete analysis is not necessary, in which case
one can use the estimation formulae to calculate specific guantities of interest.
This point will also be addressed here in some detail,.

The crack driving force diagram can also be dsed to estimate J_ curves given the

R
load~displacement test record. This procedure will be explained and a comparison

of predicted and experimental J_, curves is given,

R
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It is important to note that conditions for instability of cfack growth and the
effect of system compliance discussed in Section 2 can be incorporated in crack
driving force diagrams in a convenient manner. Examples of this will be
presented here; it will be shown in the section to follow that results thus

obtained are consistent with those from stability diagrams.

6.2 _EXAMPLE CRACK DRIVING FORCE DIAGRAM FOR A COMPACT SPECIMEN

An example crack driving force diagram will be presented for a compact specimen’
of A533B steel, Typical input required for this analysis consists of material
deformation properties in terms of the uniaxial stress—strain curve, specimen
size, crack length and applied loading. When constructing a crack driving force
diagram one is usually interested in a range of values for crack length, applied
load and/or displacement, rather than specific values. For test specimens this
range may be chosen on the basis of the test data being simulated; in other cases
the ranges should be broad enough to encompass the crack growth and deformation
behavior being predicted. This may come from past experience, intuition or other
considerations. However, if no a priori knowledge is available, the trial and

error procedure can be used to arrive at the range of interest.

The uniaxial stress—strain curve for A533B steel at 93°C (200°F) and its
characterization by the Ramberg-Osgood law are given in Fig. 6-1, Values for E,
.v and o, are taken to be 30 x 106 psi, 0.3 and 60 x 103 ﬁsi, respectively. The

least squares curve fitting method yields values for a of in12 and n, 9.7.

The specimen sizé»analyzed corresponds to the 4T (4 in. thick) ASTM standard com—
pact speciqen with a 25% side—groove (see Fig. 3-3). The objective in éonstruct—
ing the craék driving force diagram in this case is to simulate the load-
displacement.ﬁehavior of a test described in Reference [6-1] for specimen T-52.
The initial créck length in this case is 4.615 in. (b = 8.0 in.). The ranges of
values for a, P and AL were selected on the basis of observed crack growth test

data. Plane strain behavior is assumed in the analyses.

Elastic-plastic estimation formulae for a compact specimen were given earlier in

Section 3.2 and are repeated below.

T=ta) brtao, e o n (a/b, n)[p/R 1" (6-1)

6~2

o
i

P n
fz(ae) Frtoee 2 h2 (a/b, n)[P/Po] (6-2)

£,(a,) EI—:~+ ae_ ahy(a/b, n)[P/P_I". (6-3)

AL

For a given value of n, values of h_, h2 and h3 are read from Table 3-1 for a
range of a/b. On substituting the values of h in the above formulae, J, & and AL
can easily be computed for the range of a and P of interest. These quantities

provide the ingredients for the crack driving force diagram.

The diagram in the present case is expressed in terms of J vs. a. Such curves
with P as the parameter are shown in Fig. 6-2. These curves are calculated
directly from Eq. (6-1). The calculation of J versus a curves with AL as the
parameter is performed in a different manner. For a given AL’ Eq. (6-3) is

solved numerically, by Newton's method for example, to obtain P corresponding to

-various values of a. From the a and P values the J—integral can then be computed

directly from Eq. (6-1), thus yielding J versus a curves for & fixed AL. Curves
thus generated are shown in Fig. 6-3. Since the intent here is predict P—AL
behavior as the crack grows, it is convenient to combine the two families of
curves into ome diagram, as illustrated in Fig. 6.4. The solid lines indicate

fixed load and the dashed lines, fixed AL.

An experimentally determined J-resistance curve [6-1, 6-2] is superimposed on
Figs., 6-2 — 6—4 at the initial crack length of 4.615 inches as indicated by the
thicker solid line. Equilibrium of crack growth requires that the applied crack
driving force in terms of J equals the material resistance to crack growth, JR'
Thus, a fixed load line (solid line) and fixed displacement line (dashed line)

that intersect at a point on the ¥, curve yields the respective values of P and

R
AL which are in equilibrium at that crack length. By examining for this condi-
tion at different points along the IR curve, the complete load-displacement

behavior is obtained for the range of deformation and crack growth occurring in

the test.

Figure 6—5 shows the load-displacement behavior obtained by the foregoing pro—
cedure together with the experimental data and finite element calculations for

the same configuration based on J, flow theory of plasticity. (Note that the

2
load/unit thickness from the crack driving force diagram is multiplied by the net
thickness, 3 in this case, to obtain the total load used in this figure,) The

point corresponding to the onset of crack propagation (customarily termed crack
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initiation) is indicated. The agreement between all three sets of results is
very good; in fact the estimated curve completely follows the trends of test
measurements and the detailed finite element solution. Further details on the
experimental data and finite element crack growth calculations are given in
References [6-1] and [6-21.

It is noted from Figs. 6~2 ~ 6-4 that the response of this specimen under dead
load (curves corresponding to P held constant) is markedly different from its
behavior with displacement held fixed. The J-integral crack driving force
increases with crack length when load is held constant and it decreases with
crack length in the case of fixed displacement. However, for a sufficiently com-
pliant loading system the crack driving force for fixed total displacement will
increase with crack length; this feature will be illustrated later in another

example.

Other information on crack growth behavior can also be obtained from these fig—
ures. For example, the load at the onset of crack growth is given by the inter-—
section of the constant P curve with the JR carve at the defined value of JIc'
The maximum attainable load during crack growth is defined at the point of
tangency of a constant P curve and the IR curve. This is illustratgd on Figs.,

6—2 and 6-4.

In view of the condition defining instability, Eq. (2*19);3the onset of instabil~
ity and corresponding load is characterized by the point atxwhich a constant
total displacement curve becomes tangent to the JR curve. It is evident immedi-
ately that the maximum load also gives the instability load for an infinitely
compliant system (dead load for example), in which case constant load and total
displacementvgurves coincide with each other. However, in the present example it
is clear from.éjther Fig. 6—3 or 6—4 that constant displacement curves have nega—
tive slope, whereas the JR curve has positive slope. There is no constant dis—
placement curve tangent to the IR curve and therefore the instability condition

cannot be met, Crack growth in this example will therefore be stable.

The amount of stable crack extension can be determined from the crack length.
The deformation and crack growth behavior of configurations and different initial

crack lengths can be predicted by simply sliding the J, curve along the crack

R
length axis,

6-4

Following the procedures described above, the load-displacement behavior of
several other compact specimens have been determined as shown in Figs., 6-6 — 6-8.
The material in each example is A533B steel and plane strain conditions were
assumed. The initial crack length, amount of side—groove and other pertinent
analysis details are indicated on the figures. Again comparisons of the .
predicted results are made with experimental data and/or finite element calcula-
tions. Close agreement is observed between results in all cases, Examples
presented in this section and another example on plane stress are discussed in

Reference [6-31.

