Aircraft Structures Structural & Loading Discontinuities

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Aircraft Structures - Structural & Loading Discontinuities

Elasticity

- Balance of body *B*
 - Momenta balance
 - Linear
 - Angular
 - Boundary conditions
 - Neumann
 - Dirichlet

• Small deformations with linear elastic, homogeneous & isotropic material

$$- \text{ (Small) Strain tensor } \boldsymbol{\varepsilon} = \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right), \text{ or } \begin{cases} \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial \boldsymbol{x}_i} \boldsymbol{u}_j + \frac{\partial}{\partial \boldsymbol{x}_j} \boldsymbol{u}_i \right) \\ \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\boldsymbol{u}_{j,i} + \boldsymbol{u}_{i,j} \right) \end{cases}$$

– Hooke's law
$$oldsymbol{\sigma}=\mathcal{H}:oldsymbol{arepsilon}$$
 , or $oldsymbol{\sigma}_{ij}=\mathcal{H}_{ijkl}oldsymbol{arepsilon}_{kl}$

with
$$\mathcal{H}_{ijkl} = \underbrace{\frac{E\nu}{(1+\nu)(1-2\nu)}}_{\lambda=K-2\mu/3} \delta_{ij}\delta_{kl} + \underbrace{\frac{E}{1+\nu}}_{2\mu} \left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$$

- Inverse law $\varepsilon = \mathcal{G} : \sigma$ $\lambda = K - 2\mu/3$

with

7

2013-2014

 $\mathcal{G}_{ijkl} = \frac{1+\nu}{E} \left(\frac{1}{2} \delta_{ik} \delta_{jl} + \frac{1}{2} \delta_{il} \delta_{jk} \right) - \frac{\nu}{E} \delta_{ij} \delta_{kl}$

2

• General expression for unsymmetrical beams

Stress
$$\sigma_{xx} = \kappa E z \cos \alpha - \kappa E y \sin \alpha$$

With $\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{\|M_{xx}\|}{\kappa E} \begin{pmatrix} I_{yy} & -I_{yz} \\ -I_{yz} & I_{zz} \end{pmatrix}^{-1} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$

- Curvature

_

$$\begin{pmatrix} -\boldsymbol{u}_{z,xx} \\ \boldsymbol{u}_{y,xx} \end{pmatrix} = \frac{\|\boldsymbol{M}_{xx}\|}{E\left(I_{yy}I_{zz} - I_{yz}I_{yz}\right)} \begin{pmatrix} I_{zz} & I_{yz} \\ I_{yz} & I_{yy} \end{pmatrix} \begin{pmatrix} \sin\theta \\ -\cos\theta \end{pmatrix}$$

In the principal axes $I_{yz} = 0$

• Euler-Bernoulli equation in the principal axis

$$- \frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 u_z}{\partial x^2} \right) = f(x) \quad \text{for } x \text{ in } [0 L]$$

$$- \text{BCs} \begin{cases} -\frac{\partial}{\partial x} \left(EI \frac{\partial^2 u_z}{\partial x^2} \right) \Big|_{0, L} = \bar{T}_z \Big|_{0, L} \\ -EI \frac{\partial^2 u_z}{\partial x^2} \Big|_{0, L} = \bar{M}_{xx} \Big|_{0, L} \end{cases} \qquad u_z = 0$$

$$\frac{M > 0}{L}$$

- Similar equations for u_y

2013-2014

General relationships

 $-\begin{cases} f_{z}(x) = -\partial_{x}T_{z} = -\partial_{xx}M_{y} \\ f_{y}(x) = -\partial_{x}T_{y} = \partial_{xx}M_{z} \end{cases}$

f(x) $u_{7} = 0$ $d\boldsymbol{u}_{\tau}/dx \neq 0$ L

- Two problems considered
 - Thick symmetrical section
 - Shear stresses are small compared to bending stresses if $h/L \ll 1$ •
 - Thin-walled (unsymmetrical) sections _
 - Shear stresses are not small compared to bending stresses •
 - Deflection mainly results from bending stresses
 - 2 cases •

2013-2014

- Open thin-walled sections
 - » Shear = shearing through the shear center + torque
- Closed thin-walled sections
 - » Twist due to shear has the same expression as torsion

- Shearing of symmetrical thick-section beams
 - Stress $\sigma_{zx} = -\frac{T_z S_n(z)}{I_{yy} b(z)}$ • With $S_n(z) = \int_{A^*} z dA$
 - Accurate only if h > b
 - Energetically consistent averaged shear strain z

•
$$\bar{\gamma} = \frac{T_z}{A'\mu}$$
 with $A' = \frac{1}{\int_A \frac{S_n^2}{I_{xy}^2 b^2} dA}$

• Shear center on symmetry axes

Timoshenko equations

•
$$\bar{\gamma} = 2\bar{\varepsilon}_{xz} = \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} = \theta_y + \partial_x u_z \,\& \kappa = \frac{\partial \theta_y}{\partial x}$$

• On [0 L]:
$$\begin{cases} \frac{\partial}{\partial_x} \left(EI \frac{\partial \theta_y}{\partial x} \right) - \mu A' \left(\theta_y + \partial_x u_z \right) = 0 \\ \frac{\partial}{\partial x} \left(\mu A' \left(\theta_y + \partial_x u_z \right) \right) = -f \end{cases}$$

5

Université de Liège

2013-2014

Aircraft Structures - Structural & Loading Discontinuities

• Shearing of open thin-walled section beams

- Shear flow
$$q = t\tau$$

• $q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s tz ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s ty ds'$

• In the principal axes

$$q\left(s\right) = -\frac{T_z}{I_{yy}}\int_0^s tz ds' - \frac{T_y}{I_{zz}}\int_0^s ty ds'$$

- Shear center S
 - On symmetry axes
 - At walls intersection
 - Determined by momentum balance
- Shear loads correspond to
 - Shear loads passing through the shear center &
 - Torque

- Shearing of closed thin-walled section beams
 - Shear flow $q = t\tau$
 - $q(s) = q_o(s) + q(0)$
 - Open part (for anticlockwise of q, s)

$$q_{o}(s) = -\frac{I_{zz}T_{z} - I_{yz}T_{y}}{I_{yy}I_{zz} - I_{yz}^{2}} \int_{0}^{s} t(s') z(s') ds' - \frac{I_{yy}T_{y} - I_{yz}T_{z}}{I_{yy}I_{zz} - I_{yz}^{2}} \int_{0}^{s} t(s') y(s') ds'$$

Constant twist part

$$q\left(s=0\right) = \frac{y_T T_z - z_T T_y - \oint p\left(s\right) q_o\left(s\right) ds}{2A_h}$$

• The q(0) is related to the closed part of the section, but there is a $q_o(s)$ in the open part which should be considered for the shear torque $\oint p(s) q_o(s) ds$

Université 🛛 🧔

- Shearing of closed thin-walled section beams
 - Warping around twist center R

•
$$\boldsymbol{u}_{x}(s) = \boldsymbol{u}_{x}(0) + \int_{0}^{s} \frac{q}{\mu t} ds - \frac{1}{A_{h}} \oint \frac{q}{\mu t} ds \left\{ A_{Cp}(s) - \frac{z_{R}\left[y\left(s\right) - y\left(0\right)\right] - y_{R}\left[z\left(s\right) - z\left(0\right)\right]}{2} \right\}$$

• With $\boldsymbol{u}_{x}(0) = \frac{\oint t \boldsymbol{u}_{x}(s) ds}{\oint t(s) ds} - \boldsymbol{u}_{x}(0) = 0$ for symmetrical section if origin on

the symmetry axis

- Shear center S
 - Compute q for shear passing thought S

• Use

2013-2014

$$q\left(s=0\right) = \frac{y_T T_z - z_T T_y - \oint p\left(s\right) q_o\left(s\right) ds}{2A_h}$$

Z. +CZ. v C

8

Université de Liège

With point S=T

15 Mg

Aircraft Structures - Structural & Loading Discontinuities

Beam torsion: linear elasticity summary

- Torsion of symmetrical thick-section beams
 - Circular section

•
$$\tau = \mu \gamma = r \mu \theta_{,x}$$

•
$$C = \frac{M_x}{\theta_{,x}} = \int_A \mu r^2 dA$$

Rectangular section

•
$$au_{\max} = \frac{M_x}{\alpha h b^2}$$

•
$$C = \frac{M_x}{\theta_{,x}} = \beta h b^3 \mu$$

• If *h* >> *b*

$$- \tau_{xy} = 0 \quad \& \tau_{xz} = 2\mu y \theta_{,x}$$

$$- \tau_{\rm max} = \frac{3M_x}{hb^2}$$

$$- C = \frac{M_x}{\theta_{,x}} = \frac{hb^3\mu}{3}$$

h/b	1	1.5	2	4	∞
α	0.208	0.231	0.246	0.282	1/3
β	0.141	0.196	0.229	0.281	1/3

Beam torsion: linear elasticity summary

Ζ₹

y

- Torsion of open thin-walled section beams
 - Approximated solution for twist rate
 - Thin curved section

$$- \tau_{xs} = 2\mu n\theta_{,x}$$
$$- C = \frac{M_x}{\theta_{,x}} = \frac{1}{3}\int \mu t^3 ds$$

• Rectangles

- Warping of *s*-axis

•
$$\boldsymbol{u}_{x}^{s}(s) = \boldsymbol{u}_{x}^{s}(0) - \theta_{,x} \int_{0}^{s} p_{R} ds' = \boldsymbol{u}_{x}^{s}(0) - 2A_{R_{p}}(s) \theta_{,x}$$

Z,

 l_2

n

Beam torsion: linear elasticity summary

Z.

