Aircraft Structures
Structural & Loading Discontinuities

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3
http://www.ltas-cm3.ulg.ac.be/
Chemin des Chevreuils 1, B4000 Liège
L.Noels@ulg.ac.be
Elasticity

- **Balance of body** B
 - Momenta balance
 - Linear
 - Angular
 - Boundary conditions
 - Neumann
 - Dirichlet

\[
\rho \ddot{x} = b + \nabla \cdot \sigma^T
\]
\[
\rho \ddot{x}_i = b_i + \frac{\partial}{\partial x_j} \sigma_{ij}
\]
\[
\sigma^T = \sigma
\]

- **Small deformations with linear elastic, homogeneous & isotropic material**
 - (Small) Strain tensor $\varepsilon = \frac{1}{2} (\nabla \otimes u + u \otimes \nabla)$, or
 \[
 \varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} u_j + \frac{\partial}{\partial x_j} u_i \right)
 \]
 \[
 \varepsilon_{ij} = \frac{1}{2} (u_{j,i} + u_{i,j})
 \]
 - Hooke’s law $\sigma = \mathcal{H} : \varepsilon$, or $\sigma_{ij} = \mathcal{H}_{ijkl} \varepsilon_{kl}$
 \[
 \mathcal{H}_{ijkl} = \frac{E \nu}{(1 + \nu)(1 - 2\nu)} \delta_{ij} \delta_{kl} + \frac{E}{1 + \nu} \left(\frac{1}{2} \delta_{ik} \delta_{jl} + \frac{1}{2} \delta_{il} \delta_{jk} \right)
 \]
 - Inverse law $\varepsilon = \mathcal{G} : \sigma$
 $\lambda = K - 2\mu/3$
 2μ
 \[
 \mathcal{G}_{ijkl} = \frac{1 + \nu}{E} \left(\frac{1}{2} \delta_{ik} \delta_{jl} + \frac{1}{2} \delta_{il} \delta_{jk} \right) - \frac{\nu}{E} \delta_{ij} \delta_{kl}
 \]
Pure bending: linear elasticity summary

- **General expression for unsymmetrical beams**
 - Stress \[\sigma_{xx} = \kappa E z \cos \alpha - \kappa E y \sin \alpha \]

 With \[\left(\begin{array}{c} \cos \alpha \\ \sin \alpha \end{array} \right) = \frac{\| M_{xx} \|}{\kappa E} \left(\begin{array}{cc} I_{yy} & -I_{yz} \\ -I_{yz} & I_{zz} \end{array} \right)^{-1} \left(\begin{array}{c} \sin \theta \\ -\cos \theta \end{array} \right) \]
 - Curvature

 \[\left(\begin{array}{c} -u_{zx,xx} \\ u_{yy,xx} \end{array} \right) = \frac{\| M_{xx} \|}{E (I_{yy}I_{zz} - I_{yz}I_{yz})} \left(\begin{array}{cc} I_{zz} & I_{yz} \\ I_{yz} & I_{yy} \end{array} \right) \left(\begin{array}{c} \sin \theta \\ -\cos \theta \end{array} \right) \]
 - In the principal axes \(I_{yz} = 0 \)

- **Euler-Bernoulli equation in the principal axis**
 - \[\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 u_z}{\partial x^2} \right) = f(x) \quad \text{for } x \in [0, L] \]
 - BCs

 \[- \frac{\partial}{\partial x} \left(EI \frac{\partial^2 u_z}{\partial x^2} \right) \bigg|_{0, L} = \bar{T}_z \bigg|_{0, L} \]
 \[- EI \frac{\partial^2 u_z}{\partial x^2} \bigg|_{0, L} = \bar{M}_{xx} \bigg|_{0, L} \]
 - Similar equations for \(u_y \)
• General relationships

\[
\begin{align*}
 f_z(x) &= -\partial_x T_z = -\partial_{xx} M_y \\
 f_y(x) &= -\partial_x T_y = \partial_{xx} M_z
\end{align*}
\]

• Two problems considered

 – Thick symmetrical section
 - Shear stresses are small compared to bending stresses if \(h/L << 1 \)

 – Thin-walled (unsymmetrical) sections
 - Shear stresses are not small compared to bending stresses
 - Deflection mainly results from bending stresses
 - 2 cases
 - Open thin-walled sections
 » Shear = shearing through the shear center + torque
 - Closed thin-walled sections
 » Twist due to shear has the same expression as torsion
Beam shearing: linear elasticity summary

- Shearing of symmetrical thick-section beams
 - Stress \(\sigma_{zx} = -\frac{T_z S_n(z)}{I_{yy} b(z)} \)
 - With \(S_n(z) = \int_{A^*} z \, dA \)
 - Accurate only if \(h > b \)
 - Energetically consistent averaged shear strain \(\tilde{\gamma} \)
 - \(\tilde{\gamma} = \frac{T_z}{A' \mu} \) with \(A' = \frac{1}{\int_A \frac{S_n^2}{T_{yy} b^2} \, dA} \)
 - Shear center on symmetry axes
 - Timoshenko equations
 - \(\tilde{\gamma} = 2 \tilde{\varepsilon}_{xz} = \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} = \theta_y + \partial_x u_z \) & \(\kappa = \frac{\partial \theta_y}{\partial x} \)
 - On [0 L]: \(\begin{cases}
 \frac{\partial}{\partial x} \left(EI \frac{\partial \theta_y}{\partial x} \right) - \mu A' (\theta_y + \partial_x u_z) = 0 \\
 \frac{\partial}{\partial x} (\mu A' (\theta_y + \partial_x u_z)) = -f
 \end{cases} \)
Beam shearing: linear elasticity summary

- Shearing of open thin-walled section beams
 - Shear flow
 \[q = \frac{t\tau}{I_{zz}T_z - I_{yz}T_y} \int_0^s tz\,ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s ty\,ds' \]
 - In the principal axes
 \[q(s) = -\frac{T_z}{I_{yy}} \int_0^s tz\,ds' - \frac{T_y}{I_{zz}} \int_0^s ty\,ds' \]
 - Shear center \(S \)
 - On symmetry axes
 - At walls intersection
 - Determined by momentum balance
 - Shear loads correspond to
 - Shear loads passing through the shear center &
 - Torque
Shearing of closed thin-walled section beams

- **Shear flow** \(q = t \tau \)

 - \(q(s) = q_o(s) + q(0) \)

 - **Open part (for anticlockwise of \(q, s \))**
 \[
 q_o(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{uz}^2} \int_0^s t(s') z(s') \, ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') y(s') \, ds'
 \]

 - **Constant twist part**
 \[
 q(s = 0) = \frac{y_T T_z - z_T T_y - \int p(s) \, q_o(s) \, ds}{2A_h}
 \]

- The \(q(0) \) is related to the closed part of the section, but there is a \(q_o(s) \) in the open part which should be considered for the shear torque \(\int p(s) \, q_o(s) \, ds \)
Shearing of closed thin-walled section beams

- Warping around twist center R
 \[u_x(s) = u_x(0) + \int_0^s \frac{q}{\mu t} ds - \frac{1}{A_h} \int \frac{q}{\mu t} ds \left\{ A_{CP}(s) + \frac{z_R [y(s) - y(0)] - y_R [z(s) - z(0)]}{2} \right\} \]
 \[u_x(0) = \frac{\int t u_x(s) ds}{\int t(s) ds} \]
 - $u_x(0) = 0$ for symmetrical section if origin on the symmetry axis

- Shear center S

 - Compute q for shear passing thought S

 - Use
 \[q(s = 0) = \frac{y_T T_z - z_T T_y - \int p(s) q_o(s) ds}{2 A_h} \]

 With point $S = T$
• Torsion of symmetrical thick-section beams

 – Circular section
 • $\tau = \mu \gamma = r \mu \theta, x$
 • $C = \frac{M_x}{\theta, x} = \int_A \mu r^2 dA$

 – Rectangular section
 • $\tau_{\text{max}} = \frac{M_x}{\alpha h b^2}$
 • $C = \frac{M_x}{\theta, x} = \beta h b^3 \mu$
 • If $h \gg b$
 - $\tau_{xy} = 0$ \& $\tau_{xz} = 2 \mu y \theta, x$
 - $\tau_{\text{max}} = \frac{3 M_x}{h b^2}$
 - $C = \frac{M_x}{\theta, x} = \frac{h b^3 \mu}{3}$

<table>
<thead>
<tr>
<th>h/b</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>4</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.208</td>
<td>0.231</td>
<td>0.246</td>
<td>0.282</td>
<td>$\frac{1}{3}$</td>
</tr>
<tr>
<td>β</td>
<td>0.141</td>
<td>0.196</td>
<td>0.229</td>
<td>0.281</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>
Beam torsion: linear elasticity summary