6.3 _INSTABILITY ANALYSIS USING THE CRACK DRIVING FORCE DIAGRAM

Stability of crack growth can be examined within the framework of the crack driv-
ing force diagram. This will be illustrated here with the example of the 4T, T-
52 compact specimen previously discussed but now including test machine compli-

ance.

Reviewing the prgvious discussion, the instability condition on the crack driving
force diagram is characterized by the point of tangency between the JR curve and
a J versus crack length curve with the total displacement AT held constant .
(AT = A + CM.P)' There are two limiting situations of applied loading: (1) the
load controlled or dead load system (i.e., CM = w) and, (2) the displacement con—
trolled system (CM =.0)., Internal pressure on a flawed cylinder is an example of
the dead load system and a test machine typically represents the latter example.
The instability condition is semsitive to the actual compliance, and an analysis
using the crack driving force diagram should employ the value of C, corresponding

M
to the actual crack configuration/applied loading system.

First consider the J-integral crack driving force diagram for the 4T compact
specimen subjected to fixed grip loading as shown in Fig. 6-9a (i.e.,

CM =0, AT = AL; values of AT are indicated on the figure). The material J-
resistance curve is superposed on this diagram as indicated. Note that this fig-
ure is identical to Fig. 6—3 and is reproduced here for convenience of example.
Crack growth will clearly be stable in this case since the driving force

decreases with increase of crack length and the J_ curve rises with crack growth.

R
That is, the instability condition, Eq. (2-19) is never met for this combination
of crack configuration and imposed loading. One can readily observe this by

sliding the J_ curve along the crack length axis to correspond to different

R
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initial crack sizes.

Figure 6—9b shows the crack driving force diagram for a soft loading system
_ -5
(CM = 3.3 x 10

curves in this case correspond to AT held fixed at the values indicated. For an

in./1b.) acting on the compact specimen. The driving force

jnitial crack length of 4.615 in,, the diagram indicates that an unstable condi-
tion will develop after about 0.4 in. of stable growth. The instability point is
clearly demonstrated on the figure. The value of J at this point is

12,000 in.—lb./in.z; the corresponding critical load Pcr at instability can be
determined from Eq. (6-1) by using this J and the associated crack length a =
4.615 in, + 0.4 inch. In this case Pcr = 42 kips/unit thickness.

The case of a dead load system (CM = o) is illustrated in Fig. 6;90. It is noted
that constant total displacement curves in this situation are identical to con-
stant load curves as shown. It is easily seen from this diagram that a crack
with initial length of 4.615 in. will grow about 0.12 in. before imstability
occurs at an applied load of about 47 kips/unit thickness and applied J of about
6,000 in.—lb./in.z. The corresponding tearing modulus is given by the slope of
the JR curve at the instability point. As stated earlier, the instability load
for a dead load sitmation is also the maximum load carrying capacity of the

structure.

-The above examples illustrate that the extent of stable dgack growth and the ins-
tability load are strongly dependent on the loading system\and the material pro—
perties, The amount of stable growth decreases with increasing compliance; the
values of 7T, T& énd applied load also depend upon the compliance of the:loading
system, Tge crack driving force diagram is in essence a graphical solution to
erack growthﬁ;tahility as posed by Eq. (2-19). Imn this approach the material
strain~hardeﬁing properties and the system compliance are implicitly accounted
for in the cra;k driving force term. Furthermore, the extent of stable growth
prior to instability, the value of J (and TJ) at instability and the Iqad carry—
ing capacity of the configuration at various stages of growth are explicitly

given by the graphical solution.

In some applications, it is convenient to explicitly plot tearing modulus TJ
versus various parameters such as J, crack length or applied load. This will be

discussed in detail in Section 7.

6.4 CRACK DRIVING FORCE DIAGRAM FOR A CIRCUMFERENTTALLY CRACKED CYLINDER IN TEN-
SION

This example will consider the crack growth and stability behavior of the cir—
cumferentially cracked cylinder under remote tension shown schematically in Fig.
4-2. The material properties chosen correspond to 304 stainless steel. The
Ramberg—Osgood law is msed to characterize the uniaxial stress—strain data as
shown in Fig. 6-10. A least squares fit of the experimental data gives the
relevant material parameters as « = 1,69 and n = 5.42., Values of E, v and co
(yield stress) are taken to be 30 x 106 psi, 0.3 and 30 x 103 psi, respectively.

R
ized in the present analysis.

The material J. curve for 304 stainless steel given in Reference [6-14] is util-

Geometrical dimensions of the cylinder are taken to be as follows: Inside radius

‘Ri = 90 in., outside radius Ro = 99 in,, wall thickness b = R0 - Ri = 9 in., and

length 2L = 180 inches. The initial crack size 2, is assumed to be 2,25 in.,
which corresponds ‘to aolb = 1/4., Although these dimensions are rather unrealis-—
tic for 304 SS, it is not of great concern since the objective here is only to

illustrate the methodology.

Following the procedure described in Section 6.2 and using the relevant elastic-
plastic estimation formulae (Eqs. 4-24 — 4-26) and tables from Section 4, the J-—
integral crack driving force diagram is constructed as shown in Fig. 6-11. The
solid lines indicate the variation of J with crack length for applied stress held
fixed and the dashed lines for displacement held constant, The material IR curve
is superposed at the initial crack length of 2.25 inch. Values of load and dis—
placement associated with various points on the JR curve yield the load displace-
ment behavior during crack growth. Other quantities of interest such as maximum
load, values of load at crack initiation and instability and the extent of stable
growth are predicted in the same manmer as in the c&mpact specimen example, Sec—

tion 6.2. Also, sliding the J_ curve along the crack length axis will yield the

R
crack growth and deformation behavior corresponding to different initial crack

sizes,

The predicted results for applied stress versus remote displacement are illus—
trated in Fig, 6-12. Load at the onset of crack propagation is clearly indi-
cated, and the instability phenomenon is denoted by a break of the curve at its

terminal point. It is noted that in this case load at instability coincides with




the maximum load. This is consistent with discussion in Section 6.3 because con-—

stant load and constant displacement in Fig. 6-11 are close to each other,

Fig. 6—13 shows the crack driving force diagram plotted in an alternate form of
J-integral versus applied load with crack depth, a/b, as the parameter. Such
curves are often convenient when making instability predictions from stability
diagrams; this will be discussed further in Section 7., For a/b = 1/4, the
engineering approach results are also compared with finite element computations
based on both the flow and deformation theories of plasticity. Agreement between
results is excellent, Similar agreement between predicted and finite element
results is also observed for the other fracture parameters, namely mouth opening
displacement & and load—-point displacement A. These are shown in Figs. 6-14 and

6415, respectively.