 M_x

11

Université de Liège V

v

- Torsion of closed thin-walled section beams
 - Shear flow due to torsion $M_x = 2A_h q$
 - Rate of twist

•
$$\theta_{,x} = \frac{M_x}{4A_h^2} \oint \frac{1}{\mu t} ds$$

• Torsion rigidity for constant μ

$$I_T = \frac{4A_h^2}{\oint \frac{1}{t}ds} \le I_p = \int_A r^2 dA$$

- Warping due to torsion

•
$$\boldsymbol{u}_{x}\left(s\right) = \boldsymbol{u}_{x}\left(0\right) + \frac{M_{x}}{2A_{h}}\left[\int_{0}^{s}\frac{1}{\mu t}ds - \frac{A_{R_{p}}\left(s\right)}{A_{h}}\oint\frac{1}{\mu t}ds\right]$$

• A_{Rp} from twist center

- Panel idealization
 - Booms' area depending on loading
 - For linear direct stress distribution

- Consequence on bending
 - If Direct stress due to bending is carried by booms only
 - The position of the neutral axis, and thus the second moments of area
 - Refer to the direct stress carrying area only
 - Depend on the loading case only
- Consequence on shearing
 - Open part of the shear flux
 - Shear flux for open sections

$$\begin{aligned} q_o\left(s\right) &= -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \begin{bmatrix} \int_0^s t_{\text{direct } \sigma} z ds + \sum_{i: \ s_i \leq s} z_i A_i \end{bmatrix} - \underbrace{I_{yy}T_y - I_{yz}T_z}_{I_{yy}I_{zz} - I_{yz}^2} \begin{bmatrix} \int_0^s t_{\text{direct } \sigma} y ds + \sum_{i: \ s_i \leq s} y_i A_i \end{bmatrix} - \underbrace{I_{yz}T_y - I_{yz}T_z}_{\delta x} \end{aligned}$$

- Consequence on torsion
 - If no axial constraint
 - Torsion analysis does not involve axial stress
 - So torsion is unaffected by the structural idealization

67KS

Ζ.

Τ,

• Virtual displacement

- In linear elasticity the general formula of virtual displacement reads $\int_0^L \int_A \sigma^{(1)} : \varepsilon dA dx = P^{(1)} \Delta_P$
 - $\sigma^{(1)}$ is the stress distribution corresponding to a (unit) load $P^{(1)}$
 - Δ_P is the energetically conjugated displacement to *P* in the direction of *P*⁽¹⁾ that corresponds to the strain distribution ε
- Example bending of semi cantilever beam

•
$$\int_0^L \int_A \boldsymbol{\sigma}_{xx}^{(1)} \boldsymbol{\varepsilon}_{xx} dA dx = \Delta_P u$$

- In the principal axes

$$\Delta_P u = \frac{1}{E I_{yy} I_{zz}} \int_0^L \left\{ I_{zz} M_y^{(1)} M_y + I_{yy} M_z^{(1)} M_z \right\} dx$$

- Example shearing of semi-cantilever beam

•
$$\int_0^L \int_s q^{(1)} \frac{q}{\mu t} ds dx = \mathbf{T}^{(1)} \bar{\Delta u} = \Delta_T u$$

4 Université de Liège

х

Limitations of these theories

• Previously developed equations

- Stresses & displacements produced by
 - Axial loads
 - Shear forces
 - Bending moments
 - Torsion
- No allowance for constrained warping
 - Due to structural or loading discontinuities
 - Example torsion of a built-in beam
 - No warping allowed at clamping
- Coupling shearing-bending neglected
 - Effect of shear strains on the direct stress
 - Shear strains prevent cross section to remain plane
 - Direct stress predicted by pure bending theory not correct anymore
 - For wing box, shear strains can be important

- These effects can be analyzed on simple problems
 - Problem of axial constraint divided in two parts
 - Shear stress distribution calculated at the built-in section
 - Stress distribution calculated on the beam length for the separate loading cases of bending & torsion
 - Problem related to instabilities as buckling
 - See later
- For more complex problems
 - Finite element simulations required

Closed-section beam

- Shear stress distribution at a built-in end
 - Idealized or not cross-sections
 - Assume a beam with closed cross-section
 - Center of twist *R*
 - Undistorted section of the beam
 - Shear flow, displacements and rotation of the section were found to be

$$-\frac{q}{\mu t} = \frac{\partial \boldsymbol{u}_x}{\partial s} + \left[p - y_R \sin \Psi + z_R \cos \Psi\right] \frac{\partial \theta}{\partial x}$$
$$- \text{With} \begin{cases} y_R = -\frac{\partial_x \boldsymbol{u}_z^C}{\partial_x \theta} \\ z_R = \frac{\partial_x \boldsymbol{u}_y^C}{\partial_x \theta} \end{cases}$$

- At built-in this relation simplifies into

•
$$\frac{q}{\mu t} = p \frac{\partial \theta}{\partial x} + \frac{\partial \boldsymbol{u}_z^C}{\partial x} \sin \Psi + \frac{\partial \boldsymbol{u}_y^C}{\partial x} \cos \Psi$$

Closed-section beam

- Shear stress distribution at a built-in end (2)
 - At built-in shear flux is written

•
$$\frac{q}{\mu t} = p \frac{\partial \theta}{\partial x} + \frac{\partial \boldsymbol{u}_z^C}{\partial x} \sin \Psi + \frac{\partial \boldsymbol{u}_y^C}{\partial x} \cos \Psi$$

• By equilibrium

-
$$T_y = \oint q \cos \Psi ds$$

- $T_z = \oint q \sin \Psi ds$
- $y_T T_z - z_T T_y = \oint p q ds$

After substitution of shear flux _

$$\begin{cases} \boldsymbol{T}_{y} = \frac{\partial\theta}{\partial x} \oint \mu tp \cos \Psi ds + \frac{\partial \boldsymbol{u}_{y}^{C}}{\partial x} \oint \mu t \cos^{2} \Psi ds + \frac{\partial \boldsymbol{u}_{z}^{C}}{\partial x} \oint \mu t \cos \Psi \sin \Psi ds \\ \boldsymbol{T}_{z} = \frac{\partial\theta}{\partial x} \oint \mu tp \sin \Psi ds + \frac{\partial \boldsymbol{u}_{y}^{C}}{\partial x} \oint \mu t \cos \Psi \sin \Psi ds + \frac{\partial \boldsymbol{u}_{z}^{C}}{\partial x} \oint \mu t \sin^{2} \Psi ds \\ \boldsymbol{y}_{T} \boldsymbol{T}_{z} - \boldsymbol{z}_{T} \boldsymbol{T}_{y} = \frac{\partial\theta}{\partial x} \oint \mu tp^{2} ds + \frac{\partial \boldsymbol{u}_{y}^{C}}{\partial x} \oint \mu tp \cos \Psi ds + \frac{\partial \boldsymbol{u}_{z}^{C}}{\partial x} \oint \mu tp \sin \Psi ds \end{cases}$$

- Shear stress distribution at a built-in end (3)
 - New system of 3 equations and 3 unknowns

$$\begin{cases} T_{y} = \frac{\partial\theta}{\partial x} \oint \mu tp \cos \Psi ds + \frac{\partial u_{y}^{C}}{\partial x} \oint \mu t \cos^{2} \Psi ds + \frac{\partial u_{z}^{C}}{\partial x} \oint \mu t \cos \Psi \sin \Psi ds \\ T_{z} = \frac{\partial\theta}{\partial x} \oint \mu tp \sin \Psi ds + \frac{\partial u_{y}^{C}}{\partial x} \oint \mu t \cos \Psi \sin \Psi ds + \frac{\partial u_{z}^{C}}{\partial x} \oint \mu t \sin^{2} \Psi ds \\ y_{T}T_{z} - z_{T}T_{y} = \frac{\partial\theta}{\partial x} \oint \mu tp^{2} ds + \frac{\partial u_{y}^{C}}{\partial x} \oint \mu tp \cos \Psi ds + \frac{\partial u_{z}^{C}}{\partial x} \oint \mu tp \sin \Psi ds \end{cases}$$

• Solution of the system: $\frac{\partial\theta}{\partial x}$, $\frac{\partial u_{y}^{C}}{\partial x}$ & $\frac{\partial u_{z}^{C}}{\partial x}$

$$\frac{q}{\mu t} = p \frac{\partial \theta}{\partial x} + \frac{\partial \boldsymbol{u}_z^C}{\partial x} \sin \Psi + \frac{\partial \boldsymbol{u}_y^C}{\partial x} \cos \Psi$$

- Shear flow and shear stress are then defined
- Remains true for any choice of C as long as p is computed from there

• Example

- Built-in end
 - Section with constant shear modulus
- Shear stress distribution?
- Center of twist?