- Torsion of open thin-walled section beams
 - Approximated solution for twist rate
 - Thin curved section
 \[\tau_{xs} = 2\mu n \theta_{,x} \]
 \[C = \frac{M_x}{\theta_{,x}} = \frac{1}{3} \int \mu t^3 ds \]
 - Rectangles
 \[\tau_{\text{max}_i} = \mu t_i \theta_{,x} \]
 \[\frac{M_x}{\theta_{,x}} = \sum_i \frac{l_i t_i^3 \mu}{3} \]
 - Warping of \(s \)-axis
 - \(\mathbf{u}_x^s (s) = \mathbf{u}_x^s (0) - \theta_{,x} \int_0^s p_R ds' = \mathbf{u}_x^s (0) - 2A_{Rp} (s) \theta_{,x} \)
• **Torsion of closed thin-walled section beams**

 - Shear flow due to torsion \(M_x = 2A_h q \)

 - Rate of twist

 • \(\theta_x = \frac{M_x}{4A_h^2} \int \frac{1}{\mu t} \, ds \)

 • Torsion rigidity for constant \(\mu \)

 \[
 I_T = \frac{4A_h^2}{\int \frac{1}{\mu t} \, ds} \leq I_p = \int_A r^2 \, dA
 \]

 - Warping due to torsion

 • \(u_x(s) = u_x(0) + \frac{M_x}{2A_h} \left[\int_0^s \frac{1}{\mu t} \, ds - \frac{A_{R_p}(s)}{A_h} \int \frac{1}{\mu t} \, ds \right] \)

 • \(A_{R_p} \) from twist center
Structure idealization summary

- Panel idealization
 - Booms’ area depending on loading
 - For linear direct stress distribution

\[
\begin{align*}
A_1 &= \frac{t_D b}{6} \left(2 + \frac{\sigma_{xx}^2}{\sigma_{xx}^1} \right) \\
A_2 &= \frac{t_D b}{6} \left(2 + \frac{\sigma_{xx}^1}{\sigma_{xx}^2} \right)
\end{align*}
\]
Consequence on bending

- If Direct stress due to bending is carried by booms only
 - The position of the neutral axis, and thus the second moments of area
 - Refer to the direct stress carrying area only
 - Depend on the loading case only

Consequence on shearing

- Open part of the shear flux
 - Shear flux for open sections

\[q_o(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct}} \sigma z \, ds + \sum_{i: s_i \leq s} z_i A_i \right] - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct}} \sigma y \, ds + \sum_{i: s_i \leq s} y_i A_i \right] \]

Consequence on torsion

- If no axial constraint
 - Torsion analysis does not involve axial stress
 - So torsion is unaffected by the structural idealization
Virtual displacement

- In linear elasticity the general formula of virtual displacement reads

\[
\int_0^L \int_A \sigma^{(1)} : \varepsilon dA dx = P^{(1)} \Delta_P
\]

- \(\sigma^{(1)} \) is the stress distribution corresponding to a (unit) load \(P^{(1)} \)
- \(\Delta_P \) is the energetically conjugated displacement to \(P \) in the direction of \(P^{(1)} \) that corresponds to the strain distribution \(\varepsilon \)

- Example bending of semi cantilever beam

\[
\int_0^L \int_A \sigma^{(1)}_{xx} \varepsilon_{xx} dA dx = \Delta_P u
\]

- In the principal axes

\[
\Delta_P u = \frac{1}{EI_{yy}I_{zz}} \int_0^L \left\{ I_{zz} M_y^{(1)} M_y + I_{yy} M_z^{(1)} M_z \right\} dx
\]

- Example shearing of semi-cantilever beam

\[
\int_0^L \int_s q^{(1)} \frac{q}{\mu t} ds dx = T^{(1)} \Delta u = \Delta_T u
\]
• **Previously developed equations**

 – Stresses & displacements produced by

 • Axial loads
 • Shear forces
 • Bending moments
 • Torsion

 – No allowance for constrained warping

 • Due to structural or loading discontinuities
 • Example torsion of a built-in beam

 – No warping allowed at clamping

 – Coupling shearing-bending neglected

 • Effect of shear strains on the direct stress
 • Shear strains prevent cross section to remain plane
 • Direct stress predicted by pure bending theory not correct anymore
 • For wing box, shear strains can be important
Limitations of these theories

• These effects can be analyzed on simple problems
 – Problem of axial constraint divided in two parts
 • Shear stress distribution calculated at the built-in section
 • Stress distribution calculated on the beam length for the separate loading cases of bending & torsion
 – Problem related to instabilities as buckling
 • See later

• For more complex problems
 – Finite element simulations required
Closed-section beam

- **Shear stress distribution at a built-in end**
 - Idealized or not cross-sections
 - Assume a beam with closed cross-section
 - Center of twist \(R \)
 - Undistorted section of the beam
 - Shear flow, displacements and rotation of the section were found to be

 \[
 - \frac{q}{\mu t} = \frac{\partial u_x}{\partial s} + \left[p - y_R \sin \Psi + z_R \cos \Psi \right] \frac{\partial \theta}{\partial x}
 \]

 - With
 \[
 \begin{align*}
 y_R &= -\frac{\partial_x u^C_z}{\partial x \theta} \\
 z_R &= \frac{\partial_x u^C_y}{\partial x \theta}
 \end{align*}
 \]

 - At built-in this relation simplifies into
 \[
 \frac{q}{\mu t} = p \frac{\partial \theta}{\partial x} + \frac{\partial u^C_z}{\partial x} \sin \Psi + \frac{\partial u^C_y}{\partial x} \cos \Psi
 \]
Closed-section beam

- Shear stress distribution at a built-in end (2)
 - At built-in shear flux is written
 \[\frac{q}{\mu t} = p \frac{\partial \theta}{\partial x} + \frac{\partial u^C_y}{\partial x} \sin \Psi + \frac{\partial u^C_z}{\partial x} \cos \Psi \]
 - By equilibrium
 \[T_y = \int q \cos \Psi \, ds \]
 \[T_z = \int q \sin \Psi \, ds \]
 \[y_T T_z - z_T T_y = \int p q \, ds \]
 - After substitution of shear flux
 \[
 \begin{aligned}
 T_y &= \frac{\partial \theta}{\partial x} \int \mu t p \cos \Psi \, ds + \frac{\partial u^C_y}{\partial x} \int \mu t \cos^2 \Psi \, ds + \frac{\partial u^C_z}{\partial x} \int \mu t \cos \Psi \sin \Psi \, ds \\
 T_z &= \frac{\partial \theta}{\partial x} \int \mu t p \sin \Psi \, ds + \frac{\partial u^C_y}{\partial x} \int \mu t \cos \Psi \sin \Psi \, ds + \frac{\partial u^C_z}{\partial x} \int \mu t \sin^2 \Psi \, ds \\
 y_T T_z - z_T T_y &= \frac{\partial \theta}{\partial x} \int \mu t p^2 \, ds + \frac{\partial u^C_y}{\partial x} \int \mu t p \cos \Psi \, ds + \frac{\partial u^C_z}{\partial x} \int \mu t p \sin \Psi \, ds
 \end{aligned}
 \]
• Shear stress distribution at a built-in end (3)
 – New system of 3 equations and 3 unknowns

\[
\begin{align*}
T_y &= \frac{\partial \theta}{\partial x} \int \mu t \cos \Psi ds + \frac{\partial u_y^C}{\partial x} \int \mu t \cos^2 \Psi ds + \frac{\partial u_z^C}{\partial x} \int \mu t \cos \Psi \sin \Psi ds \\
T_z &= \frac{\partial \theta}{\partial x} \int \mu t \sin \Psi ds + \frac{\partial u_y^C}{\partial x} \int \mu t \cos \Psi \sin \Psi ds + \frac{\partial u_z^C}{\partial x} \int \mu t \sin^2 \Psi ds \\
y_T T_z - z_T T_y &= \frac{\partial \theta}{\partial x} \int \mu t p^2 ds + \frac{\partial u_y^C}{\partial x} \int \mu t p \cos \Psi ds + \frac{\partial u_z^C}{\partial x} \int \mu t p \sin \Psi ds
\end{align*}
\]

• Solution of the system: \(\frac{\partial \theta}{\partial x}, \frac{\partial u_y^C}{\partial x}\) & \(\frac{\partial u_z^C}{\partial x}\)

 – This solution is then substituted into

\[
\frac{q}{\mu t} = p \frac{\partial \theta}{\partial x} + \frac{\partial u_y^C}{\partial x} \sin \Psi + \frac{\partial u_y^C}{\partial x} \cos \Psi
\]

• Shear flow and shear stress are then defined

• Remains true for any choice of \(C\) as long as \(p\) is computed from there
Closed-section beam

• Example
 – Built-in end
 • Section with constant shear modulus
 – Shear stress distribution?
 – Center of twist?