6.5 CRACK DRIVING FORCE DIAGRAM FOR AN AXTAILY CRACKED CYLINDER UNDER INTERNAL
PRESSURE

This example considers the problem of an axial crack in an internally pressurized
cylinder, examined as shown in Fig, 5-1, The analysis is for A533B steel. The
stress—strain properties (E, v, o @ and n) and Ichurve are the same as those
used in Section 6.2. The selected dimensions of the cylinder correspond to the
size of a typical reactor pressure vessel and are as follows: Inside radius Ri =
90 in., external radius R0 = 99 in,, wall thickness b = RG»_ Ri = 9 inches, The
initial crack length a is taken to be 2.25 in. so that ao/b = 1/4. It is
assumed that the cylinder is sufficiently long that plane strain conditions are

applicable.

The relevanéuglastic—plastic estimation formulae are given by Egs. (4-7) and (4-
8). Using théSe equations in conjunction with elastic and fully plastic solu—
tions catalogued in Section 4.2, a J-integral driving force diagram is generated
as shown in Fig, 6-16. The procedural details are similar to those of the exam—
ples discussed earlier. The diagram plots J versus crack length with internal
pressure p as the parameter., The JR curve is superimposed on this diagram at the
initial crack length of 2.25 inch. The instability pressure is determined from
the constant pressure line which is tangent to the IR curve, The extent of
stable growth is calculated by subtracting the initial crack length from the
crack length associated with the instability point. Since internal pressure in

the cylinder acts as a dead load (i.e., C

M =), the instability pressure also
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gives the maximum load carrying capacity. Sliding the J, curve along the crack

. R
length axis allows straightforward predictions of structural response correspond-

ing to different initial crack sizes.

Figure 6-17 shows a recasting of the crack driving force diagram on J-integral
versus internsl pressure coordinates, with a/b varying. For a/b = 1/4, results
obtained from finite element calculations (based on deformation theory of plasti-
city) are compared with the engineering approach predictions. Observed
discrepancy between the two solutioms at higher values of pressure is due to the
fact that the mesh employed in finite element calculations was not the most
appropriate one to model this problem. This point is elaborated upon in Refer-
ence [6-7]1. In any case, the two results do exhibit a consistent trend without

any serious concern,
6.6 _FURTHER APPLICATIONS OF THE ENGINEERING APPROACH

6.6.1 Prediction of Load-Displacement Behavior

As discussed in the preceeding material, a crack driving force diagram can be
used together with the JR carve to determine the complete crack growth and defor-
mation behavior of a cracked body. However, it may not be mnecessary to construct
the diagram if the objective is to predict only some specific rather than ’
detailed aspects of the overall structure response. In many problems, for exam-—
ple, one is interested only in the load—displacement behavior, This can be
obtained by wusing the IR curve and the estimation formulae, and does not require
constructing a detailed crack driving force diagram., This application will be

described next.

Given the material Jp (Aa) curve and the initial crack length a _, the crack
length associated with a point on the IR curve during the crack growth process is
simply a = a, + Aa, Since equilibrium of crack growth requires that J(a, P)
equals JR (a ~.ao), Eq. (2-18), it gives the value of applied J associated with
the crack length a for the specific crack configuration under consideration.
These values of J and a are used in Eq. (6-1) to solve for the corresponding
value of P numerically, for example, by Newton’s method. The values of a and P
thus obtained are then employed in Eq. (6-3) to determine the load-line displace—-
ment. By repeating this process at various points along the JR curve, a complete

load versus load-line displacement curve can be generated.
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The example geometries discussed in the previous material were also analyzed by
employing the procedure described above. The resulting load versus load—-line
displacement curves in all cases were identical to those obtained from crack
driving force diagrams. Further examples are presented in References [6-3] and
[6-51 — [6-81.

6.6.2 Determination of IR Curves from Load-Displacement Records

There are often examples in experimental test programs where it is practical to
measure the load-displacement behavior, but not the J-resistance response. Tests
on irradiated material present a common example of this situation. The engineer—
ing approach can be applied to "back—out” the J-resistance curve for an extended
interval of stable crack growth. This application was first developed in Refer-

ence [6-3] and will be outlined below.

The example of the 4T compact specimen of A533B steel with initial crack length
of 4,615 in, is again uwsed. Since the specimen has 25% side—groove, the fracture
behavior is approximated by plane strain conditions, Using the material con—
stants corresponding to the Ramberg—Osgood stress—strain law for A533B steel as
determined in Section 6.2, and the respective fully plastic sol@tions from Sec-—
tion 3, the J—integral crack driving force diagram is generated‘ﬁsing Egs. (6-1)
and (6-3) and the procedure described in Section 6.2. Figs. 6—-18 and 6-19 show
the experimental load-displacement curve and the calcnlgted crack driving force
diagram, respectively. In Fig. 6-19 the solid (load) and dashed (displacement)
lines are identified which correspond to respective measured values of load and
load-1line disﬁlacement on Fig, 6-18 (that is, the values of P and AL;for a point
on the PTAL curve), The intersection of these two lines gives the values of J
and crackﬂ}ength a that satisfy the given P and AL for this particular crack con—
figuratiOn.l By repeating this process for other measured values of load and

load—line displacement (that is, other points on the P—AL curve), the J, curve

R
may be constructed. The procedure is clearly demonstrated by the data points on

the two figures.

Figure 6—20 shows a comparison of the IR curve estimated from the above procedure
and actual experimental data. Results for another 4T specimen

(ao/b = 0,615 in, and 12.5% side—groove) are also included. The good agreement
between the predicted and measured curves clearly suggests that the J, can be

R
estimated to a fair degree of accuracy by the procedure outlined.
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Construction of the crack driving force diagram can be bypassed in this applica-—
tion by proceeding directly with Egs. (6-1) and (6-3). For any load-displacement

pair from the P-A_ curve, the nonlinear equation (6-3) is solved numerically by

L
Newton's method, for example, to obtain a and thus Aa. Knowing P and a, the

corresponding J is calculated from Eq. (6-1). This yields the J-Aa pair
corresponding to the particular P-A

L
curve, the IR curve is determined as a function of Aa.

pair. By repeating this procedure for vari-
ous points on the P“-AL
The J_ curves obtained by the above two procedures are identical, as they should

R
be.

A note of caution must be made. The IR curve obtained from a specimen load-
displacement record using the above procedures or other procedures will be the
proper material curve only if the conditions for J—controlled growth [6-9, 6-10]
are satisfied by the specimen being analyzed. If not, the estimated J, curve may

R
not be conservative.

6.7 _SUMMARY

The examples presented in this section illustrate that fracture behavior of
flawed structures under elastic—plastic and fully plastic conditiomns can be reli-
ably predicted employing the engineering approach together with conditiomns fo}
crack growth and instability. For a comprehensive analysis of a given crack
problem, a crack driving force diagram may be generated which allows straightfor-
ward predictions of various fracture gquantities of interest, such as load at the
onset of crack propagation, extent of stable growth prior to instability, load at
instability, maximum load carrying capacity and load—-deformation behavior. Accu-
racy of the methodology was assessed by comparing the predicted results with
experimental data and detailed finite element calculations for a variety of crack

problems.