Wall	Length (m)	Thickness (mm)
AB	0.375	1.6
BC	0.500	1.0
CD	0.125	1.2
DA		1.0

Deformation

- Sign convention: >0 anticlockwise
- Angle α : sin $\alpha = 0.25/0.5 \implies \alpha = 30^{\circ}$
- Coefficients ____

$$\oint tp \cos \Psi ds = \int_B^C p_A t^{BC} \cos \Psi^{BC} ds^{BC} + \int_C^D p_A t^{CD} \cos \Psi^{CD} ds^{CD}$$

$$C = \frac{\alpha}{q, s, \theta, \Psi} = \frac{y_T^2}{0.1 \text{ m}}$$

$$\oint tp \cos \Psi ds = l^{BC} t^{BC} l^{AB} \cos \frac{\pi}{6} \cos \frac{7\pi}{6} + l^{CD} t^{CD} l^{AD} \cos \frac{3\pi}{2}$$

$$\oint tp \cos \Psi ds = -0.5 \ 10^{-3} \ 0.375 \ \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{2} \frac{16}{2}$$

$$= -0.14 \ 10^{-3} \ \text{m}^{3}$$

$$\boxed{ \begin{array}{c} \text{Wall Length (m) Thickness (mm)} \\ \text{AB } 0.375 \ 1.6 \\ \text{BC } 0.500 \ 1.0 \\ \text{CD } 0.125 \ 1.2 \\ \text{DA } \end{array} }$$

1.6

1.0

1.2

1.0

- Deformation (2)
 - Coefficients (2)

$$\oint tp\sin\Psi ds = \int_B^C p_A t^{BC} \sin\Psi^{BC} ds^{BC} + \int_C^D p_A t^{CD} \sin\Psi^{CD} ds^{CD}$$
$$\implies \oint tp\sin\Psi ds = l^{BC} t^{BC} l^{AB} \cos\frac{\pi}{6} \sin\frac{7\pi}{6} + l^{CD} t^{CD} l^{BC} \cos\frac{\pi}{6} \sin\frac{3\pi}{2}$$

$$\oint tp \sin \Psi ds = -0.5 \ 10^{-3} \ 0.375 \ \frac{\sqrt{3}}{2} \frac{1}{2} - 0.125 \ 1.2 \ 10^{-3} \ 0.5 \frac{\sqrt{3}}{2} \frac{1}{2} - 0.15 \ 10^{-3} \ \mathrm{m}^3$$

Wall	Length (m)	Thickness (mm)
AB	0.375	1.6
BC	0.500	1.0
CD	0.125	1.2
DA		1.0

• Deformation (3)

$$\oint t \cos^{2} \Psi ds = \int_{A}^{B} t^{AB} \cos^{2} \Psi^{AB} ds^{AB} + \int_{B}^{C} t^{BC} \cos^{2} \Psi^{BC} ds^{BC} + \int_{C}^{D} t^{CD} \cos^{2} \Psi^{CD} ds^{CD} + \int_{D}^{D} t^{CD} \cos^{2} \Psi^{CD} ds^{CD} + \int_{D}^{A} t^{DA} \cos^{2} \Psi^{DA} ds^{DA}$$

$$\oint t \cos^{2} \Psi ds = l^{AB} t^{AB} \cos^{2} \frac{\pi}{2} + l^{BC} t^{BC} \cos^{2} \frac{7\pi}{6} + l^{CD} t^{CD} \cos^{2} \frac{3\pi}{2} + l^{DA} t^{DA} \cos^{2} 2\pi$$

$$\Rightarrow \oint t \cos^{2} \Psi ds = 0.5 \ 10^{-3} \ \frac{3}{4} + 0.5 \frac{\sqrt{3}}{2} \ 10^{-3}$$

2013-2014

 $= 0.81 \, 10^{-3} \, \mathrm{m}^2$

- Deformation (4)
 - Coefficients (4)

$$\oint t \sin^2 \Psi ds = \int_A^B t^{AB} \sin^2 \Psi^{AB} ds^{AB} + \int_B^C t^{BC} \sin^2 \Psi^{BC} ds^{BC} + \int_C^D t^{CD} \sin^2 \Psi^{CD} ds^{CD} + \int_C^A t^{DA} \sin^2 \Psi^{DA} ds^{DA}$$

$$C = \frac{\alpha}{q, s, \theta, \Psi} = \frac{y_{T}}{q, s, \theta, \Psi}$$

$$\oint t \sin^2 \Psi ds = l^{AB} t^{AB} \sin^2 \frac{\pi}{2} + l^{BC} t^{BC} \sin^2 \frac{7\pi}{6} + l^{CD} t^{CD} t^{CD} \sin^2 \frac{3\pi}{2} + l^{DA} t^{DA} \sin^2 2\pi$$

Wall	Length (m)	Thickness (mm)		
AB	0.375	1.6		
BC	0.500	1.0		
CD	0.125	1.2		
DA		1.0		

$$\Longrightarrow \oint t \sin^2 \Psi ds = 0.375 \ 1.6 \ 10^{-3} + 0.5 \ 10^{-3} \ \frac{1}{4} + 0.125 \ 1.2 \ 10^{-3} = 0.88 \ 10^{-3} \ \text{m}^2$$

2013-2014

• Deformation (5)

- Coefficients (5)

$$\oint t \sin \Psi \cos \Psi ds = \int_{A}^{B} t^{AB} \frac{\sin 2\Psi^{AB}}{2} ds^{AB} + \int_{B}^{C} t^{BC} \frac{\sin 2\Psi^{BC}}{2} ds^{BC} + \int_{C}^{D} t^{CD} \frac{\sin 2\Psi^{CD}}{2} ds^{BC} + \int_{D}^{\alpha} t^{CD} \frac{\sin 2\Psi^{CD}}{2} ds^{CD} + D + \int_{A}^{\alpha} t^{DA} \frac{\sin 2\Psi^{DA}}{2} ds^{DA}$$

$$\int_{D}^{A} t^{DA} \frac{\sin 2\Psi^{DA}}{2} ds^{DA} = \int_{C}^{A} t^{DA} \frac{\sin \pi}{2} + \int_{C}^{BC} t^{BC} \frac{\sin \frac{7\pi}{3}}{2} + \int_{C}^{B} t^{CD} t^{CD} \frac{\sin 3\pi}{2} + \int_{C}^{DA} t^{DA} \frac{\sin 4\pi}{2} + \int_{C}^{BC} \frac{\sin 5\pi}{2} + \int_{C}^{BC} \frac{\sin 5\pi}{2} + \int_{C}^{BC} \frac{\sin 5\pi}{2} + \int_{C}^{DD} t^{CD} \frac{\sin 3\pi}{2} + \int_{C}^{DA} t^{DA} \frac{\sin 4\pi}{2} + \int_{C}^{BC} \frac{\cos 5\pi}{2} + \int_{C}^{BC} \frac{\sin 5\pi}{2} + \int_{C}^{BC} \frac{\sin 5\pi}{2} + \int_{C}^{BC} \frac{\sin 5\pi}{2} + \int_{C}^{BC} \frac{\sin 5\pi}{2} + \int_{C}^{BC} \frac{\cos 5\pi}{2} + \int_{C}^{BC} \frac{\cos 5\pi}{2} + \int_{C}^{CD} \frac{$$

- Deformation (6)
 - Coefficients (6)

$$\oint tp^2 ds = \int_B^C p_A^2 t^{BC} ds^{BC} + \int_C^D p_A^2 t^{CD} ds^{CD}$$
$$\implies \oint tp^2 ds = l^{BC} t^{BC} \left(l^{AB} \cos \frac{\pi}{6} \right)^2 + l^{CD} t^{CD} \left(l^{BC} \cos \frac{\pi}{6} \right)^2$$

$$C = \frac{\alpha}{q, s, \theta, \Psi} = \frac{y_{T}}{0.1 \text{ m}}$$

$$\implies \oint tp^2 ds = 0.5 \ 10^{-3} \ 0.375^2 \ \frac{3}{4} + 0.125 \ 1.2 \ 10^{-3} \ 0.5^2 \ \frac{3}{4} = 0.081 \ 10^{-3} \ \mathrm{m}^4$$