\[
\begin{array}{|c|c|c|}
\hline
\text{Wall} & \text{Length (m)} & \text{Thickness (mm)} \\
\hline
\text{AB} & 0.375 & 1.6 \\
\text{BC} & 0.500 & 1.0 \\
\text{CD} & 0.125 & 1.2 \\
\text{DA} & 1.0 & 1.0 \\
\hline
\end{array}
\]

\[T_z = 22 \text{ kN}\]
• **Deformation**

 – Sign convention: >0 anticlockwise
 – Angle α: $\sin \alpha = 0.25/0.5 \rightarrow \alpha = 30^\circ$
 – Coefficients

\[
\int tp \cos \Psi \, ds = \int_B^C p_A t^{BC} \cos \Psi^{BC} \, ds^{BC} + \int_C^D p_A t^{CD} \cos \Psi^{CD} \, ds^{CD}
\]

\[
\int tp \cos \Psi \, ds = l^{BC} t^{BC} l^{AB} \cos \frac{\pi}{6} \cos \frac{7\pi}{6} + l^{CD} t^{CD} l^{AD} \cos \frac{3\pi}{2}
\]

\[
\int tp \cos \Psi \, ds = -0.5 \times 10^{-3} \times 0.375 \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} = -0.14 \times 10^{-3} \, m^3
\]

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (m)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.375</td>
<td>1.6</td>
</tr>
<tr>
<td>BC</td>
<td>0.500</td>
<td>1.0</td>
</tr>
<tr>
<td>CD</td>
<td>0.125</td>
<td>1.2</td>
</tr>
<tr>
<td>DA</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
Closed-section beam

• Deformation (2)
 – Coefficients (2)

\[
\int tp \sin \Psi ds = \int_B^C p_A t^{BC} \sin \Psi^{BC} ds^{BC} + \int_C^D p_A t^{CD} \sin \Psi^{CD} ds^{CD}
\]

\[
\int tp \sin \Psi ds = l^{BC} t^{BC} l^{AB} \cos \frac{\pi}{6} \sin \frac{7\pi}{6} + l^{CD} t^{CD} l^{BC} \cos \frac{\pi}{6} \sin \frac{3\pi}{2}
\]

\[
\int tp \sin \Psi ds = -0.5 \times 10^{-3} \times 0.375 \times \frac{\sqrt{3}}{2} \times \frac{1}{2} - 0.125 \times 1.2 \times 10^{-3} \times 0.5 \times \frac{\sqrt{3}}{2}
\]

\[
= -0.15 \times 10^{-3} \text{ m}^3
\]

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (m)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.375</td>
<td>1.6</td>
</tr>
<tr>
<td>BC</td>
<td>0.500</td>
<td>1.0</td>
</tr>
<tr>
<td>CD</td>
<td>0.125</td>
<td>1.2</td>
</tr>
<tr>
<td>DA</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
Closed-section beam

- Deformation (3)
 - Coefficients (3)

\[
\int t \cos^2 \Psi ds = \int_A^{B} t^{AB} \cos^2 \Psi^{AB} ds^{AB} + \\
\int_B^{C} t^{BC} \cos^2 \Psi^{BC} ds^{BC} + \\
\int_C^{D} t^{CD} \cos^2 \Psi^{CD} ds^{CD} + \\
\int_D^{A} t^{DA} \cos^2 \Psi^{DA} ds^{DA}
\]

\[
\int t \cos^2 \Psi ds = l^{AB} t^{AB} \cos^2 \frac{\pi}{2} + l^{BC} t^{BC} \cos^2 \frac{7\pi}{6} + \\
l^{CD} t^{CD} \cos^2 \frac{3\pi}{2} + l^{DA} t^{DA} \cos^2 2\pi
\]

\[
= 0.5 10^{-3} \frac{3}{4} + 0.5 \frac{\sqrt{3}}{2} 10^{-3}
\]

\[
= 0.81 10^{-3} \text{ m}^2
\]

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (m)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.375</td>
<td>1.6</td>
</tr>
<tr>
<td>BC</td>
<td>0.500</td>
<td>1.0</td>
</tr>
<tr>
<td>CD</td>
<td>0.125</td>
<td>1.2</td>
</tr>
<tr>
<td>DA</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
Closed-section beam

- Deformation (4)
 - Coefficients (4)

\[
\int t \sin^2 \Psi \, ds = \int_A^B t^{AB} \sin^2 \Psi^{AB} \, ds^{AB} +
\int_B^C t^{BC} \sin^2 \Psi^{BC} \, ds^{BC} +
\int_C^D t^{CD} \sin^2 \Psi^{CD} \, ds^{CD} +
\int_D^A t^{DA} \sin^2 \Psi^{DA} \, ds^{DA}
\]

\[
\int t \sin^2 \Psi \, ds = t^{AB} t^{AB} \sin^2 \frac{\pi}{2} + t^{BC} t^{BC} \sin^2 \frac{7\pi}{6} +
-t^{CD} t^{CD} \sin^2 \frac{3\pi}{2} + t^{DA} t^{DA} \sin^2 2\pi
\]

\[
\int t \sin^2 \Psi \, ds = 0.375 \times 1.6 \times 10^{-3} + 0.5 \times 10^{-3} \times \frac{1}{4} +
0.125 \times 1.2 \times 10^{-3} = 0.88 \times 10^{-3} \text{ m}^2
\]

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (m)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.375</td>
<td>1.6</td>
</tr>
<tr>
<td>BC</td>
<td>0.500</td>
<td>1.0</td>
</tr>
<tr>
<td>CD</td>
<td>0.125</td>
<td>1.2</td>
</tr>
<tr>
<td>DA</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

\[T_z = 22 \text{ kN}\]
Closed-section beam

- Deformation (5)
 - Coefficients (5)

\[
\int t \sin \Psi \cos \Psi \, ds = \int_{A}^{B} t_{AB} \frac{\sin 2\Psi_{AB}}{2} ds_{AB} + \int_{B}^{C} t_{BC} \frac{\sin 2\Psi_{BC}}{2} ds_{BC} + \int_{C}^{D} t_{CD} \frac{\sin 2\Psi_{CD}}{2} ds_{CD} + \int_{D}^{A} t_{DA} \frac{\sin 2\Psi_{DA}}{2} ds_{DA}
\]

\[
\int t \sin \Psi \cos \Psi \, ds = l_{AB} t_{AB} \frac{\sin \pi}{2} + l_{BC} t_{BC} \frac{\sin \frac{7\pi}{3}}{3} + l_{CD} t_{CD} \frac{\sin \frac{3\pi}{2}}{2} + l_{DA} t_{DA} \frac{\sin 4\pi}{2}
\]

\[
\int t \sin \Psi \cos \Psi \, ds = 0.5 \times 10^{-3} \times \frac{\sqrt{3}}{4} = 0.22 \times 10^{-3} \text{ m}^2
\]

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (m)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.375</td>
<td>1.6</td>
</tr>
<tr>
<td>BC</td>
<td>0.500</td>
<td>1.0</td>
</tr>
<tr>
<td>CD</td>
<td>0.125</td>
<td>1.2</td>
</tr>
<tr>
<td>DA</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
Closed-section beam

- Deformation (6)
 - Coefficients (6)

$$\int tp^2 ds = \int_B^C p_A^2 t_{BC} ds_{BC} + \int_C^D p_A^2 t_{CD} ds_{CD}$$

$$\int tp^2 ds = l_{BC} t_{BC} \left(l_{AB} \cos \frac{\pi}{6} \right)^2 +$$

$$l_{CD} t_{CD} \left(l_{BC} \cos \frac{\pi}{6} \right)^2$$

$$\int tp^2 ds = 0.5 \times 10^{-3} \times 0.375^2 \times \frac{3}{4} +$$

$$0.125 \times 1.2 \times 10^{-3} \times 0.5^2 \times \frac{3}{4} = 0.081 \times 10^{-3} \text{ m}^4$$

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (m)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.375</td>
<td>1.6</td>
</tr>
<tr>
<td>BC</td>
<td>0.500</td>
<td>1.0</td>
</tr>
<tr>
<td>CD</td>
<td>0.125</td>
<td>1.2</td>
</tr>
<tr>
<td>DA</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
Closed-section beam

- **Deformation (7)**
 - System with origin of the axis at point A ($C \leftrightarrow A$)

 \[T_y = \frac{\partial \theta}{\partial x} \int \mu t p \cos \Psi \, ds + \frac{\partial u^C_y}{\partial x} \int \mu t \cos^2 \Psi \, ds + \frac{\partial u^C_z}{\partial x} \int \mu t \cos \Psi \sin \Psi \, ds \]

 \[= -0.14 \times 10^{-3} \, m^3 \mu \frac{\partial \theta}{\partial x} + 0.81 \times 10^{-3} \, m^2 \mu \frac{\partial u^A_y}{\partial x} + 0.22 \times 10^{-3} \, m^2 \mu \frac{\partial u^A_z}{\partial x} = 0 \]

 \[T_z = \frac{\partial \theta}{\partial x} \int \mu t p \sin \Psi \, ds + \frac{\partial u^C_y}{\partial x} \int \mu t \cos \Psi \sin \Psi \, ds + \frac{\partial u^C_z}{\partial x} \int \mu t \sin^2 \Psi \, ds \]

 \[= -0.15 \times 10^{-3} \, m^3 \mu \frac{\partial \theta}{\partial x} + 0.22 \times 10^{-3} \, m^2 \mu \frac{\partial u^A_y}{\partial x} + 0.88 \times 10^{-3} \, m^2 \mu \frac{\partial u^A_z}{\partial x} = 22 \times 10^3 \, N \]

 \[y_T T_z - z_T T_y = \frac{\partial \theta}{\partial x} \int \mu t p^2 \, ds + \frac{\partial u^C_y}{\partial x} \int \mu t p \cos \Psi \, ds + \frac{\partial u^C_z}{\partial x} \int \mu t p \sin \Psi \, ds \]

 \[= 0.081 \times 10^{-3} \, m^4 \mu \frac{\partial \theta}{\partial x} - 0.14 \times 10^{-3} \, m^3 \mu \frac{\partial u^A_y}{\partial x} - 0.15 \times 10^{-3} \, m^3 \mu \frac{\partial u^A_z}{\partial x} = 2.2 \times 10^3 \, N \cdot m \]
Closed-section beam