Some other applications of the crack driving force diagram were also discussed,
an example being the estimation of the JR curve from load—displacement records,
It was also shown that the compliance of a loading system has a significant
influence on the crack growth and instability behavior. The effect of system
compliance is treated by the crack driving force diagram in a very material and

systematic fashion,
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When applying the engineering approach to a fracture problem of interest, the
conditions for J—controlled crack growth [6-9, 6—-10] as summarized in Section 2
should be kept in mind. Although such conditions impose certain limitations on
the approach, a limited study carried out in Reference [6—8] suggests that the
conservative predictions will result for non-J-controlled growth conditions,
Also, it was shown in Reference [6-3] that the effect of scatter in the experi-
mental Jr-curve data is relatively small on the overall load-displacement
behavior. These topics are treated in much greater detail in the references

cited above.
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Figure 6-2. J—integral versus crack length curves with load as the parameter

for a 4T, T-52, plane strain compact specimen of A533B steel. The
material J_, curve is indicated by the heavy solid line at the ini-
tial crack length of 4.615 inches.
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fo 304 STAINLESS STEEL (ROOM TEMPERATURE)
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CRACK LENGTH (in)
o € = 0.001
7o} 70 = 0
« 20
£3 T 60
e” =
2 o
E7
- [
o @ 50 B
g4.4 4.6 5 5.0 5.2 5.4
CRACK LENGTH (in) v 40
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2o STRAIN
Figure 6-10, Ramberg—0Osgood characterization stress—strain curve for 304 stain-

:"0'0

4 4.6 4.8 5.0 5.2 5.4 less steel at room temperature.
CRACK LENGTH (in)

Figure 6-9. J—integral crack driving force diagrams for A533B steel, 41, <20%
side—grooves, plane strain compact specimen with initial crack
length of 4.615 inches. (a) Displacement controlled situation, T,
= 0, (b) soft loading system, C, = 1000, and (c) load-controlled

situation, CM = o, M
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Figute 6-11.,
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J-integral crack driving force diagram for a circumferentially
cracked cylinder of 304 stainless steel,
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REMOTE STRESS, o®(Ksi)

Figure 6-12.
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Load-~displacement behavior of a circumferentially cfacked cylinder
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Measured load—displacement behavior of a 4T, T-52, 25% side—grooved
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Figure 6-19. Crack driving force diagram for a 4T, T-52, 25% side—grooved, plane

strain compact specimen of A533B steel.
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J (IN-KIP/IN?2)

Figure 6-20.

30

== ESTIMATION METHOD
EXPERIMENT

e aob = 0.58, 25% SIDE GROOVE

25— A aJb = 0.63, 12.5% SIDE GROOVE

I | | ]
0 0.2 0.4 0.6 0.8 1.0

Aa (IN)

J., curve predicted from the measured load-displacement records and
crack driving force diagrams for T-52 and T-32 compact specimens of

A533B steel. The experimentally measured IR curves for the two
specimens are also indicated.
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Section 7
STABILITY ASSESSMENT DIAGRAMS

7.1 _INTRODUCTION

The discussion in the previous section showed how the stability of a flawed
structure %an be analyzed through the use of a crack driving force diagram. In
some applications it is convenient to calculate the tearing modulus explicitly
and plot it as a function of the relevant flaw and structure parameters. Such
curves are termed stability assessment diagrams, and are basically a compression
of the information contained in the crack driving force diagram. This section
discusses a procedure for computing stability assessment diagrams and their

applications to examining stability of crack growth in flawed structures.

The concept of tearing modulus was introduced in Section 2 and will be expanded
upon here. Tearing modulus based on the J-integral was proposed by Paris, et al,
[7-11, and was developed further by Hutchinson and Paris [7-2]. In the latter
work, a theoretical basis and conditions for use of the J-integral during crack

growth were formulated. The tearing modulus TI is defined as

34 : (7-1)

da AT

ey
oqwlm

where AT denotes total displacement, to be defined subsequently. The material

resistance to instability is represented by TJR and is defined by

ar
R
TR rre (7-2)

oqwlm

The stability conditions are stated as

TJ < TJR (stable) _ (7-3)




T 2 Tip (unstable)
The subscript in Eq. (7-1) denotes a partial derivative with the total displace-

ment AT held fixed; AT is defined by
= 7-4)
AT , A+ CM P (

where CM denotes compliance of the system and can be identified with the compli-
ance of a linear spring placed in series with a cracked body as shown in Fig. 7-
1. It represents stored energy in the system containing & cracked body. Length
of a circumferentially cracked pipe, diameter of an axially cracked pressure

vessel and size of a vessel containing a nozzle corner flaw are typical examples

of system compliance., A general expression for (BJ/aa)AT appearing in Eq. (7-1)

was derived in Reference [7-2] and is given by

a1, _ 83, _ T, 9A 8A, 1-1 _
(H)AT = GDp - @9, GIp [cM + (ap)a] . (1-5)

It is evident from the above discussion that for given material properties and a
given crack configuration the tearing modulus is a function of a, P and CM’ i.e.,
TJ = TI(a, P, CM)‘ CM has a strong influence on the instability behavior. There
are two limiting situations: (1) CM = (0, corresponding to a displacement con—

_trolled situation, for example a rigid test machine and (?) CM = o, representing

a load controlled situation, exemplified by a dead load ofginfinitely soft sys—

tem. For the latter case, Eq. (7-5) simplifies to

&, 8y

G, = Ga'e (1-6)

In a given prdblem if the system compliance cannot be easily evaluated or
modeled, CM can be taken to be « since it represents the worst case behavior and
would yield a conservative estimate of the extent of stable crack growth.

The problem of calculating tearing modulus reduces to finding the partial deriva-
tives of J and A on the right-hand sides of Eq. (7-5) or (7-6). The discussion

in earlier sections showed that J and A are functions of a and P only. This is

¥ = J(a, P) (1=

7-2

A = A(a, P) . (7-8)

where the explicit functional forms for e Ramberg—Osgood material were given in
Sections 3 through 5. (Similar expressions for other uniaxial stress—strain pro—
perty representations are given in Appendix A.) The derivatives in Eq. (7-5) or
(7-6) can be evaluated by performing analytical or numerical differentiation on
‘detailed expressions for J and A, An example of the analytical differentiation
procedurelis illustrated in Reference [7-3] to derive a tearing modulus expres—
sion for a circumferentially cracked cylinder in tension. TJ formulae for other
crack configurations can be obtained in this manner by following the algebraic

manipulation procedure illustrated.