Wall	Length (m)	Thickness (mm)
AB	0.375	1.6
BC	0.500	1.0
CD	0.125	1.2
DA		1.0

Deformation (7) System with origin of the axis at point A ($C \implies A$) _ • $T_y = \frac{\partial \theta}{\partial x} \oint \mu t p \cos \Psi ds + \frac{\partial u_y^C}{\partial x} \oint \mu t \cos^2 \Psi ds + \frac{\partial u_z^C}{\partial x} \oint \mu t \cos \Psi \sin \Psi ds$ $\implies -0.14 \, 10^{-3} \, \mathrm{m}^3 \, \mu \frac{\partial \theta}{\partial x} + 0.81 \, 10^{-3} \, \mathrm{m}^2 \, \mu \frac{\partial u_y^A}{\partial x} + 0.22 \, 10^{-3} \, \mathrm{m}^2 \, \mu \frac{\partial u_z^A}{\partial x} = 0$ • $T_z = \frac{\partial \theta}{\partial x} \oint \mu t p \sin \Psi ds + \frac{\partial u_y^C}{\partial x} \oint \mu t \cos \Psi \sin \Psi ds + \frac{\partial u_z^C}{\partial x} \oint \mu t \sin^2 \Psi ds$ $\implies -0.15 \, 10^{-3} \,\mathrm{m}^3 \,\mu \frac{\partial \theta}{\partial x} + 0.22 \, 10^{-3} \,\mathrm{m}^2 \,\mu \frac{\partial \boldsymbol{u}_y^A}{\partial x} + 0.88 \, 10^{-3} \,\mathrm{m}^2 \,\mu \frac{\partial \boldsymbol{u}_z^A}{\partial x} = 22 \, 10^3 \,\mathrm{N}$ • $y_T T_z - z_T T_y = \frac{\partial \theta}{\partial x} \oint \mu t p^2 ds + \frac{\partial u_y^C}{\partial x} \oint \mu t p \cos \Psi ds + \frac{\partial u_z^C}{\partial x} \oint \mu t p \sin \Psi ds$ $\implies 0.081 \, 10^{-3} \,\mathrm{m}^4 \,\mu \, \frac{\partial \theta}{\partial x} - 0.14 \, 10^{-3} \,\mathrm{m}^3 \,\mu \frac{\partial u_y^A}{\partial x} - 0.15 \, 10^{-3} \,\mathrm{m}^3 \,\mu \, \frac{\partial u_z^A}{\partial x} = 2.2 \, 10^3 \mathrm{N} \cdot \mathrm{m}$

27 Université

• Deformation (8)

60A

System (2)
• -0.14 10⁻³ m³
$$\mu \frac{\partial \theta}{\partial x} + 0.81 10^{-3} m^2 \mu \frac{\partial u_y^A}{\partial x} + 0.22 10^{-3} m^2 \mu \frac{\partial u_z^A}{\partial x} = 0$$

 $\implies \mu \frac{\partial \theta}{\partial x} = 5.79 m^{-1} \mu \frac{\partial u_y^A}{\partial x} + 1.57 m^{-1} \mu \frac{\partial u_z^A}{\partial x}$
• -0.15 10⁻³ m³ $\mu \frac{\partial \theta}{\partial x} + 0.22 10^{-3} m^2 \mu \frac{\partial u_y^A}{\partial x} + 0.88 10^{-3} m^2 \mu \frac{\partial u_z^A}{\partial x} = 22 10^3 N$
 $\implies -0.65 10^{-3} m^2 \mu \frac{\partial u_y^A}{\partial x} + 0.64 10^{-3} m^2 \mu \frac{\partial u_z^A}{\partial x} = 22 10^3 N$
 $\implies -0.65 10^{-3} m^2 \mu \frac{\partial u_x^A}{\partial x} - 33.85 10^6 N \cdot m^{-2}$
 $\implies \mu \frac{\partial \theta}{\partial x} = 7.24 m^{-1} \mu \frac{\partial u_z^A}{\partial x} - 196 10^6 N \cdot m^{-2}$
0.081 10⁻³ m⁴ $\mu \frac{\partial \theta}{\partial x} - 0.14 10^{-3} m^3 \mu \frac{\partial u_y^A}{\partial x} - 0.15 10^{-3} m^3 \mu \frac{\partial u_z^A}{\partial x} = 2.2 10^3 N \cdot m^{-2}$
 $\implies \mu \frac{\partial \theta}{\partial x} = 123 10^6 N \cdot m^{-3} \qquad \mu \frac{\partial u_y^A}{\partial x} = 9.3 10^6 N \cdot m^{-2}$
 $\implies \mu \frac{\partial u_z^A}{\partial x} = 44 10^6 N \cdot m^{-2}$

• Shear flux $-\frac{q}{\mu t} = p_A \frac{\partial \theta}{\partial x} + \frac{\partial u_z^A}{\partial x} \sin \Psi + \frac{\partial u_y^A}{\partial x} \cos \Psi$ - Wall AB $q^{AB} = t^{AB} \mu \frac{\partial u_z^A}{\partial x}$ $\implies q^{AB} = 1.6 \ 10^{-3} 44 \ 10^6 = 70 \ 10^3 \ \text{N} \cdot \text{m}^{-1}$ $\implies \tau^{AB} = \frac{q^{AB}}{t^{AB}} = 44 \ \text{MPa}$ - Wall DA

$$q^{DA} = t^{DA} \mu \frac{\partial u_y^A}{\partial x} \cos 2\pi$$

$$\implies q^{DA} = 10^{-3} \ 9.3 \ 10^6 \ = 9.3 \ 10^3 \ \text{N} \cdot \text{m}^{-1}$$

$$\implies \tau^{DA} = \frac{q^{DA}}{t^{DA}} = \frac{9.3 \ 10^3}{10^{-3}} = 9.3 \ \text{MPa}$$

Wall	Length (m)	Thickness (mm)
AB	0.375	1.6
BC	0.500	1.0
CD	0.125	1.2
DA		1.0

Shear flux (2)			
$-\frac{q}{\mu t} = p_A \frac{\partial \theta}{\partial x} + \frac{\partial \boldsymbol{u}_z^A}{\partial x} \sin \Psi + \frac{\partial \boldsymbol{u}_y^A}{\partial x} \cos \Psi$			T_z^B , $T_z = 22 \text{ kN}$
– Wall BC			,
$q^{BC} = p_A t^{BC} \mu \frac{\partial \theta}{\partial x} + t^{BC} \mu \frac{\partial \boldsymbol{u}_z^A}{\partial x} \sin \Psi^{BC} +$	C	q, s, θ, Ψ	$y_T = 0.1 \text{ m}$
$t^{BC} \mu \frac{\partial \boldsymbol{u}_y^A}{\partial x} \cos \Psi^{BC}$	D		A
$\implies q^{BC} = l^{AB} \cos \frac{\pi}{6} t^{BC} \mu \frac{\partial \theta}{\partial x} +$			
$t^{BC}\sinrac{7\pi}{6}\murac{\partial \boldsymbol{u}_{z}^{A}}{\partial x}+t^{BC}\cosrac{7\pi}{6}\murac{\partial \boldsymbol{u}_{y}^{A}}{\partial x}$	Wall	Length (m)	Thickness (mm)
$\frac{1}{\sqrt{3}}$	AB	0.375	1.6
$\implies q^{BC} = 0.375 \frac{1}{2} 10^{-3} 123 10^{6} -$	BC	0.500	1.0
$10^{-3} \frac{1}{2} 44 10^{6} - 10^{-3} \frac{\sqrt{3}}{2} 9.3 10^{6}$	CD	0.125	1.2
2 2 2 2	DA		1.0
= 9.9 10 ⁻ N·m ⁻¹ $\implies \tau^{BC} = \frac{q^{BC}}{t^{BC}} = \frac{9.9 10^3}{10^{-3}} = 9.9 \text{ MPa}$			