- **Deformation (8)**
 - System (2)

 \[
 -0.14 \times 10^{-3} \, \text{m}^3 \mu \frac{\partial \theta}{\partial x} + 0.81 \times 10^{-3} \, \text{m}^2 \mu \frac{\partial u_y^A}{\partial x} + 0.22 \times 10^{-3} \, \text{m}^2 \mu \frac{\partial u_z^A}{\partial x} = 0
 \]

 \[
 \mu \frac{\partial \theta}{\partial x} = 5.79 \, \text{m}^{-1} \mu \frac{\partial u_y^A}{\partial x} + 1.57 \, \text{m}^{-1} \mu \frac{\partial u_z^A}{\partial x}
 \]

 \[
 -0.15 \times 10^{-3} \, \text{m}^3 \mu \frac{\partial \theta}{\partial x} + 0.22 \times 10^{-3} \, \text{m}^2 \mu \frac{\partial u_y^A}{\partial x} + 0.88 \times 10^{-3} \, \text{m}^2 \mu \frac{\partial u_z^A}{\partial x} = 22 \times 10^3 \, \text{N}
 \]

 \[
 -0.65 \times 10^{-3} \, \text{m}^2 \mu \frac{\partial u_y^A}{\partial x} + 0.64 \times 10^{-3} \, \text{m}^2 \mu \frac{\partial u_z^A}{\partial x} = 22 \times 10^3 \, \text{N}
 \]

 \[
 \mu \frac{\partial u_y^A}{\partial x} = 0.98 \mu \frac{\partial u_z^A}{\partial x} - 33.85 \times 10^6 \, \text{N} \cdot \text{m}^{-2}
 \]

 \[
 \mu \frac{\partial \theta}{\partial x} = 7.24 \, \text{m}^{-1} \mu \frac{\partial u_z^A}{\partial x} - 196 \times 10^6 \, \text{N} \cdot \text{m}^{-2}
 \]

 \[
 0.081 \times 10^{-3} \, \text{m}^4 \mu \frac{\partial \theta}{\partial x} - 0.14 \times 10^{-3} \, \text{m}^3 \mu \frac{\partial u_y^A}{\partial x} - 0.15 \times 10^{-3} \, \text{m}^3 \mu \frac{\partial u_z^A}{\partial x} = 2.2 \times 10^3 \, \text{N} \cdot \text{m}
 \]

 \[
 \mu \frac{\partial \theta}{\partial x} = 123 \times 10^6 \, \text{N} \cdot \text{m}^{-3}
 \]

 \[
 \mu \frac{\partial u_y^A}{\partial x} = 9.3 \times 10^6 \, \text{N} \cdot \text{m}^{-2}
 \]

 \[
 \mu \frac{\partial u_z^A}{\partial x} = 44 \times 10^6 \, \text{N} \cdot \text{m}^{-2}
 \]

2013-2014 Aircraft Structures - Structural & Loading Discontinuities 28
Shear flux

\[- \frac{q}{\mu t} = p_A \frac{\partial \theta}{\partial x} + \frac{\partial u_z^A}{\partial x} \sin \Psi + \frac{\partial u_y^A}{\partial x} \cos \Psi \]

- Wall AB

\[q^{AB} = t^{AB} \mu \frac{\partial u_z^A}{\partial x} \]

\[q^{AB} = 1.6 \times 10^{-3} \times 44 \times 10^6 = 70 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]

\[\tau^{AB} = \frac{q^{AB}}{t^{AB}} = 44 \text{ MPa} \]

- Wall DA

\[q^{DA} = t^{DA} \mu \frac{\partial u_y^A}{\partial x} \cos 2\pi \]

\[q^{DA} = 10^{-3} \times 9.3 \times 10^6 = 9.3 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]

\[\tau^{DA} = \frac{q^{DA}}{t^{DA}} = \frac{9.3 \times 10^3}{10^{-3}} = 9.3 \text{ MPa} \]
Closed-section beam

- Shear flux (2)

$$- \frac{q}{\mu t} = p_A \frac{\partial \theta}{\partial x} + \frac{\partial u_z^A}{\partial x} \sin \Psi + \frac{\partial u_y^A}{\partial x} \cos \Psi$$

- Wall BC

$$q^{BC} = p_A t^{BC} \mu \frac{\partial \theta}{\partial x} + t^{BC} \mu \frac{\partial u_z^A}{\partial x} \sin \Psi^{BC} + t^{BC} \mu \frac{\partial u_y^A}{\partial x} \cos \Psi^{BC}$$

$$q^{BC} = l^{AB} \cos \frac{\pi}{6} t^{BC} \mu \frac{\partial \theta}{\partial x} +$$

$$t^{BC} \sin \frac{7\pi}{6} \mu \frac{\partial u_z^A}{\partial x} + t^{BC} \cos \frac{7\pi}{6} \mu \frac{\partial u_y^A}{\partial x}$$

$$q^{BC} = 0.375 \sqrt{\frac{3}{2}} 10^{-3} \cdot 123 \cdot 10^6 -$$

$$10^{-3} \frac{1}{2} 44 \cdot 10^6 - 10^{-3} \frac{\sqrt{3}}{2} 9.3 \cdot 10^6$$

$$= 9.9 \cdot 10^3 \text{ N} \cdot \text{m}^{-1}$$

$$\tau^{BC} = \frac{q^{BC}}{t^{BC}} = \frac{9.9 \cdot 10^3}{10^{-3}} = 9.9 \text{ MPa}$$

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (m)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.375</td>
<td>1.6</td>
</tr>
<tr>
<td>BC</td>
<td>0.500</td>
<td>1.0</td>
</tr>
<tr>
<td>CD</td>
<td>0.125</td>
<td>1.2</td>
</tr>
<tr>
<td>DA</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>
Closed-section beam

• Shear flux (3)

\[\frac{q}{\mu t} = p_A \frac{\partial \theta}{\partial x} + \frac{\partial u^A_z}{\partial x} \sin \Psi + \frac{\partial u^A_y}{\partial x} \cos \Psi \]

– Wall CD

\[q^{CD} = p_A t^{CD} \mu \frac{\partial \theta}{\partial x} + t^{CD} \mu \frac{\partial u^A_z}{\partial x} \sin \Psi^{CD} + t^{CD} \mu \frac{\partial u^A_y}{\partial x} \cos \Psi^{CD} \]

\[q^{CD} = t^{BC} \cos \frac{\pi}{6} t^{CD} \mu \frac{\partial \theta}{\partial x} + t^{CD} \sin \frac{3\pi}{2} \mu \frac{\partial u^A_z}{\partial x} \]

\[q^{CD} = 0.5 \frac{\sqrt{3}}{2} 1.2 \times 10^{-3} 123 \times 10^6 - 1.2 \times 10^{-3} 44 \times 10^6 = 11.1 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]

\[\tau^{CD} = \frac{q^{CD}}{t^{CD}} = \frac{11.1 \times 10^3}{1.2 \times 10^{-3}} = 9.3 \text{ MPa} \]

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (m)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.375</td>
<td>1.6</td>
</tr>
<tr>
<td>BC</td>
<td>0.500</td>
<td>1.0</td>
</tr>
<tr>
<td>CD</td>
<td>0.125</td>
<td>1.2</td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>
Center of twist
- System linked to point A

\[y_R = -\frac{\partial_x u_x}{\partial_x \theta} = -\frac{44 \times 10^6}{123 \times 10^6} = -0.36 \text{ m} \]

\[z_R = \frac{\partial_x u_y}{\partial_x \theta} = \frac{9.3 \times 10^6}{123 \times 10^6} = 0.076 \text{ m} \]

Remarks
- The center of twist
 - Depends on loading \((y_T \text{ and } T)\)
 - Does not correspond to the center of shear
 - Due to the warping constrain
- Shear flux discontinuity at corners
 - Requires booms in order of avoiding stress concentrations

Wall Specifications

<table>
<thead>
<tr>
<th>Wall</th>
<th>Length (m)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>0.375</td>
<td>1.6</td>
</tr>
<tr>
<td>BC</td>
<td>0.500</td>
<td>1.0</td>
</tr>
<tr>
<td>CD</td>
<td>0.125</td>
<td>1.2</td>
</tr>
<tr>
<td>DA</td>
<td></td>
<td>1.0</td>
</tr>
</tbody>
</table>