Numerical evalunation of the derivatives can be carried out using forward or
centered~difference differentiation schemes [7-4]. To illustrate this, consider

the forward-differentiation scheme applied to Egs. (7-7) and (7-8):

@I, _I(a+Aa, P) - J(a, P)

da’'P Aa

8Y, _ J(a, P + AP) - J(a, P) _
¢5§9a = P . (7-9)
@Ay _Ala * Aa, P) - Als, P)

9a' P As

(_aA) _ Ala, P + AP) — A(a, P)

oP'a AP

By choosing suitable values for Aa and AP and employing Eq. (7-9) with the expli-
cit expressions for J(a, P) and A(a, P) in Sections 3 through 5, the various

terms in Eq. (7-5) can be computed. Once (aJ/aa)AT has been obtained, the tear—

ing modulus TJ can be computed via Eq. (7-1) for any desired value of a, P and
CM' Depending upon the problem being analyzed, it may be more suitable in some

cases to use a centered-difference scheme; Eq. (7-9) are then appropriately modi~
fied [7—4] .

Given the material properties E, v, a, Go and n and the system's compliance CM’
the applied tearing modulus for a flawed structure can be calculated for the
entire range of a and P values of interest, The corresponding crack driving
force (J-integral) can be computed by using the estimation formulae described in

the earlier sections. Having obtained this information, the stability assessment

7-3




diagram can be easily comstructed on coordinates of TI versus J or TJ versus a
for constant values of the other relevant parameters. It has become customary to
plot TJ versus J with a/b and CM as parameters, but other combinations may be
more appropriate for the problem of interest., By superposing the material resis-
tance (fJR versus IR) curve, the regions of stable and unstable behavior can be
jdentified through the instability criteriom, Eq. (7-3). In subsequent discus-
sion, example stability assessment diagrams are presented for a compact specimen,
an axially cracked cylinder under internal pressure and a circumferentially

cracked cylinder under remotely applied tension,

If it is desired to employ the crack tip opening displacement St as the charac-—
_ terizing parameter in place of J, the foregoing analysis is suitably modified via
the relationship between St and J, Eq. (2-4). Following Reference [7-5], the

tearing modulus T8 based on St is defined

das
_E 3% S _
T8 = -;;— (-afa-)At and TSR = 5 rre (7-10)

and the condition of Eq. (7-3) is restated as

T5 < T8R (stable) : (7-11)

T5 Z'TSR (unstable)

Eqs. (7-5) = (7-9) still hold except that J is now replaced by St. The calcula-

tional procedure for T8 is identical to that described above for TJ., An example

is presented in Reference [7-6].

stability diagram in terms of T8

1.2 STABItITY ASSESSMENT DIAGRAM FOR A COMPACT SPECIMEN

The compact specimen illustrated in Fig. 3-3 is used in this example. The
material is A533B steel with the uniaxial stress—strain properties summarized in
Section 6 (see Fig. 6—1). Both plane strain and plane stress conditions are con-—
sidered. The crack length—to—specimen width ratio a/b is taken to be 0.75. The
specimen size corresponds to 4T specifications. The relevant elastic-plastic
expressions for J and AL are given by Egs. (3-12) and (3-14). The partial
derivative in the definition of TJ was obtained numerically in this case by the

forward—-difference scheme, Eq. (7-9). A wide range of‘Eh ( M= E CM) values are

utilized to represent various loading situations ranging from a typically rigid
to a soft testing machine., The diagrams presented are also given in Reference
[7-71.

$

Figure 7-2 shows the curves of TJ versus J (normalized by ¢ 6i/E) for various

values af‘Eh. The solid lines correspond to plane strain and dashed lines to

plane stress, ‘Eh varies from 10 to 100 for a typical test machine and TI is less

than 5 over this range. For A533B steel TJR typically ranges from 50 to 200 [7-

8]. Thaus, TJ < TIR in these cases and crack growth in deeply cracked compact
specimens will be stable., However, it can be concluded from this discussion that
a dead load or an extremely soft testing machine is required to induce instabil—
ity in this specimen., It is also noted that in this example TJ associated with
plane strain conditions is larger than that for plane stress. This observation

was also made in Reference [7-2].

An alternate form of the stability diagram is illustrated in Fig. 7-3. Here 1}

is plotted against crack length at several constant load levels for a soft test~
ing system (Eh = 1000) and plane strain conditions. The dependence of T} on

applied load and crack length is clearly demonstrated. Again, since TJ < TJR the
crack growth will be stable. Such diagrams are useful in obtaining various com~

binations of a and P at which an instability condition will develop.

7.3 STABILITY ASSESSMENT DIAGRAM FOR AN AXTALLY CRACKED CYLINDER UNDER INTERNAL
PRESSURE

The axially cracked cylinder (subject to internal pressmre) illustrated in Fig.
4-1 is used in this example., The material is A533B steel and material stress—
strain and fracture properties are given in Section 6-2. The analysis assumes
plane strain conditions. Since internal pressure in this case behaves as a dead
load, CM = o gnd Bq. (7-6) is applicable. The pertinent elastic—plastic formulae
for J are given in Section 4.3. The cylinder dimensions are chosen to correspond
to a typical reactor pressure vessel, namely Ri = 90 in., R0 = 99 in, and b =

R0 - Ri — 9 inches, This example is identical to that discussed in Section 6.
The tearing modulus was computed numerically by the forward-difference method,
Eq. (7-9)-.




Figure 7—4 gives the stability assessment diagram. The solid lines represent

applied J versus applied T, for several crack length—to—wall thickness ratios.

J

The material J ~ curve, obtained from the material JR curve via Eq., (7-2) is

R TJR
shown by the dashed line. As stated by Eq. (7-3), the dashed curve separates the

stable and unstable regions. In the stable region, TJ is less than TIR' and in

the unstable regime TJ exceeds TJR' For a given a/b, the critical value of J
corresponding to instability is given by the point of intersection of the JRfTJR
curve with a I---TJ curve., The critical value of J thus obtained can be used to
enter the crack driving force diagram of Fig. 6-17 to predict the instability

pressure,

7.4 STABILITY ASSESSMENT DIAGRAM FOR A CIRCUMFERENTTALLY CRACKED CYLINDER SUB-
JECTED TO REMOTE TENSION

This example considers a circumferentially cracked cylinder of 304 stainless
steel subjected to remote uniform temsion. The crack configuration is illus—
trated in Fig, 4-2. The material properties are taken from Section 6.4, and
cylinder dimensions are the same as employed in Section 6. A worst case analysis
was performed by taking the compliance CM as infinity; Eq. (7-6) applies. The
appropriate elastic—plastic formulae for J are given in Section 4.3, The tearing
modulus was computed through Eq. (7-9) for this example, but it could as well
have been calculated from the analytical expression for TJ derived in Reference
[7-31.