2013-2014

30 Université de Liège

•	Shear flux (3)			
	$-\frac{q}{\mu t} = p_A \frac{\partial \theta}{\partial x} + \frac{\partial \boldsymbol{u}_z^A}{\partial x} \sin \Psi + \frac{\partial \boldsymbol{u}_y^A}{\partial x} \cos \Psi$			T_z , $T_z = 22 \text{ kN}$
	- Wall CD			
	$q^{CD} = p_A t^{CD} \mu \frac{\partial \theta}{\partial x} + t^{CD} \mu \frac{\partial \boldsymbol{u}_z^A}{\partial x} \sin \Psi^{CD} +$	C	$\frac{1}{q,s,\theta,\Psi}$	$y'_T =$ 0.1 m
	$t^{CD} \mu \frac{\partial \boldsymbol{u}_{y}^{A}}{\partial x} \cos \Psi^{CD}$	D		A
	$\implies q^{CD} = l^{BC} \cos \frac{\pi}{6} t^{CD} \mu \frac{\partial \theta}{\partial x} +$			
	$_{\star CD} \sin 3\pi _{\mu} \partial \boldsymbol{u}_{z}^{A}$			
	$\iota \sin \frac{1}{2} \mu \frac{1}{\partial x}$	Wall	Length (m)	Thickness (mm)
	CD $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	AB	0.375	1.6
	$\implies q^{CD} = 0.5 \frac{1}{2} 1.2 10^{-3} 123 10^{6} - $	BC	0.500	1.0
	$1.2 10^{-3} 44 10^{6} = 11.1 10^{3} \mathrm{N \cdot m^{-1}}$	CD	0.125	1.2
	$_{-CD}$ 11 1 1 03	DA		1.0
	$\implies \tau^{CD} = \frac{q^{-D}}{t^{CD}} = \frac{11.1 \ 10^{-3}}{1.2 \ 10^{-3}} = 9.3 \text{ MPa}$			

Center of twist

– System linked to point A

$$\implies \begin{cases} y_R = -\frac{\partial_x u_z^A}{\partial_x \theta} = -\frac{44\,10^6}{123\,10^6} = -0.36 \text{ m} \\ z_R = \frac{\partial_x u_y^A}{\partial_x \theta} = \frac{9.3\,10^6}{123\,10^6} = 0.076 \text{ m} \end{cases}$$

- The center of twist
 - Depends on loading $(y_T \text{ and } T)$
 - Does not correspond to the center of shear
 - Due to the warping constrain
- Shear flux discontinuitiy at corners
 - Requires booms in order of avoiding stress concentrations

Wall	Length (m)	Thickness (mm)
AB	0.375	1.6
BC	0.500	1.0
CD	0.125	1.2
DA		1.0

- Thin walled rectangular-section beam subjected to torsion
 - In the case of free warping, we found

$$\begin{cases} \boldsymbol{u}_x^A = \boldsymbol{u}_x^C = \frac{M_x}{8\mu hb} \left(\frac{h}{t_h} - \frac{b}{t_b}\right) \\ \boldsymbol{u}_x^B = \boldsymbol{u}_x^D = \frac{M_x}{8\mu hb} \left(\frac{b}{t_b} - \frac{h}{t_h}\right) \\ \bullet \quad \theta_{,x} = \frac{M_x}{2\mu h^2 b^2} \left(\frac{h}{t_h} + \frac{b}{t_b}\right) \end{cases}$$

- Direct stress are introduced
- Different shear stress distribution

- Thin walled rectangular-section beam subjected to torsion (2)
 - Idealization
 - Warping to be suppressed is linear & symmetrical
 - Direct stress also linear & symmetrical
 - Idealization

 Four identical booms carrying direct stress only

$$A = \frac{bt_b}{6} \left(2 - 1\right) + \frac{ht_h}{6} \left(2 - 1\right)$$
$$\implies A = \frac{bt_b + ht_h}{6}$$
Papels carry shear flux only

- Thin walled rectangular-section beam subjected to torsion (3)
 - Warping at a given section
 - Shearing (see beam lecture)

$$\begin{cases} q = \tau t = \mu t \gamma \\ \gamma = 2\boldsymbol{\varepsilon}_{xs} = \frac{\partial \boldsymbol{u}_s}{\partial x} + \frac{\partial \boldsymbol{u}_x}{\partial s} \\ \implies q = \mu t \left(\boldsymbol{u}_{s,x} + \boldsymbol{u}_{x,s} \right) \end{cases}$$

- Warping
 - If u_x^m is the maximum warping
 - On webs

$$oldsymbol{u}_{x,s} = oldsymbol{u}_{x,z} = rac{oldsymbol{u}_x^m}{h/2}$$

On covers

$$oldsymbol{u}_{x,s}=-oldsymbol{u}_{x,y}=-rac{oldsymbol{u}_x^m}{b/2}$$

35

Université de Liège

• Thin walled rectangular-section beam subjected to torsion (4)

1

- Warping of a given section (2)
 - Kinematics
 - See lecture on beams $\delta \boldsymbol{u}_s = p_R \delta \boldsymbol{\theta}$
 - As twist center is at section
 - center (by symmetry)

– On webs
$$oldsymbol{u}_{s,x}=rac{b}{2} heta_{,x}$$

– On covers
$$oldsymbol{u}_{s,x}=rac{h}{2} heta_{,x}$$

- Combining results
 - On webs

$$q_h = \mu t_h \left(\frac{b}{2}\theta_{,x} + \frac{2}{h}\boldsymbol{u}_x^m\right)$$

On covers

$$q_b = \mu t_b \left(\frac{h}{2}\theta_{,x} - \frac{2}{b}\boldsymbol{u}_x^m\right)$$

$$p_R \delta \theta$$

$$R = \frac{u_x}{q_b}$$

$$R = \frac{u_x}{q_b}$$

$$R = \frac{u_x}{q_b}$$

- Thin walled rectangular-section beam subjected to torsion (5)
 - Torque
 - From shear flow $q_h \& q_b$

$$M_{x} = \oint qp_{C}ds = 2\frac{h}{2}q_{b}b + 2\frac{b}{2}q_{h}h$$

$$\implies M_{x} = bh (q_{b} + q_{h})$$

$$M_{x} = bh (q_{b} + q_{h})$$

$$\int q_{b} = \mu t_{h} \left(\frac{b}{2}\theta_{,x} + \frac{2}{h}u_{x}^{m}\right)$$

$$\int d_{y} = \mu t_{b} \left(\frac{h}{2}\theta_{,x} - \frac{2}{b}u_{x}^{m}\right)$$

$$\implies M_{x} = \mu t_{h} \left(\frac{b^{2}h}{2}\theta_{,x} + 2bu_{x}^{m}\right) + \mu t_{b} \left(\frac{bh^{2}}{2}\theta_{,x} - 2hu_{x}^{m}\right)$$

- Twist rate is directly obtained

$$\theta_{,x} = \frac{2M_x}{\mu t_h b^2 h + \mu t_b h^2 b} + \frac{4u_x^m (t_b h - t_h b)}{t_h b^2 h + t_b h^2 b}$$

Z,

- Thin walled rectangular-section beam subjected to torsion (6)
 - Shear flows
 - From shear flow $q_h \& q_b$

$$q_{h} = \mu t_{h} \left(\frac{b}{2} \theta_{,x} + \frac{2}{h} \boldsymbol{u}_{x}^{m} \right)$$
$$q_{b} = \mu t_{b} \left(\frac{h}{2} \theta_{,x} - \frac{2}{b} \boldsymbol{u}_{x}^{m} \right)$$

Using

$$\theta_{,x} = \frac{2M_x}{\mu t_h b^2 h + \mu t_b h^2 b} + \frac{4\boldsymbol{u}_x^m \left(t_b h - t_h b\right)}{t_h b^2 h + t_b h^2 b}$$
$$\left\{ q_h = \frac{M_x t_h}{t_h b h + t_b h^2} + \boldsymbol{u}_x^m \frac{4\mu t_h t_b}{t_h b + t_b h} \right\}$$

$$q_b = \frac{M_x t_b}{t_h b^2 + t_b h b} - \boldsymbol{u}_x^m \frac{4\mu t_b t_h}{t_b h + t_h b}$$

- Missing balance equation is obtained from boom balance

Z.