\(T_z = 22 \text{ kN}\)
Closed-section beam

- Thin walled rectangular-section beam subjected to torsion
 - In the case of free warping, we found
 \[
 \begin{align*}
 u^A_{x} &= u^C_{x} = \frac{M_x z}{8 \mu hb} \left(\frac{h}{t_h} - \frac{b}{t_b} \right) \\
 u^B_{x} &= u^D_{x} = \frac{M_x z}{8 \mu hb} \left(\frac{b}{t_b} - \frac{h}{t_h} \right) \\
 \theta_{,x} &= \frac{M_x}{2 \mu h^2 b^2} \left(\frac{h}{t_h} + \frac{b}{t_b} \right)
 \end{align*}
 \]
 - If warping is constrained (built-in end)
 - Direct stress are introduced
 - Different shear stress distribution
Closed-section beam

• Thin walled rectangular-section beam subjected to torsion (2)
 – Idealization
 • Warping to be suppressed is linear & symmetrical
 \[\text{Direct stress also linear & symmetrical} \]
 • Idealization
 – Four identical booms carrying direct stress only
 \[A = \frac{bt_b}{6} (2 - 1) + \frac{ht_h}{6} (2 - 1) \]
 \[A = \frac{bt_b + ht_h}{6} \]
 – Panels carry shear flux only

\[A_1 = \frac{t_D b}{6} \left(2 + \frac{\sigma_{xx}^2}{\sigma_{xx}^1} \right) \]
\[A_2 = \frac{t_D b}{6} \left(2 + \frac{\sigma_{xx}^1}{\sigma_{xx}^2} \right) \]
Thin walled rectangular-section beam subjected to torsion (3)

- Warping at a given section
 - Shearing (see beam lecture)
 \[
 \left\{
 \begin{align*}
 q &= \tau t = \mu t \gamma \\
 \gamma &= 2\varepsilon_{xs} = \frac{\partial u_s}{\partial x} + \frac{\partial u_x}{\partial s}
 \end{align*}
 \right.
 \Rightarrow
 q = \mu t (u_{s,x} + u_{x,s})
 \]
 - Warping
 - If u_x^m is the maximum warping
 - On webs
 \[u_{x,s} = u_{x,z} = \frac{u_x^m}{h/2}\]
 - On covers
 \[u_{x,s} = -u_{x,y} = -\frac{u_x^m}{b/2}\]
• **Thin walled rectangular-section beam subjected to torsion (4)**
 – Warping of a given section (2)
 • Kinematics
 – See lecture on beams
 \[\delta u_s = p_R \delta \theta \]
 • As twist center is at section center (by symmetry)
 – On webs
 \[u_{s,x} = \frac{b}{2} \theta_x \]
 – On covers
 \[u_{s,x} = \frac{h}{2} \theta_x \]
 – Combining results
 • On webs
 \[q_h = \mu t_h \left(\frac{b}{2} \theta_x + \frac{2}{h} u^m_x \right) \]
 • On covers
 \[q_b = \mu t_b \left(\frac{h}{2} \theta_x - \frac{2}{b} u^m_x \right) \]
Closed-section beam

- **Thin walled rectangular-section beam subjected to torsion (5)**
 - **Torque**
 - From shear flow \(q_h \) & \(q_b \)

 \[
 M_x = \int q_p C \, ds = 2 \frac{h}{2} q_b b + 2 \frac{b}{2} q_h h
 \]

 \[
 \Rightarrow M_x = bh (q_b + q_h)
 \]
 - Using

 \[
 \begin{align*}
 q_h &= \mu t_h \left(\frac{b}{2} \theta_{,x} + \frac{2}{h} u^m_x \right) \\
 q_b &= \mu t_b \left(\frac{h}{2} \theta_{,x} - \frac{2}{b} u^m_x \right)
 \end{align*}
 \]

 \[
 \Rightarrow M_x = \mu t_h \left(\frac{b^2 h}{2} \theta_{,x} + 2 b u^m_x \right) + \mu t_b \left(\frac{bh^2}{2} \theta_{,x} - 2 h u^m_x \right)
 \]
 - Twist rate is directly obtained

 \[
 \theta_{,x} = \frac{2 M_x}{\mu t_h b^2 h + \mu t_b h^2 b} + \frac{4 u^m_x (t_b h - t_h b)}{t_h b^2 h + t_b h^2 b}
 \]
Closed-section beam

- Thin walled rectangular-section beam subjected to torsion (6)
 - Shear flows
 - From shear flow q_h & q_b

 \[
 q_h = \mu t_h \left(\frac{b}{2} \theta_{,x} + \frac{2}{h} u^{m}_x \right) \\
 q_b = \mu t_b \left(\frac{h}{2} \theta_{,x} - \frac{2}{b} u^{m}_x \right)
 \]
 - Using

 \[
 \theta_{,x} = \frac{2M_x}{\mu t_h b^2 h + \mu t_b h^2 b} + \frac{4u^{m}_x (t_b h - t_h b)}{t_h b^2 h + t_b h^2 b}
 \]

 \[
 \begin{align*}
 q_h &= \frac{M_x t_h}{t_h b h + t_b h^2} + u^{m}_x \frac{4\mu t_h t_b}{t_h b + t_b h} \\
 q_b &= \frac{M_x t_b}{t_h b^2 + t_b h b} - u^{m}_x \frac{4\mu t_b t_h}{t_b h + t_h b}
 \end{align*}
 \]
 - Missing balance equation is obtained from boom balance
Closed-section beam

- Thin walled rectangular-section beam subjected to torsion (7)
 - Boom (of section A) balance equation

 \[(\sigma_{xx} + \partial_x \sigma_{xx} \delta x) A - \sigma_{xx} A + q_b \delta x - q_h \delta x = 0 \]

 \[A \partial_x \sigma_{xx} + q_b - q_h = 0 \]

- As boom carries direct stress only

 \[\sigma_{xx} = E \partial_x u^m_x \]

 \[E A \frac{\partial^2 u^m_x}{\partial x^2} + q_b - q_h = 0 \]

- With

 \[q_h = \frac{M_x t_h}{t_h b h + t_b h^2} + u^m_x \frac{4 \mu t_h t_b}{t_h b + t_b h} \]

 \[q_b = \frac{M_x t_b}{t_h b^2 + t_b h b} - u^m_x \frac{4 \mu t_b t_h}{t_b h + t_h b} \]

 \[E A \frac{\partial^2 u^m_x}{\partial x^2} + \frac{M_x}{hb} \frac{t_b h - t_h b}{t_h b + t_b h} - \frac{8 \mu t_h t_b}{t_h b + t_b h} u^m_x = 0 \]
Closed-section beam

- Thin walled rectangular-section beam subjected to torsion (8)
 - Differential equation
 \[
 \frac{\partial^2 u_x^m}{\partial x^2} - w^2 u_x^m = -\frac{M_x}{EAhb} \frac{t_b h - t_h b}{t_h b + t_b h} \quad \text{with} \quad w^2 = \frac{1}{EA} \frac{8\mu t_h t_b}{t_h b + t_b h}
 \]
 - Solution
 - General form
 \[
 u_x^m(x) = C_1 \cosh wx + C_2 \sinh wx + \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b}
 \]
 - Boundary conditions at \(x = 0 \) (constraint warping)
 \[
 u_x^m(0) = C_1 + \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} = 0 \quad \implies \quad C_1 = -\frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b}
 \]
 - Boundary conditions at \(x = L \) (free edge)
 \[
 \partial_x u_x^m(L) = wC_1 \sinh wL + wC_2 \cosh wL = 0
 \]
 \[
 \implies C_2 = -C_1 \tanh wL = \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} \tanh wL
 \]
 - Final form
 \[
 u_x^m(x) = \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} (1 + \tanh wL \sinh wx - \cosh wx)
 \]
 \[
 \implies u_x^m(x) = \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} \left(1 - \frac{\cosh (wL - wx)}{\cosh wL} \right)
 \]
Closed-section beam

- Thin walled rectangular-section beam subjected to torsion (9)
 - Warping
 \[u^m_x(x) = \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} \left(1 - \frac{\cosh (wL - wx)}{\cosh wL} \right) \]

- At free end: \[u^L_x = u^m_x(L) = \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} \left(1 - \frac{1}{\cosh wL} \right) \]

- To be compared with the warping of the free-free beam

 - \[u^A_x = u^C_x = \frac{M_x z}{8\mu hb} \left(\frac{h}{t_h} - \frac{b}{t_b} \right) \]
 - Same for \(L \to \infty \)
Closed-section beam

- Thin walled rectangular-section beam subjected to torsion (10)
 - Direct stress in booms
 \[\sigma_{xx} = E \partial_x u_x^m = wE \frac{M_x}{8\mu hb} \frac{t_h h - t_h b}{t_h t_b} \frac{\sinh (wL - wx)}{\cosh wL} \]
 - Direct load in booms
 \[P_x = A \sigma_{xx} = wEA \frac{M_x}{8\mu hb} \frac{t_h h - t_h b}{t_h t_b} \frac{\sinh (wL - wx)}{\cosh wL} \]
Closed-section beam