The tearing modulus thgs obtained is plotted in Fig. 7-5 on J versus TI coordi-
nates with crack depth as the parameter. The material resistance relationship
obtainéd from the IR curve via Eq. (7-2) is represented by the dashéd line., The
safe aﬂdlunsafe regions are indicated on the figure. The critical values of J
and a coéiesponding to instability can be readily obtained and used with an asso—

ciated crack driving force diagram (Fig. 6-13) to predict the instability load.
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Section 8

FATLURE ASSESSMENT DIAGRAM
8.1 _INTRODUCTION

The failure assessment diagram, introduced in Section 2,will be discussed in
detail in this section. These diagrams are convenient in a preliminary investi-
gafion of the safety margin of a flawed structure. The concept of a failure
assessment diagram has mainly evolved from work at the Central Electricity Gen—
eration Board (CEGB) of the United Kingdom, and is based on the "two criteria”
approach of Dowling and Townley [8-1]. The present form, also referred to as the
BR-6 diagram, is due to Harrison, Loosemore and Milne [8-2]1. It was generalized
to include consideration of thermal and residual stresses and crack growth by

Chell [8-3]1 and Milne [8-4], respectively.

In essence, a failure assessment or R-6 diagram represents a transition curve or
interpolation between two distinctly separate mechanisms of failure: brittle
fracture as governed by the LEFM defined fracture toughness, KIc’ and plastic
collapse governed by the limit load, Po' In the CEGB approach, the interpolation
curve between these two cases is obtained by using the Dugdale solution for the )
plane stress problem of a finite crack in an infinite sheet of elastic—perfectly
plastic material subject to remote temsion. The coordinates employed in such sa

diagram are Kr and Sr’ which are defined as follows:

_ KI(a, P)
T KIc

P
S: =%

o
KI(a, P) is the elastic stress intensity factor. A typical R-6 diagram is illus—
trated in Fig. 8-1. The region bounded by the axes and the failure (R—6) line is
the sate regime. Any load and crack size combination that falls beyond the

failure line may lead to failure of the structure being analyzed. In marginal

situations where the point defining load and crack size lies in close vicinity of




the failure line, a more detailed evaluation using the crack driving force
diagram or stability diagram will yield a more precise estimate of the safety

margin,

The failure assessment diagram can be derived usiﬁg the J~controlled crack growth
concept [8-5, 8-61, which shows that the failure line depends on the geometry of
the cracked body and the type of loading and material deformation properties,

The R—-6 line, though independent of these factors, is observed to be a useful
approximation to the actual failure lines for configurations examined with the
present elastic-plastic solutions. This is particularly so for ferritic steels,
as will be observed in some of the ensuing examples. Incorporation of the

_ material strain—hardening into the failure assessment diagram has also been car-

ried out by Bloom [8-7].

8.2 DERIVATION OF THE FAILURE ASSESSMENT DIAGRAM BASED ON J-CONTROLLED GROWTH

As discnssed in Section 2, under J—controlled crack growth conditions the equili-
brium of crack growth requires the driving force to equal the resisting force,
i.e.,
T(a, P) = Jp(A) B (8-1)
a
From the estimation procedure, the crack driving forceﬁis expressed as

J = Ie(ae) + Jp(a, n)

or

2 nt+l
7= /J\(ae)l-i,?— + 5a, n)'%,— (8-2)
Lol “Lel

The equality of Eq. (8-1) then becomes

2 n+l
A A
bap ] + %@ ofR] =5y (8-3)
o] Lol

The lgtter equation can be rearranged to yield

7°(a, P) _1%a, P)
N ) o T (Aa) (8-4)
J(a )[gl + J(a, n)[gi
Lol Lol

e . : P
where J is the elastic crack driving force and has the form

2
7°(a, P) = ?(a)[;—] . (8-5)
- |

Note that the functiomal forms of J and J are not identical because P is defined
o

based on a rather than 2.
By definition 7% is related to K by

7° = K%/E (8-6)
where E' = E for plane stress problems and E' = E/(1 - v2) for plane strain prob-

A
lems. J(a) can of course be determined directly from available solutions for K.

A consequence of J-controlled growth is
E’' J {(Aa) = 2(Aa)
R Ky (8-7)
where the KR curve is obtained under small-scale yielding conditions. The equal-
ity (or identity) holds at the same amount of physical crack growth as long as

J-controlled growth conditions are met.

The following dimensionless ratios for stress and crack driving force are
defined:

P

5=+ (8-8)
PO «

Kr = KI(a, P)/KR(Aa) (8-9)

I_= 7%(a, P) /T (Aa) (8-10)

It follows from Eqs. (8-6) and (8-7) that




Ki(a, P, As) = Jr(a, P, Aa) (8-11)

Substituting Egqs. (8-8) through (8-11) into (8-4) gives

2
5 2
P =T _=K (8-12)
g s +mH s¥ T
e 'r 't
where
A .
H = J(a )/J(a) _ (8-13)
e e
and
A — :
Hn = J(a, n)/J(a) (8-14)

Eq. (8-12) describes a curve in the space of Kr and Sr where the crack driving
force (under dead load condition) is in equilibriem with the material resistance.
The shape and location of the .equilibrium curve depends on the crack configura—
tion and material properties including the hardening exponent since He and Hn
depend on these quantities. The curve defines the equilibriuom crack growth state
in terms of the applied load, P, and the crack length, a, for a given amount of
crack extension, For example, if crack initiation is ngined as failure (i.e.,
setting Aa = 0 in the above considerations), then KR = KIc énd IR = IIc and the
elastic driving force terms in Egs. (8-9) and (8-10) are normalized by the
respective erack initiation resistance. In this case Eq. (8-12) defines the
equilibrium state for crack initiation in terms of P and a. By consihering
several ;a;ues of Aa, Eq. (8-12) specifies the equilibrium states for a given
crack conffguration undergoing crack extension.

The R-6 line can be derived in this fashion to express the crack driving force.

That is, in place of Eq. (8-1),

0o
T(a, ¢ ) -2 & amn l-sec(-ﬂ——o—’—)] . (8-15)
m o o L 2 o, 1

On substitnting Eq. (8-15) into Eq. (8-1), rearranging and applying the defini-
tions Eqs. (8-8) — (8-11), the equilibrium curve, Eq. (8-12), becomes the failure

1line of Harrison, Loosemore and Milne [8-2]1 for crack initiation and Milne [8-31

8-4

for crack growth:

s 2
2 ln[sec(lr- S )] r T
7r2 2 r

Egqs. (8-12) and (8~16) are a restatement of the equilibrium condition for crack
growth in terms of the stress ratio Sr and elastic force Kr or Jr. ‘A graphical
interpretation of the developments is given in Fig., 8-2. Part a shows J as a
function of crack length with applied load held fixed for a given crack confi-
guration, J  denotes the value of J at crack initiation., From the diagram, it

1

is possible to identify the values (a;, P.), (a,, P,) and (a P.) that will

s
cause the crack to initiate. The pairs (al, Pl)' (az, P2). %83, P3) form a curve
in the space of a and P, as shown in Part b of the figure. This is the crack
initiation curve. Any combination of a and P which falls on the curve will cause
crack initiation in the configuration under consideration. The process can be
repeated for different levels of J, e.g., JZ’ JS and so forth, corresponding to
different amounts of crack growth. This generates the family of crack growth
curves indicated in Fig, 8-2b., By normalizing the ordinate and abscissa of the
diagram through the parameters Kr and Sr’ the family of curves collapses into a
single crack growth curve for the configuration under consideration, as indicated

in Fig. 8-2c¢.