δx

 M_{x}

b

h

- Thin walled rectangular-section beam subjected to torsion (7)
 - Boom (of section A) balance equation

•
$$(\boldsymbol{\sigma}_{xx} + \partial_x \boldsymbol{\sigma}_{xx} \delta x) A - \boldsymbol{\sigma}_{xx} A + q_b \delta x - q_h \delta x = 0$$

 $\implies A \partial_x \boldsymbol{\sigma}_{xx} + q_b - q_h = 0$

• As boom carries direct stress only

$$\boldsymbol{\sigma}_{xx} = E\partial_x \boldsymbol{u}_x^m$$

$$\implies EA\frac{\partial^2 \boldsymbol{u}_x^m}{\partial x^2} + q_b - q_h = 0$$

• With

- Thin walled rectangular-section beam subjected to torsion (8)
 - Differential equation

•
$$\frac{\partial^2 \boldsymbol{u}_x^m}{\partial x^2} - w^2 \boldsymbol{u}_x^m = -\frac{M_x}{EAhb} \frac{t_b h - t_h b}{t_h b + t_b h} \qquad \text{with} \qquad w^2 = \frac{1}{EA} \frac{8\mu t_h t_b}{t_h b + t_b h}$$

- Solution

General form
$$\boldsymbol{u}_{x}^{m}(x) = C_{1} \cosh wx + C_{2} \sinh wx + \frac{M_{x}}{8\mu hb} \frac{t_{b}h - t_{h}b}{t_{h}t_{b}}$$

• Boundary conditions at *x* = 0 (constraint warping)

$$\boldsymbol{u}_{x}^{m}(0) = C_{1} + \frac{M_{x}}{8\mu h b} \frac{t_{b}h - t_{h}b}{t_{h}t_{b}} = 0 \implies C_{1} = -\frac{M_{x}}{8\mu h b} \frac{t_{b}h - t_{h}b}{t_{h}t_{b}}$$

• Boundary conditions at *x* = *L* (free edge)

$$\partial_x \boldsymbol{u}_x^m \left(L \right) = wC_1 \sinh wL + wC_2 \cosh wL = 0$$
$$\implies C_2 = -C_1 \tanh wL = \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} \tanh wL$$

• Final form

$$\boldsymbol{u}_{x}^{m}(x) = \frac{M_{x}}{8\mu h b} \frac{t_{b}h - t_{h}b}{t_{h}t_{b}} \left(1 + \tanh wL \sinh wx - \cosh wx\right)$$
$$\implies \boldsymbol{u}_{x}^{m}(x) = \frac{M_{x}}{8\mu h b} \frac{t_{b}h - t_{h}b}{t_{h}t_{b}} \left(1 - \frac{\cosh\left(wL - wx\right)}{\cosh wL}\right)$$

Thin walled rectangular-section beam subjected to torsion (9)
 Warping

$$\boldsymbol{u}_{x}^{m}(x) = \frac{M_{x}}{8\mu h b} \frac{t_{b}h - t_{h}b}{t_{h}t_{b}} \left(1 - \frac{\cosh\left(wL - wx\right)}{\cosh wL}\right)$$

• At free end:
$$\boldsymbol{u}_{x}^{L} = \boldsymbol{u}_{x}^{m}(L) = \frac{M_{x}}{8\mu h b} \frac{t_{b}h - t_{h}b}{t_{h}t_{b}} \left(1 - \frac{1}{\cosh wL}\right)$$

• To be compared with the warping of the free-free beam

$$- u_{x}^{A} = u_{x}^{C} = \frac{M_{x}}{8\mu hb} \left(\frac{h}{t_{h}} - \frac{b}{t_{b}} \right)$$

$$- \text{ Same for } L \to \infty$$

$$\delta x$$

$$u_{x}^{m}$$

$$q_{b}$$

$$q_{h}$$

$$u_{x}$$

$$M_{x}$$

$$b$$

41

Université 🛛 🖉

- Thin walled rectangular-section beam subjected to torsion (10)
 - Direct stress in booms

$$\boldsymbol{\sigma}_{xx} = E\partial_x \boldsymbol{u}_x^m = wE \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} \frac{\sinh\left(wL - wx\right)}{\cosh wL}$$

- Direct load in booms

$$P_x = A\boldsymbol{\sigma}_{xx} = wEA \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} \frac{\sinh\left(wL - wx\right)}{\cosh wL}$$

• Thin walled rectangular-section beam subjected to torsion (11)

Shear flow
• Using

$$u_x^m(x) = \frac{M_x}{8\mu hb} \frac{t_b h - t_h b}{t_h t_b} \left(1 - \frac{\cosh(wL - wx)}{\cosh wL} \right) \delta_x$$
• The shear flows becomes

$$\begin{cases} q_h = \frac{M_x t_h}{t_h bh + t_b h^2} + u_x^m \frac{4\mu t_h t_b}{t_h b + t_b h} \\ q_b = \frac{M_x t_b}{t_h b^2 + t_b h b} - u_x^m \frac{4\mu t_b t_h}{t_b h + t_h b} \end{cases}$$

$$= \left\{ \begin{array}{l} q_h = \frac{M_x}{2hb} \left(1 + \frac{t_h b - t_b h}{t_h b + t_b h} \frac{\cosh\left(wL - wx\right)}{\cosh wL} \right) \\ q_b = \frac{M_x}{2hb} \left(1 + \frac{t_b h - t_h b}{t_h b + t_b h} \frac{\cosh\left(wL - wx\right)}{\cosh wL} \right) \end{array} \right\}$$

- Thin walled rectangular-section beam subjected to torsion (12)
 - Shear stress

- Thin walled rectangular-section beam subjected to torsion (13)
 - Rate of twist
 - Using

$$\boldsymbol{u}_{x}^{m}\left(x\right) = \frac{M_{x}}{8\mu h b} \frac{t_{b}h - t_{h}b}{t_{h}t_{b}} \left(1 - \frac{\cosh\left(wL - wx\right)}{\cosh wL}\right)$$

• The rate of twist becomes

$$\theta_{,x} = \frac{2M_x}{\mu t_h b^2 h + \mu t_b h^2 b} + \frac{4u_x^m (t_b h - t_h b)}{t_h b^2 h + t_b h^2 b}$$

$$\implies \theta_{,x} = \frac{M_x}{2\mu b^2 h^2 t_h t_b} \left[t_b h + t_h b - \frac{\left(t_b h - t_h b\right)^2}{t_h b + t_b h} \frac{\cosh\left(wL - wx\right)}{\cosh wL} \right]$$

To be compared with the unconstraint theory

•
$$\theta_{,x} = \frac{M_x}{2\mu h^2 b^2} \left(\frac{h}{t_h} + \frac{b}{t_b}\right)$$

Constraint reduces the twist rate

- Problem of axial constraint
 - In previous example the twist center was known by symmetry
 - In the general case
 - Twist center differs from shear center due to axial constraint
 - Proceed by increment of ΔL
 - Shear stress distribution calculated at the built-in section
 - » As in first example
 - » Allows determination of the twist center AT THAT SECTION
 - Use the previously developed theory on ΔL
 - New stress distribution on the new section
 - » New twist center
 - » ...

Shear lag

- Beam shearing
 - Shear strain in cross-section
 - Deformation of cross-section
 - Elementary theory of bending
 - For pure bending
 - Not valid anymore due to cross section deformation
 - New distribution of direct stress
- For wings
 - Wide & thin walled beam
 - Shear distortion of upper and lower skins causes redistribution of stress in the stringers

47

• Example

- Assumptions
 - Doubly symmetrical 6-boom beam

 - Uniform panel thickness t
 - Shear loads applied at corner booms

• Shear lag (2)

- For a given section
 - Uniform shear flow between booms
 - Shear flow in web should balance

the shear load $\implies q_h = \frac{T_z}{2h}$

• Corner booms subjected to opposite loads P^{I} , with, by equilibrium $P^{1} + \partial_{x}P^{1}\delta x - P^{1} - q_{h}\delta x + q_{d}\delta x = 0$

$$\Longrightarrow \partial_x P^1 = \frac{T_z}{2h} - q_d$$

• Equilibrium of central boom

Due to symmetric distribution

of
$$q_d$$

 $P^2 + \partial_x P^2 \delta x - P^2 - 2q_d \delta x = 0$

$$\Longrightarrow \partial_x P^2 = 2q_d$$

49

Université 🛛 🦉

Aircraft Structures - Structural & Loading Discontinuities

 A^{I}

х

p1

h

 $T_{z'}$

A

d

 q_h

L-x

Shear lag (3)

- For a given section (2)
 - Equilibrium of the cover
 - At the free end

$$2P^{1} + P^{2} + 2q_{h} (L - x) = 0$$

$$\implies 2P^{1} + P^{2} = \frac{T_{z}}{h} (x - L)$$

Summary ٠

$$- \partial_x P^1 = \frac{T_z}{2h} - q_d$$

$$- \partial_x P^2 = 2q_d$$

$$- 2P^{1} + P^{2} = \frac{T_{z}}{h} \left(x - L \right)$$

- Third equation is the integration of the first two

- 3 unknowns so one equation is missing
 - Compatibility •

2013-2014

• Shear lag (4)

Deformations of top cover

$$(1 + \varepsilon_{xx}^{1}) \,\delta x = (1 + \varepsilon_{xx}^{2}) \,\delta x + d \left(\gamma_{xy} + \partial_{x}\gamma_{xy}\delta x\right) - d\gamma_{xy}$$

$$\implies \partial_x \gamma_{xy} = \frac{\varepsilon_{xx}^* - \varepsilon_{xx}^2}{d} = \frac{P^1}{dEA^1} - \frac{P^2}{dEA^2}$$

• As
$$q_d = -\mu t \gamma_{xy}$$

 $\implies -\frac{1}{\mu t} \partial_x q_d = \frac{P^1}{dEA^1} - \frac{P^2}{dEA^2}$