- Thin walled rectangular-section beam subjected to torsion (11)
 - Shear flow
 - Using
 \[u^m_x(x) = \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} \left(1 - \frac{\cosh(wL - wx)}{\cosh wL} \right) \]
 - The shear flows becomes

\[
\begin{align*}
q_h &= \frac{M_x t_h}{t_h b h + t_b h^2} + u^m_x \frac{4\mu t_h t_b}{t_h b + t_b h} \\
q_b &= \frac{M_x t_b}{t_h b^2 + t_b h b} - u^m_x \frac{4\mu t_b t_h}{t_b h + t_h b} \\
q_h &= \frac{M_x}{2hb} \left(1 + \frac{t_h b - t_b h}{t_h b + t_b h} \frac{\cosh(wL - wx)}{\cosh wL} \right) \\
q_b &= \frac{M_x}{2hb} \left(1 + \frac{t_b h - t_h b}{t_h b + t_b h} \frac{\cosh(wL - wx)}{\cosh wL} \right)
\end{align*}
\]
Closed-section beam

- Thin walled rectangular-section beam subjected to torsion (12)

\[
\begin{align*}
\tau_h &= \frac{q_h}{t_h} = \frac{M_x}{2hbt_h} \left(1 + \frac{t_h b - t_b h \cosh (wL - wx)}{t_h b + t_b h} \frac{\cosh wL}{\cosh wL} \right) \\
\tau_b &= \frac{q_b}{t_b} = \frac{M_x}{2hbt_b} \left(1 + \frac{t_b h - t_h b \cosh (wL - wx)}{t_h b + t_b h} \frac{\cosh wL}{\cosh wL} \right)
\end{align*}
\]
Closed-section beam

- Thin walled rectangular-section beam subjected to torsion (13)
 - Rate of twist
 - Using
 \[u^m_x(x) = \frac{M_x}{8\mu bh} \left(\frac{t_b h - t_h b}{t_h t_b} \right) \left(1 - \frac{\cosh(wL - wx)}{\cosh wL} \right) \]
 - The rate of twist becomes
 \[\theta_{,x} = \frac{2M_x}{\mu t_h b^2 h + \mu t_b h^2 b} + \frac{4u^m_x(t_b h - t_h b)}{t_h b^2 h + t_b h^2 b} \]
 \[\theta_{,x} = \frac{M_x}{2\mu b^2 h^2 t_h t_b} \left[t_b h + t_h b - \left(\frac{t_b h - t_h b}{t_b h + t_h b} \right)^2 \frac{\cosh(wL - wx)}{\cosh wL} \right] \]
 - To be compared with the unconstraint theory
 \[\theta_{,x} = \frac{M_x}{2\mu h^2 b^2} \left(\frac{h}{t_h} + \frac{b}{t_b} \right) \]
 - Constraint reduces the twist rate
• **Problem of axial constraint**
 – In previous example the twist center was known by symmetry
 – In the general case
 • Twist center differs from shear center due to axial constraint
 • Proceed by increment of ΔL
 – Shear stress distribution calculated at the built-in section
 » As in first example
 » Allows determination of the twist center AT THAT SECTION
 – Use the previously developed theory on ΔL
 – New stress distribution on the new section
 » New twist center
 » …
Closed-section beam

- **Shear lag**
 - Beam shearing
 - Shear strain in cross-section
 - Deformation of cross-section
 - Elementary theory of bending
 - For pure bending
 - Not valid anymore due to cross section deformation
 - New distribution of direct stress
 - For wings
 - Wide & thin walled beam
 - Shear distortion of upper and lower skins causes redistribution of stress in the stringers
• Example
 – Assumptions
 • Doubly symmetrical 6-boom beam
 • Shear load through shear center \rightarrow No twist \rightarrow No warping due to twist
 • Uniform panel thickness t
 • Shear loads applied at corner booms
• **Shear lag (2)**

 - For a given section

 - Uniform shear flow between booms
 - Shear flow in web should balance the shear load

 \[q_h = \frac{T_z}{2h} \]

 - Corner booms subjected to opposite loads \(P^1 \), with, by equilibrium

 \[P^1 + \partial_x P^1 \delta x - P^1 - q_h \delta x + q_d \delta x = 0 \]

 \[\partial_x P^1 = \frac{T_z}{2h} - q_d \]

 - Equilibrium of central boom

 - Due to symmetric distribution of \(q_d \)

 \[P^2 + \partial_x P^2 \delta x - P^2 - 2q_d \delta x = 0 \]

 \[\partial_x P^2 = 2q_d \]
• Shear lag (3)
 – For a given section (2)
 • Equilibrium of the cover
 – At the free end
 \[2P^1 + P^2 + 2qh (L - x) = 0 \]
 \[\Rightarrow 2P^1 + P^2 = \frac{T_z}{h} (x - L) \]
 • Summary
 – \[\partial_x P^1 = \frac{T_z}{2h} - q_d \]
 – \[\partial_x P^2 = 2q_d \]
 – \[2P^1 + P^2 = \frac{T_z}{h} (x - L) \]
 – Third equation is the integration of the first two
 – 3 unknowns so one equation is missing
 • Compatibility
Closed-section beam

- Shear lag (4)
 - Deformations of top cover

\[
(1 + \varepsilon^1_{xx}) \delta x = (1 + \varepsilon^2_{xx}) \delta x + d(\gamma_{xy} + \partial_x \gamma_{xy} \delta x) - d\gamma_{xy}
\]

\[
\partial_x \gamma_{xy} = \frac{\varepsilon^1_{xx} - \varepsilon^2_{xx}}{d} = \frac{P^1}{dEA^1} - \frac{P^2}{dEA^2}
\]

- As \(q_d = -\mu t \gamma_{xy} \)

\[
-\frac{1}{\mu t} \partial_x q_d = \frac{P^1}{dEA^1} - \frac{P^2}{dEA^2}
\]
• Shear lag (5)

 – Equations

 • \[\partial_x P^1 = \frac{T_z}{2h} - q_d \]

 • \[\partial_x P^2 = 2q_d \]

 • \[2P^1 + P^2 = \frac{T_z}{h} (x - L) \]

 • \[-\frac{1}{\mu t} \partial_x q_d = \frac{P^1}{dEA^1} - \frac{P^2}{dEA^2} \]

 \[-\frac{1}{2\mu t} \partial_{xx} P^2 = \frac{T_z}{h} (x - L) - P^2 \]

 \[-\frac{1}{2\mu t} \partial_{xx} P^2 = \frac{T_z}{h} (x - L) - P^2 \]

 \[-\frac{2\mu t}{dE} \left(\frac{1}{A^2} + \frac{1}{2A^1} \right) P^2 = \frac{2\mu t T_z (L - x)}{2hdEA^1} \]

 – General solution

 • \[P^2 = C_1 \cosh w (L - x) + C_2 \sinh w (L - x) - \frac{T_z (L - x)}{h \left(\frac{2A^1}{A^2} + 1 \right)} \]

 with \[w^2 = \frac{2\mu t}{dE} \left(\frac{1}{A^2} + \frac{1}{2A^1} \right) \]
• **Shear lag (6)**

 – **General solution**

 \[P^2 = C_1 \cosh w(L - x) + C_2 \sinh w(L - x) - \frac{T_z(L - x)}{h\left(\frac{2A_1}{A^2} + 1\right)} \]

 – **Boundary conditions**

 • Zero axial load at \(x = L\) \(\implies C_1 = 0\)

 • Zero shear deformation at \(x = 0\)

 – As \(\partial_x P^2 = 2q_d\) & \(q_d = -\mu t \gamma_{xy}\)

 \[\partial_x P^2 (x = 0) = -C_2 w \cosh wL + \frac{T_z}{h\left(\frac{2A_1}{A^2} + 1\right)} = 0 \]

 \[\implies C_2 = \frac{T_z}{wh \cos wL \left(\frac{2A_1}{A^2} + 1\right)} \]

 – **Booms direct loadings**

 • \(P^2 = -\frac{T_z}{h\left(\frac{2A_1}{A^2} + 1\right)}\left(L - x - \frac{\sinh w(L - x)}{w \cosh wL}\right)\)

 • \(P^1 = \frac{T_z}{2h} (x - L) - \frac{P^2}{2} = \frac{T_z}{2h\left(\frac{2A_1}{A^2} + 1\right)}\left(\frac{2A_1}{A^2} (x - L) - \frac{\sinh w(L - x)}{w \cosh wL}\right)\)
Closed-section beam