Failure lines can be derived in similar fashion for other stress—strain laws.

One example pursued in the present work [8-5, 8-6] applies to very ductile
materials which strain harden and eventually reach a saturation stress o 304
stainless steel is an example of such a material [8-8 — 8-10]. The stress—strain

law is expressed in the form

€ o '

. p- a(U ) B(a ) (8-17)
where o and B are material constants and m/n >> 1. In the range between , and
o> the primary contribution to the strain comes from the strain—hardening term,

but beyond o the strain is dominated by the last term in Eq. (8-17) and the

material behaves like a perfectly plastic material.

8-5




In deriving an expression for the failure curve, the following definitions are

made:

% (8-18)
B o
[+]
- (8-19)
PS = Ne o
_ P (8-20)
Sr - Ps

where /\ is the comstraint factor and c, the uncracked ligament., Using the esti-

mation procedure the failure line for a material obeying Eq. (8-17) is [8-5, 8-

61

SZ .
£ =7, = ' (8-21)
2 n+1 m+ T b o ;
He Sr + Hn(u Sr) + Hm Sr
where
A J— : .
H = J(a, m)/J(a) . (8-22)

and H and Hn are as given by Egs. (8-13) and (8-14).
e

8.3 FATLURE ASSESSMENT DIAGRAMS FOR SEVERAL CRACK CONFIGURATIONS

8§.3.1 vFailure Curves Considering No Crack Growth

The basic ihput for construction of failure assessment diagrams are the linear
elastic and‘the fully plastic crack solutions for the relevant structural confi-
guration. Thé fully plastic solutions given in Sections 3 and 4 will be used in

the present examples. The elastic solutions are taken from Referenmce [8-11].

The failure line for a strain-hardening material described by the Ramberg—Osgood
stress—strain relationship is given by Eq. (8-12). As discussed previously, the
shape and position of the failure line in the space of Kr and Sr is dependent on
crack configuration, deformation properties and state of stress., This is illus—

trated with the series of failure assessment diagrams shown in Figs. (8-3)

8-6

through (8-6).

Fig. (8-3) shows failure lines for the center—cracked panel in plane stress as a
function of strain—hardening exponent. The R—6 curve is also indicated. All the
curves intersect the ordinate at unity, and in the case of the R—6 curve, they
intersect the abscissa at unity, The strain-hardening solutions approach the
abscissa asymptotically at SR > 1,0, The curves for strain—hardening materials
will shift closer to the R—-6 curve if Sr is defined from the limit load based on

the flow stress Ope In any event, the R—6 curve appears to provide a reasonable

lower bound.

The dependence of the failure curves on the crack length—to-width ratio is shown
in Fig. 8-4. The curves are only slightly dependent on relative crack lengths,
suggesting that in the analysis of small amounts of crack growth, a failure

assessment curve based on the original crack length may yield information within

acceptable accuracy.

The dependence of the failure line on stress—state and applied loading is illus—
trated in Fig., 8-5, which shows curves for plane stress and plane strain in the
CCP and CS for single n and a/b values., The differences are not large, and again

the R-6 curve appears a reasonable lower bound.

Failure assessment diagrams for axially and circumferentially cracked cylinders
are shown in Fig, 8-6 for A533B steel and 304 stainless steel. The crack
length—to—wall thickness ratio was chosen to match the deepest relative crack
depth for the maximum postulated flaw size in the ASME Pressure Vessel and Piping
Code. The R—-6 curve is also indicated in the diagram. It can be observed that

the examples for 304 SS do lie in part below the R-6 curve.

Examples of failure assessment diagrams based on the saturation stress model, Eq.

(8-21), are presented in References [8-5, 8-61].

8.3.2 Failure Curves for Changing Crack Size

The failure curves in Figs. 8-3 through 8-6 were constructed for fixed crack
length-to—~width ratios. As was noted in the example of Fig. 8-4, the variation

in the curves for small amounts of crack growth is relatively insignificant,

8-7




When there are substantial amounts of crack growth, the failure line can be
reconstructed for varying crack lemgth. This point is illustrated in Fig. 8-7
with the plane strain compact specimen, which undergoes substantial stable crack
growth, In Fig. 8-7, the dashed linmes correspond to failure curves for crack
1ength—t6~width ratio (a/b) of 0.25, 0.50 and 0.75. When there is sufficient
crack growth, the relative crack length is changing and therefore the equilibrimm
curve will shift. This is illustrated by the solid curves in Fig. 8-7 for a/b of
0.25 and 0.50. These curves were calculated for a 4T compact specimen of A533B
steel using the mean JR curve reported in Reference [8-5]. The solid curves. in
Fig. 8-7 are obtained by adjusting the values of the quantities He and Hn in Eq.

(8-12) according to the "updated” crack length determined from the J, curve.

R

8.4 APPLICATIONS OF THE FATLURE ASSESSMENT DIAGRAM

To employ the failure assessment diagram for structural integrity analysis, the

following steps should be taken:

1. The failure line for the specific crack configuration should be con—
structed using Eq. (8-12), (8-16) or (8-21), whichever is considered
most appropriate for the material and structure of interest.

2. For t%e given crack configuration, and initial crack length a , K
(or J7) is computed using a handbook such as Reference [8-111° The
values of K are normalized by K (or II ) to obtain K . The stress
ratio S_ is obtaimed by normalizing the Spplied load P'by the limit
load for the crack configuration being examined.

3. The point Kr’ Sr is now placed on the failure assessment diagram.
There are two possible situations. If the point lies inside the
region bounded by the axes and the failure curve, the structure is

~ safe. If the point falls on or beyond the failure curve, the crack

K}in the structure will initiate. If failure is defined on the basis
of crack initiation, then the structure is unsafe or has failed. If
the design or safety analysis tolerates crack growth, the load car-
rying capacity of the structure can be evaluated further.

4. For the case where the load point falls beyond the safe region, the
crack in the structure is incremented by an amount Aa. The limit
load for the structure is computed for the current crack length
a + Aa. The applied load normalized by the limit load defines the
npdated stress ratio S . Based on the current load and crack
length, the updated K for 7°%) is computed., The value of (or T,)
corresponding to crack growth of Aa is obtained from the resistance
curve for the material; K_ is given by the ratio
K(a0 + Aa) and KR(Aa).