2013-2014

Aircraft Structures - Structural & Loading Discontinuities

51

Shear lag (5) Equations • $\partial_x P^1 = \frac{T_z}{2h} - q_d$ • $\partial_{x}P^{2} = 2a_{d}$ A^{1} A • $2P^1 + P^2 = \frac{T_z}{h} (x - L)$ h • $-\frac{1}{\mu t}\partial_x q_d = \frac{P^1}{dEA^1} - \frac{P^2}{dEA^2}$ X T_/2 $\implies -\frac{1}{2\mu t}\partial_{xx}^2 P^2 = \frac{\frac{T_z}{h}(x-L) - P^2}{2dEA^1} - \frac{P^2}{dEA^2}$ $\implies \partial_{xx}^2 P^2 - \frac{2\mu t}{dE} \left(\frac{1}{A^2} + \frac{1}{2A^1} \right) P^2 = \frac{2\mu t T_z \left(L - x \right)}{2hdEA^1}$ General solution • $P^2 = C_1 \cosh w (L-x) + C_2 \sinh w (L-x) - \frac{T_z (L-x)}{h (\frac{2A^1}{2} + 1)}$

- Shear lag (6)
 - General solution

•
$$P^2 = C_1 \cosh w \left(L - x\right) + C_2 \sinh w \left(L - x\right) - \frac{T_z \left(L - x\right)}{h \left(\frac{2A^1}{A^2} + 1\right)}$$

- Boundary conditions
 - Zero axial load at $x = L \implies C_1 = 0$
 - Zero shear deformation at *x* = 0

As
$$\partial_x P^2 = 2q_d$$
 & $q_d = -\mu t \gamma_{xy}$
 $\partial_x P^2 (x=0) = -C_2 w \cosh w L + \frac{T_z}{h \left(\frac{2A^1}{A^2} + 1\right)} = 0$
 $\Longrightarrow C_2 = \frac{T_z}{wh \cos w L \left(\frac{2A^1}{A^2} + 1\right)}$

- Booms direct loadings

•
$$P^2 = -\frac{T_z}{h\left(\frac{2A^1}{A^2} + 1\right)} \left(L - x - \frac{\sinh w\left(L - x\right)}{w\cosh wL}\right)$$

•
$$P^1 = \frac{T_z}{2h} (x - L) - \frac{P^2}{2} = \frac{T_z}{2h \left(\frac{2A^1}{A^2} + 1\right)} \left(\frac{2A^1}{A^2} (x - L) - \frac{\sinh w (L - x)}{w \cosh w L}\right)$$

• Shear lag (7)

- Direct load in top cover D^2

•
$$\sigma^2 = \frac{P^2}{A^2} = -\frac{T_z}{h(2A^1 + A^2)}$$

 $\left(L - x - \frac{\sinh w (L - x)}{w \cosh wL}\right)$
• $\sigma^1 = \frac{P^1}{A^1} = -\frac{T_z}{h(2A^1 + A^2)}$
 $\left((L - x) + \frac{A^2}{2A^1} \frac{\sinh w (L - x)}{w \cosh wL}\right)$

• Pure bending theory leads to

$$\boldsymbol{\sigma}^{1} = \boldsymbol{\sigma}^{2} = -\frac{T_{z}}{h\left(2A^{1} + A^{2}\right)}\left(L - x\right)$$

- Compared to pure bending theory
 - Compression in central boom is lower
 - Compression in corner boom is higher

• Shear lag (9)

- Remark
 - The solution depends on BCs
 - For a realistic wing structure, intermediate stringers have different BCs

- I-section beam subjected to torsion without built-in end
 - Reminder
 - Shear

$$- \tau_{xs} = 2\mu n\theta_{,x}$$

$$- C = \frac{M_x}{\theta_{,x}} = \frac{1}{3}\int \mu t^3 ds$$

$$- \text{ Or } \frac{M_x}{\theta_{,x}} = \sum_i \frac{l_i t_i^3 \mu}{3}$$

• Warping

$$- \boldsymbol{u}_{x}^{s}\left(s\right) = \boldsymbol{u}_{x}^{s}\left(0\right) - \theta_{,x} \int_{0}^{s} p_{R} ds'$$

- Particular case of the I-Section beam

- There is no shear stress at mid plane of flanges
- They remain rectangular after torsion

2013-2014

 l_2

t₁

v

n

- I-section beam subjected to torsion with built-in end
 - Contrarily to the free/free beam

- Presence of the built-end leads to deformation of the flanges

- The beam still twists but with a non-constant twist rate
- Method of solving: Combination of
 - Saint-Venant shear stress
 - Bending of flanges

$$\implies M_x = M_x^t + M_x^b$$

- I-section beam subjected to torsion with built-in end (2)
 - Saint-Venant shear stress
 - $M_x^t = C\theta_{,x}$
 - Where $\theta_{,x}$ is not constant

- I-section beam subjected to torsion with built-in end (3)
 - Bending of the flanges
 - For a given section
 - Angle of torsion θ
 - Lateral displacement of lower flange

»
$$\boldsymbol{u}_y = \frac{\theta h}{2}$$

- Bending moment in lower flange

»
$$M_z^f = EI_{zz}^f \boldsymbol{u}_{y,xx}$$

» With $I_{zz}^f = \frac{t_f b_f^3}{12}$

» It has been assumed that

displacement of the flange results from bending only

- Shearing in the lower flange

$$T_y^f = -M_{z,x}^f = -EI_{zz}^f \boldsymbol{u}_{y,xxx}$$
$$\implies T_y^f = -\frac{hEI_{zz}^f}{2}\theta_{,xxx}$$

60 Université de Liège

- I-section beam subjected to torsion with built-in end (4)
 - Bending of the flanges (2)
 - For a given section (2)
 - Shearing in the lower flange

$${}^{\textit{w}}T_y^f = -\frac{hEI_{zz}^f}{2}\theta_{,xxx}$$

As shearing in top flange is in

opposite direction, moment due to bending of the flange becomes

$$M_x^b = hT_y^f = -\frac{h^2 E I_{zz}^f}{2}\theta_{,xxx}$$

Total torque on the beam

•
$$M_x = M_x^t + M_x^b$$

 $\implies M_x = C\theta_{,x} - \frac{h^2 E I_{zz}^f}{2}\theta_{,xxx}$

Z,

y

- Arbitrary-section beam subjected to torsion with built-in end
 - Wagner torsion theory
 - Assumptions
 - Length >> sectional dimensions
 - Undistorted cross-section
 - Shear stress at midsection negligible
 - » But shear load not negligible
 - Under these assumptions, we can use the primary warping (of mid section) expression developed for torsion of free/free open-section beams

$$-\boldsymbol{u}_{x}^{s}\left(s\right) = \boldsymbol{u}_{x}^{s}\left(0\right) - \theta_{,x} \int_{0}^{s} p_{R} ds'$$

$$=\boldsymbol{u}_{x}^{s}\left(0\right)-2A_{R_{p}}\left(s\right)\boldsymbol{\theta}_{,x}$$

- As twist rate is not constant
 - There is a direct induced stress

$$\boldsymbol{\sigma}_{xx}^{\Gamma}\left(s\right) = E\boldsymbol{u}_{x,x} = E\boldsymbol{u}_{x,x}^{s}\left(0\right) - 2EA_{R_{p}}\left(s\right)\theta_{,xx}$$

х

n

 M_{x}

- Arbitrary-section beam subjected to torsion with built-in end (2)
 - Wagner torsion theory (2)
 - Direct stress resulting from primary warping

$$-\boldsymbol{\sigma}_{xx}^{\Gamma}(s) = E\boldsymbol{u}_{x,x}^{s}(0) - 2EA_{R_{p}}(s)\theta_{,xx}$$

- As only a torsion couple is applied
 - Integrating on the whole section $C \ge t$

should lead to 0

$$\Longrightarrow \int_{C} t \boldsymbol{\sigma}^{\Gamma} ds = 0$$

$$\Longrightarrow \boldsymbol{u}_{x,x}^{s}(0) \int_{C} Et ds - \theta_{,xx} \int_{C} Et 2A_{R_{p}}(s) ds = 0$$

$$\Longrightarrow \boldsymbol{u}_{x,x}^{s}(0) = \frac{\theta_{,xx} \int_{C} Et 2A_{R_{p}}(s) ds}{\int_{C} Et ds}$$

- Arbitrary-section beam subjected to torsion with built-in end (3)
 - Wagner torsion theory (3)
 - Direct stress resulting from primary warping (2)

$$-\boldsymbol{\sigma}_{xx}^{\Gamma}\left(s\right) = E\boldsymbol{u}_{x,x}^{s}\left(0\right) - 2EA_{R_{p}}\left(s\right)\theta_{,xx}$$

• As only a torsion couple is applied (2)

$$\mathbf{-} \boldsymbol{u}_{x,x}^{s}\left(0\right) = \frac{\theta_{,xx} \int_{C} Et 2A_{R_{p}}\left(s\right) ds}{\int_{C} Et ds}$$