- Shear lag (7)
 - Direct load in top cover
 - \(\sigma^2 = \frac{P^2}{A^2} = -\frac{T_z}{h \left(2A^1 + A^2\right)} \left(L - x - \frac{\sinh w (L - x)}{w \cosh wL}\right) \)
 - \(\sigma^1 = \frac{P^1}{A^1} = -\frac{T_z}{h \left(2A^1 + A^2\right)} \left((L - x) + \frac{A^2}{2A^1} \frac{\sinh w (L - x)}{w \cosh wL}\right) \)
 - Pure bending theory leads to
 - \(\sigma^1 = \sigma^2 = -\frac{T_z}{h \left(2A^1 + A^2\right)} (L - x) \)
 - Compared to pure bending theory
 - Compression in central boom is lower
 - Compression in corner boom is higher
Closed-section beam

- Shear lag (8)
 - Shearing of top cover
 - As $\partial_x P^2 = 2q_d$

 $$q_d = \frac{\partial_x P^2}{2} = \frac{T_z}{2h \left(\frac{2A_1}{A_2} + 1 \right)} \left(1 - \frac{\cosh w(L - x)}{\cosh wL} \right)$$

 - Deformation of top cover

 $$\gamma_{xy} = -\frac{q_d}{\mu t} = -\frac{T_z}{2h \mu t \left(\frac{2A_1}{A_2} + 1 \right)} \left(1 - \frac{\cosh w(L - x)}{\cosh wL} \right)$$
• Shear lag (9)
 - Remark
 • The solution depends on BCs
 • For a realistic wing structure, intermediate stringers have different BCs
Open-section beam

- **I-section beam subjected to torsion without built-in end**
 - Reminder
 - Shear
 - \(\tau_{xs} = 2\mu n \theta_{,x} \)
 - \(C = \frac{M_x}{\theta_{,x}} = \frac{1}{3} \int \mu t^3 ds \)
 - Or
 - \(\frac{M_x}{\theta_{,x}} = \sum_i \frac{l_i t_i^3 \mu}{3} \)
 - Warping
 - \(u_x^s(s) = u_x^s(0) - \theta_{,x} \int_0^{s} p_R ds' \)
 - Particular case of the I-Section beam
 - There is no shear stress at mid plane of flanges
 - They remain rectangular after torsion
Open-section beam

- **I-section beam subjected to torsion with built-in end**
 - Contrarily to the free/free beam
 - Presence of the built-end leads to deformation of the flanges

- The beam still twists but with a non-constant twist rate
- Method of solving: Combination of
 - Saint-Venant shear stress
 - Bending of flanges

\[M_x = M_x^t + M_x^b \]
Open-section beam

- I-section beam subjected to torsion with built-in end (2)
 - Saint-Venant shear stress
 - $M^t_x = C\theta_x$
 - Where θ_x is not constant
Open-section beam

- I-section beam subjected to torsion with built-in end (3)
 - Bending of the flanges
 - For a given section
 - Angle of torsion θ
 - Lateral displacement of lower flange
 $u_y = \frac{\theta h}{2}$
 - Bending moment in lower flange
 $M_{zz}^f = EI_{zz}^f u_{y,xx}$
 - With
 $I_{zz}^f = \frac{t_f b_f^3}{12}$
 - It has been assumed that displacement of the flange results from bending only
 - Shearing in the lower flange
 $T_y^f = -M_{zz,x}^f = -EI_{zz}^f u_{y,xxx}$
 $T_y^f = -\frac{hEI_{zz}^f}{2} \theta_{,xxx}$
Open-section beam

- I-section beam subjected to torsion with built-in end (4)
 - Bending of the flanges (2)
 - For a given section (2)
 - Shearing in the lower flange
 \[T_y^f = -\frac{hEI_{zz}^f}{2} \theta,xxx \]
 - As shearing in top flange is in opposite direction, moment due to bending of the flange becomes
 \[M_x^b = hT_y^f = -\frac{h^2EI_{zz}^f}{2} \theta,xxx \]
 - Total torque on the beam
 - \[M_x = M_x^t + M_x^b \]
 - \[M_x = C\theta,xx - \frac{h^2EI_{zz}^f}{2} \theta,xxx \]
Open-section beam

- Arbitrary-section beam subjected to torsion with built-in end
 - Wagner torsion theory
 - Assumptions
 - Length >> sectional dimensions
 - Undistorted cross-section
 - Shear stress at midsection negligible
 » But shear load not negligible
 - Under these assumptions, we can use the primary warping (of mid section) expression developed for torsion of free/free open-section beams
 $$- u_x^s(s) = u_x^s(0) - \theta_{,x} \int_0^s p_R ds'$$
 $$= u_x^s(0) - 2AR_p(s) \theta_{,x}$$
 - As twist rate is not constant
 - There is a direct induced stress
 $$\sigma_{xx}^\Gamma(s) = E u_{x,x} = E u_x^s(0) - 2EA_{R_p}(s) \theta_{,xx}$$
Open-section beam

- Arbitrary-section beam subjected to torsion with built-in end (2)
 - Wagner torsion theory (2)
 - Direct stress resulting from primary warping
 \[
 \sigma_{xx}^{\Gamma}(s) = E u_{x,x}^s(0) - 2EA_{R_p}(s) \theta_{,xx}
 \]
 - As only a torsion couple is applied
 - Integrating on the whole section \(C \times t \)
 should lead to 0

\[
\int_C t\sigma^{\Gamma} ds = 0
\]

\[
\int_C u_{x,x}^s(0) Et ds - \theta_{,xx} \int_C Et 2A_{R_p}(s) ds = 0
\]

\[
u_{x,x}^s(0) = \frac{\theta_{,xx} \int_C Et 2A_{R_p}(s) ds}{\int_C Et ds}
\]
Open-section beam

- Arbitrary-section beam subjected to torsion with built-in end (3)
 - Wagner torsion theory (3)
 - Direct stress resulting from primary warping (2)
 \[\sigma_{xx}^r(s) = E u_{xx,x}(0) - 2EA_{R_p}(s) \theta_{,xx} \]
 - As only a torsion couple is applied (2)
 \[u_{xx,x}^s(0) = \frac{\theta_{,xx} \int_C E t 2A_{R_p}(s) \, ds}{\int_C E t \, ds} \]
 - Direct stress is equilibrated by shear flow
 - See lecture on beams
 \[(\sigma_{xx} + \partial_x \sigma_{xx} \delta x) t \delta s - \sigma_{xx} t \delta s + (q + \partial_s q \delta s) \delta x - q \delta x = 0 \]
 \[t \partial_x \sigma_{xx} + \partial_s q = 0 \]
 - In this case
 \[q_{,s}^r(s) = -t \sigma_{xx,x,x} \]
 \[q_{,s}^r(s) = -Et u_{xx,x}(0) + 2EtA_{R_p}(s) \theta_{,xx} \]
Open-section beam

- Arbitrary-section beam subjected to torsion with built-in end (4)
 - Wagner torsion theory (4)
 - Equations
 - \(\sigma_{xx}^\Gamma (s) = E u_{x,x}^s (0) - 2EA_{R_p} (s) \theta_{,xx} \)
 - \(u_{x,x}^s (0) = \frac{\theta_{,xx} \int_C Et2A_{R_p} (s) \, ds}{\int_C Et \, ds} \)
 - \(q_{,s}^\Gamma (s) = -Etu_{x,xx}^s (0) + 2EtA_{R_p} (s) \theta_{,xxx} \)

- As for \(s = 0 \) (free edge) \(q(0) = 0 \)
 - \(q_{,s}^\Gamma (s) = \left(-\frac{\int_C Et2A_{R_p} (s) \, ds}{\int_C Et \, ds} + 2A_{R_p} (s) \right) Et \theta_{,xxx} \)
 - \(q^\Gamma (s) = \left(-\frac{\int_C Et2A_{R_p} (s) \, ds}{\int_C Et \, ds} Et s + \int_0^s 2EtA_{R_p} (s') \, ds' \right) \theta_{,xxx} \)
Open-section beam

- Arbitrary-section beam subjected to torsion with built-in end (5)
 - Wagner torsion theory (5)

- Torque

\[M_x^b = \int_C p_R q^\Gamma (s) \, ds \]

- With

\[q^\Gamma (s) = \left(-\frac{\int_C Et2A_{R_p} (s) \, ds}{\int_C Etds} Ets + \int_0^s 2EtA_{R_p} (s') \, ds' \right) \theta_{xxx} \]

\[M_x^b = \left(-\frac{\int_C Et2A_{R_p} (s) \, ds}{\int_C Etds} \int_C p_R Ets ds + \int_C \left\{ p_R \int_0^s 2EtA_{R_p} (s') \, ds' \right\} ds \right) \theta_{xxx} \]
• **Arbitrary-section beam subjected to torsion with built-in end (6)**

 – Wagner torsion theory (6)

 • Torque (2)

 \[
 M_x^b = \left(-\frac{\int_C E I_2 A_{R_p} (s) \, ds}{\int_C E I_2 ds} \right) + \int_C p R E I_2 ds + \int_C \left\{ p R \int_0^s 2 E I A_{R_p} (s') \, ds' \right\} ds \right) \theta_{xxx}
 \]