SR

5. The updated point kr’ Sr is again placed on the diagram and the
preceding steps (3) and (4) are repeated,

By the above process, the crack growth behavior and the load carrying capacity of
the structure can be determined. If there is substantial stable crack growth,
then the failure curve (or equilibrium curve) itself should be updated to
correspond to the mpdated crack lengths. In general, changes in the failure
curve itself are megligible for small amounts of crack growth. The above
analysis procedure is based on load-controlled conditions. The diagram can also
accommodate displacement—controlled conditions with finite compliance. However
the procedure becomes more complex for displacement—controlled systems, and it
may be easier to obtain similar information directly from a crack driving force

diagram analysis discussed in Section 6.
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Appendix A
ESTIMATION FORMULAE FOR SEVERAL STRESS-STRAIN LAVWS

Estimation formulae were developed in Reference [A-1] for two variations of the
Ramberg~Osgood stress—strain relationship. These will be defined in this appen—

dix, together with two additional stress—strain relatiomships.

A.1 _RAMBERG-0SGOOD RELATTIONSHIP (ROR)

In the ROR the uniaxial strain is related to the uniaxial stress by

L%y e S (A-1)
=4 [« 1 [+3
o o o

The estimation formulae for J, & and Ac are

—y
it
-
”~~
®
S
|
+
=
[
=]
A
e
|
el

o
1}
o
~~
)
S

JlFl 5(a, n)[ﬁ— (A-2)

>
It

c Ac(ae)fgil + Ac(a’ n)[ﬁil

L el Lo

As discussed in Reference [A-1], the formulae in Eq. (A~1) can be shown to be
exact for the infinitely wide slab with a semi—infinite slit. For several finite
crack configurations, Eq. (A-2) has been shown to be in excellent agreement with

results from complete numerical calculations as discussed in Section 6 and in
References [A-1, A-2],




A.2 PIECEWISE POWER LAW (PWPL)

In the PWPL representation, the uniaxial stress—strain relations are

L. ¢ <{o (A-3)
e 4 o
o o
2= o>
-1 [+3 (o]
o o

2
A P
J = J(ae)FF‘ P < PO (A-4)
Lol
n+l

T=73) + N, n){[—l—’- -1} PP

e P o

Lol

where Po is the limit load based on the material reference stress and the plastic
constraint factor for the relevant crack configuration. Eq. (A-4) is also exact
for the infinitely wide slab with semi-infinite slit, Similar formulae have been
derived for & and Ac. They can be inferred directly from the férm for J in Eq.
(A-4) and the scaling law [A-1]. These formulae were shown to be in good agree-

ment with complete numerical calculations [A-1].

A.3 _GENERALIZED RAMBERG-OSGOOD RELATIONSHIP (GROR)

The RORhcan be generalized to include the concept of a material saturation stress
denoted‘By o . This generalized relationship is especially useful for the
derivation: of failure assessment diagrams for very ductile materials. The
uniaxial stress—strain relationship for the GROR is

o.n
)

+ " (A-5)
o o o %s ’

€ o
—_—= — g
e g

where o, is the yield stress and o is the saturation stress; o is chosen to
ensure that m/n >> 1. There are three regimes of deformation for the material
described by Eq. (A-5). For applied stress o less than S the strain is essen—

tially elastic. In the range between S, and o> the primary contribution to the

strain comes from the strain—hardening term. For o greater than o the strain

Ty

AT

is dominated by the last term in Eq. (ArS); in the latter regime the material
behaves like a perfectly plastic material. The estimation formula for J which is

compatible with Eq. (A-5) is

2 n+l mt+l
A P A P A P
J = I(ae)[§—1 + J(a, n)Fﬁ—l + J(a, m)Fﬁ—l (A-6)
Lol Lol L sl '
where
P =Nco.. (A~T)
s s

Equation (A-6) can also be shown to be exact for the infinitely wide slab with a
semi—infinite slit. By examining the functional forms for & and Ac’ estimation

formulae similar to Eq. (A—6) can be derived for & and Ac.

A.4 _IMPROVED PIECEWISE POWER LAV (IMWPL)

There are many materials where the piecewise power law representation of the
deformation behavior is more appropriate. However the representation using Eq.
(A-3) introduces a sharp discontinuity in the slope of the stress—strain rela-
tionship at the yield stress. This discontinuity causes analytical difficulties
in the analysis of crack growth stability. To circumvent these difficulties, the
IPWPL representation of deformation behavior is employed. This representation
gives a strictly linear behavior up to the yield stress 60 and nonlinear behavior

beyond S, with a continuous slope at all points in the stress—strain curve,

Specifically,
_.a-..z..g._ [+1 _<-0' (A"s)
g c o
o o
L l.(Jlgn + (1 _.lg cda
e n o n o

The estimation formulae corresponding to Eq. (A-8) are

y= I(ae)E;4 PSP (A-9)
]




-4
n (o]

(3%
]

A 1[p
J= J(ae) + J(a, n)ﬁ; E;q

n+l
Lel

Equation (A-9) can be shown to be exact for the infiniteiy wide slab with semi-
infinite slit. Similar estimation formulae for & and Ac can be obtained by

appealing to their corresponding functional forms.
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Appendix B
MODIFIED J-INTEGRAL EXPRESSIONS

B.1 _J-INTEGRAL EXPRESSION FOR LOADED CRACK SURFACES

A modified expression for the J-integral to account for crack face loading has
been derived by Karlsson and Backlund [B-1]. For the case of a constant pressure

p on the crack surface, it is given by

_f .90 - _
I = JIjW dy - T P ds) +p Uy( d, 0) (B-1)

where the symbols are illustrated in Fig. B-1, For further details on the

derivation the reader is referred to Reference [B-11.

B.2 _J-INTEGRAIL EXPRESSION FOR AXISYMMETRIC BODIES

Astiz, et al. [B-21, and Bergquist and Lan Huong [B-3] obtained modified expres—
sions for energy release rate or the J—integral in problems of axial symmetry.
In this case the J—integral, interpreted as energy release rate per unit crack
advance in the radial direction and per unit length along the circumferential

direction, is given by
1 I' au_ U, ] ¢
J = m { j‘rrLW dz - (Tr —é?—'i' Tz —é—r—-)ds-l (B-2)
i

UI’
- IS (W - T, Dyas)

where the coordinate system and other notations in the above equation are

described in Fig. (B-2).
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Figure B-1, Schematic of a cracked body with uniform pressure on the crack sur—

face.




Figure B-2. Coordinate system and nomenclature employed in definition of J-
integral for an axisymmetric crack. 8 is the area enclosed by con—
tour T.




Appendix C
PLOTS OF h FUNCTIONS VERSUS 1/n
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Figure C~16. h_ versus 1/n for a single-edge cracked panel in three—point bend—
ing — plane stress.
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