 • Using \(p R = 2 A_{R_p,s} \), the second term becomes

 \[
 \int_C \left\{ 2 A_{R_p,s} \int_0^s E I_2 A_{R_p} (s') \, ds' \right\} ds = 2 A_{R_p} (s) \left[\int_0^s E I_2 A_{R_p} (s') \, ds' \right]_0^L - \int_C 4 A_{R_p}^2 E I_2 ds
 \]

 – For \(s = 0 \), \(A_{R_p} = 0 \)

 – For \(s = L \), as the edge is free, there is no shear flux

 \[
 0 = q^T (L) = \left(-\frac{\int_C E I_2 A_{R_p} (s) \, ds}{\int_C E I_2 ds} \right) E I L + \int_C E I A_{R_p} (s') \, ds' \right) \theta_{xxx}
 \]

 – Using these two boundary conditions, second term is rewritten

 \[
 \int_C \left\{ 2 A_{R_p,s} \int_0^s E I_2 A_{R_p} (s') \, ds' \right\} ds = \frac{\int_C E I_2 A_{R_p} (s) \, ds}{\int_C E I_2 ds} 2 A_{R_p} (L) E I L - \int_C 4 A_{R_p}^2 E I_2 ds
 \]
Open-section beam

• **Arbitrary-section beam subjected to torsion with built-in end (7)**

 – Wagner torsion theory (7)

 • Torque (3)

 \[
 M_x^b = \left(- \frac{\int_C Et2A_{R_p}(s)\,ds}{\int_C Et\,ds} \right) \int_C p_REt\,ds + \int_C \left\{ p_R \int_0^s 2EtA_{R_p}(s')\,ds' \right\} ds \theta_{xxx}
 \]

 • Using \(p_R = 2A_{R_p,s} \) the integral of first term becomes

 \[
 \int_C 2A_{R_p,s}Et\,ds = 2A_{R_p}(s)EtL_0 - \int_C 2A_{R_p}Et\,ds
 \]

 • As for \(s = 0, A_{R_p} = 0 \), and using

 \[
 \int_C \left\{ 2A_{R_p,s} \int_0^s Et2A_{R_p}(s')\,ds' \right\} ds = \frac{\int_C Et2A_{R_p}(s)\,ds}{\int_C Et\,ds} 2A_{R_p}(L)EtL - \int_C 4A_{R_p}^2Et\,ds
 \]

 • The final expression reads

 \[
 M_x^b = \left(\frac{\left(\int_C Et2A_{R_p}(s)\,ds \right)^2}{\int_C Et\,ds} - \int_C 4A_{R_p}^2Et\,ds \right) \theta_{xxx}
 \]
Open-section beam

- **Arbitrary-section beam subjected to torsion with built-in end (8)**
 - General expression for torque
 - \[M_x = M^t_x + M^b_x \longrightarrow M_x = C\theta_x - C^\Gamma \theta_{xxx} \]
 - With
 - \[C^\Gamma = \int_C 4A^2_{Rp} Etds - \frac{\left(\int_C Et2A_{Rp}(s) \, ds\right)^2}{\int_C Etds} \]
 - Case of the I-section beam
 - Center of twist is the center of symmetry \(C \)
 - For the web: \(A_{Rp}(s) = 0 \longrightarrow \) no contribution to \(C^\Gamma \)
 - For lower flange
 - \[A_{Rp}(s) = \frac{hs}{4} \]
 - \[\begin{align*}
 \int_C Et2A_{Rp}(s) \, ds &= Et_f \frac{hb^2_f}{4} \\
 \int_C Et4A^2_{Rp}(s) \, ds &= Et_f \frac{h^2b^3_f}{12}
 \end{align*} \]
 - For the I-section
 - \[C^\Gamma = 2 \left(Et_f \frac{h^2b^3_f}{12} - Et_f \frac{h^2b^3_f}{16} \right) = Et_f \frac{h^2b^3_f}{24} \]
Open-section beam

• Arbitary-section beam subjected to torsion with built-in end (9)
 – Case of the I-section beam (2)
 • Expression $M_x = C \theta_{,x} - C^\Gamma \theta_{,xxx}$
 – With $C^\Gamma = \int_C 4A^2 R_p E t ds - \left(\frac{\int_C Et A R_p (s) ds}{\int_C Et ds} \right)^2$
 \[C^\Gamma = 2 \left(Et_f \frac{h^2 b_f^3}{12} - Et_f \frac{h^2 b_f^3}{16} \right) = Et_f \frac{h^2 b_f^3}{24}\]

• To be compared with

$M_x = C \theta_{,x} - \frac{h^2 E I_{zz} f}{2} \theta_{,xxx}$
Open-section beam

- Idealized beam subjected to torsion with built-in end
 - For idealized sections with booms
 - In expression
 \[
 C^\Gamma = \int_C 4A^2_{R_p} Et ds - \left(\frac{\int_C Et 2A_{R_p} (s) ds}{\int_C Et ds} \right)^2
 \]
 - The direct stress is carried out by
 - \(t_{\text{direct}} \)
 - Booms of section \(A_i \)
 \[
 C^\Gamma = \int_C 4A^2_{R_p} Et_{\text{direct}} ds + \sum_i 4A^2_{R_p} (s^i) EA_i - \\
 \left(\frac{\int_C Et_{\text{direct}} 2A_{R_p} (s) ds + \sum_i 2A_{R_p} (s^i) EA_i}{\int_C Et_{\text{direct}} ds + \sum_i EA_i} \right)^2
 \]
Open-section beam

- Applications of beam subjected to torsion with built-in end
 - Solution for pure torque
 - $M_x = C \theta_{,x} - CT \theta_{,xxx}$
 - $\theta_{,xxx} - w^2 \theta_{,x} = -\frac{w^2}{C} M_x$ with $w^2 = \frac{C}{CT}$
 - Solution
 - $\theta_{,x} = C_1 \cosh wx + C_2 \sinh wx + \frac{M_x}{C}$
 - Boundary conditions
 - At built-in end $x = 0$: No warping, and as $u^s_x (s) = u^s_x (0) - \theta_{,x} \int_0^s p_R ds'$
 - $\theta_{,x} (0) = 0 \Rightarrow C_1 = -\frac{M_x}{C}$
 - At free end $x = L$: no direct load,
 - $\sigma_{xx}^\Gamma (s) = E u^s_{x,x} (0) - 2E A_{R_p} (s) \theta_{,xx}$
 - $u^s_{x,x} (0) = \frac{\theta_{,xx} \int_C Et2A_{R_p} (s) ds}{\int_C Et ds}$
 - $\theta_{,xx} (L) = 0 \Rightarrow C_2 = \frac{M_x}{C} \tanh wL$
Open-section beam

- Applications of beam subjected to torsion with built-in end (2)
 - Solution for pure torque (2)

- Twist rate

\[
\theta_{,x} = \frac{M_x}{C} \left(1 - \cosh wx + \tanh wL \sinh wx \right)
\]

\[
\theta_{,x} = \frac{M_x}{C} \left(1 - \frac{\cosh (wL - wx)}{\cosh wL} \right)
\]
Open-section beam

- Applications of beam subjected to torsion with built-in end (3)
 - Solution for pure torque (3)
 - Angle of twist
 - As \(\theta_{,x} = \frac{M_x}{C} \left(1 - \frac{\cosh (wL - wx)}{\cosh wL} \right) \)
 \[\theta (x) = \frac{M_x}{C} \left(x + \frac{\sinh (wL - wx)}{w \cosh wL} + C_3 \right) \]
 - Boundary condition at built end \(x = 0 \): No twist
 \[0 = \theta (0) = \frac{M_x}{C} \left(\frac{\sinh wL}{w \cosh wL} + C_3 \right) \]
 \[\theta (x) = \frac{M_x}{C} \left(x + \frac{\sinh (wL - wx)}{w \cosh wL} - \frac{\sinh wL}{w \cosh wL} \right) \]
 - At free end
 \[\theta (L) = \frac{M_x L}{C} \left(1 - \frac{\tanh wL}{wL} \right) \]
 Reduction compared to free-free case
Applications of beam subjected to torsion with built-in end (4)

- Distributed torque loading \(m_x \)
 - Two contributions to torque
 \[
 M_x = M_x^t + M_x^b
 \]
 - Balance equation
 \[
 M_x^t + \partial_x M_x^t \delta x + M_x^b + \partial_x M_x^b \delta x + m_x \delta x = M_x^t + M_x^b
 \]
 \[
 \partial_x M_x = \partial_x M_x^t + \partial_x M_x^b = -m_x
 \]
 \[
 \begin{cases}
 M_x^t = C \theta, x \\
 M_x^b = -C^T \theta, xxx
 \end{cases}
 \]
 \[
 \partial_x \left(C^T \theta, xxx - C \theta, x \right) = m_x (x)
 \]
 - As
 - To be solved with adequate boundary conditions
 - Built-in end: \(\theta = 0 \) & \(\theta, x = 0 \) (no warping)
 - Free end: \(\theta, xx = 0 \) (no direct stress) & No torque at free end
• Remark
 – We have studied
 • Axial loading resulting from torsion
 • A similar theory can be derived to deduce torsion resulting from axial loading
References

• Lecture notes

• Other references
 – Books