- Direct stress is equilibrated by shear flow
 - See lecture on beams

$$(\boldsymbol{\sigma}_{xx} + \partial_x \boldsymbol{\sigma}_{xx} \delta x) t \delta s - \boldsymbol{\sigma}_{xx} t \delta s + (q + \partial_s q \delta s) \delta_x - q \delta x = 0$$
$$\implies t \partial_x \boldsymbol{\sigma}_{xx} + \partial_s q = 0$$

- In this case

$$q_{,s}^{\Gamma} = -t\boldsymbol{\sigma}_{xx,x}^{\Gamma}$$

Z. 🛦

$$\implies q_{,s}^{\Gamma}\left(s\right) = -Et\boldsymbol{u}_{x,xx}^{s}\left(0\right) + 2EtA_{R_{p}}\left(s\right)\theta_{,xxx}$$

 σ_{s} -

х

 M_{r}

- Arbitrary-section beam subjected to torsion with built-in end (4)
 - Wagner torsion theory (4)
 - Equations

$$-\boldsymbol{\sigma}_{xx}^{\Gamma}(s) = E\boldsymbol{u}_{x,x}^{s}(0) - 2EA_{R_{p}}(s)\,\theta_{,xx}$$
$$-\boldsymbol{u}_{x,x}^{s}(0) = \frac{\theta_{,xx}\int_{C}Et2A_{R_{p}}(s)\,ds}{\int_{C}Etds}$$
$$-\boldsymbol{q}_{,s}^{\Gamma}(s) = -Et\boldsymbol{u}_{x,xx}^{s}(0) + 2EtA_{R_{p}}(s)\,\theta_{,xxx}$$

• As for s = 0 (free edge) q(0) = 0

$$-q_{,s}^{\Gamma}(s) = \left(-\frac{\int_{C} Et2A_{R_{p}}(s) ds}{\int_{C} Etds} + 2A_{R_{p}}(s)\right) Et\theta_{,xxx}$$
$$\implies q^{\Gamma}(s) = \left(-\frac{\int_{C} Et2A_{R_{p}}(s) ds}{\int_{C} Etds} Ets + \int_{0}^{s} 2EtA_{R_{p}}(s') ds'\right)\theta_{,xxx}$$

- Arbitrary-section beam subjected to torsion with built-in end (5)
 - Wagner torsion theory (5)
 - Torque

$$-M_{x}^{b} = \int_{C} p_{R}q^{\Gamma}(s) ds$$

$$- \text{With } q^{\Gamma}(s) = \left(-\frac{\int_{C} Et2A_{R_{p}}(s) ds}{\int_{C} Etds} Ets + \int_{0}^{s} 2EtA_{R_{p}}(s') ds'\right) \theta_{,xxx}$$

$$\longrightarrow M_{x}^{b} = \left(-\frac{\int_{C} Et2A_{R_{p}}(s) ds}{\int_{C} Etds} \int_{C} p_{R}Etsds + \int_{C} \left\{p_{R} \int_{0}^{s} 2EtA_{R_{p}}(s') ds'\right\} ds\right) \theta_{,xxx}$$

 p_R

- Arbitrary-section beam subjected to torsion with built-in end (6)
 - Wagner torsion theory (6)
 - Torque (2)

$$M_x^b = \left(-\frac{\int_C Et2A_{R_p}\left(s\right)ds}{\int_C Etds}\int_C p_R Etsds + \int_C \left\{p_R \int_0^s 2EtA_{R_p}\left(s'\right)ds'\right\}ds\right)\theta_{,xxx}$$

- Using $p_R = 2A_{R_p,s}$ the second term becomes

$$\int_{C} \left\{ 2A_{R_{p},s} \int_{0}^{s} Et 2A_{R_{p}}\left(s'\right) ds' \right\} ds = 2A_{R_{p}}\left(s\right) \int_{0}^{s} Et 2A_{R_{p}}\left(s'\right) ds' \Big|_{0}^{L} - \int_{C} 4A_{R_{p}}^{2} Et ds$$

- For
$$s = 0, A_{Rp} = 0$$

- For s = L, as the edge is free, there is no shear flux

$$\implies 0 = q^{\Gamma}(L) = \left(-\frac{\int_{C} Et2A_{R_{p}}(s) ds}{\int_{C} Etds} EtL + \int_{C} Et2A_{R_{p}}(s') ds'\right)\theta_{,xxx}$$

- Using these two boundary conditions, second term is rewritten $\int_{C} \left\{ 2A_{R_{p},s} \int_{0}^{s} Et 2A_{R_{p}}\left(s'\right) ds' \right\} ds = \frac{\int_{C} Et 2A_{R_{p}}\left(s\right) ds}{\int_{C} Et ds} 2A_{R_{p}}\left(L\right) Et L - \int_{C} 4A_{R_{p}}^{2} Et ds$

- Arbitrary-section beam subjected to torsion with built-in end (7)
 - Wagner torsion theory (7)
 - Torque (3)

$$M_{x}^{b} = \left(-\frac{\int_{C} Et2A_{R_{p}}\left(s\right)ds}{\int_{C} Etds}\int_{C} p_{R}Etsds + \int_{C} \left\{p_{R}\int_{0}^{s} 2EtA_{R_{p}}\left(s'\right)ds'\right\}ds\right)\theta_{,xxx}$$

• Using $p_R = 2A_{R_p,s}$ the integral of first term becomes $\int_C 2A_{R_p,s} Etsds = 2A_{B_p}(s) Ets\Big|_0^L - \int_C 2A_{R_p} Etds$

• As for s = 0, $A_{Rp} = 0$, and using

$$\begin{split} \int_{C} \left\{ 2A_{R_{p},s} \int_{0}^{s} Et 2A_{R_{p}}\left(s'\right) ds' \right\} ds = \\ \frac{\int_{C} Et 2A_{R_{p}}\left(s\right) ds}{\int_{C} Et ds} 2A_{R_{p}}\left(L\right) Et L - \int_{C} 4A_{R_{p}}^{2} Et ds \end{split}$$

• The final expression reads

$$M_x^b = \left(\frac{\left(\int_C Et2A_{R_p}\left(s\right)ds\right)^2}{\int_C Etds} - \int_C 4A_{R_p}^2 Etds\right)\theta_{,xxx}$$

- Arbitrary-section beam subjected to torsion with built-in end (8) ۲
 - General expression for torque _

•
$$M_x = M_x^t + M_x^b \implies M_x = C\theta_{,x} - C^{\Gamma}\theta_{,xxx}$$

• With
$$C^{\Gamma} = \int_{C} 4A_{R_{p}}^{2} Etds - \frac{\left(\int_{C} Et2A_{R_{p}}\left(s\right)ds\right)^{2}}{\int_{C} Etds}$$

- Case of the I-section beam
 - Center of twist is the center of symmetry C •
 - For the web: $A_{Rp}(s) = 0 \implies$ no contribution to C^{Γ} •
 - For lower flange •

$$A_{R_p}(s) = \frac{hs}{4} \Longrightarrow \begin{cases} \int_C Et 2A_{R_p}(s) \, ds = Et_f \frac{hb_f^2}{4} \\ \int_C Et 4A_{R_p}^2(s) \, ds = Et_f \frac{h^2 b_f^3}{12} \end{cases}$$

For the L-section

$$C^{\Gamma} = 2\left(Et_f \frac{h^2 b_f^3}{12} - Et_f \frac{h^2 b_f^3}{16}\right) = Et_f \frac{h^2 b_f^3}{24}$$

- Arbitrary-section beam subjected to torsion with built-in end (9)
 - Case of the I-section beam (2)
 - Expression $M_x = C\theta_{,x} C^{\Gamma}\theta_{,xxx}$

- With
$$C^{\Gamma} = \int_{C} 4A_{R_{p}}^{2} Etds - \frac{\left(\int_{C} Et2A_{R_{p}}(s) ds\right)^{2}}{\int_{C} Etds}$$

 $\implies C^{\Gamma} = 2\left(Et_{f}\frac{h^{2}b_{f}^{3}}{12} - Et_{f}\frac{h^{2}b_{f}^{3}}{16}\right) = Et_{f}\frac{h^{2}b_{f}^{3}}{24}$

• To be compared with

$$M_x = C\theta_{,x} - \frac{h^2 E I_{zz}^f}{2}\theta_{,xxx}$$

Université de Liège

70

- Idealized beam subjected to torsion with built-in end
 - For idealized sections with booms
 - In expression

$$C^{\Gamma} = \int_{C} 4A_{R_{p}}^{2} Etds - \frac{\left(\int_{C} Et2A_{R_{p}}\left(s\right)ds\right)^{2}}{\int_{C} Etds}$$

• The direct stress is carried out by

 $- t_{direct} \&$

- Booms of section A_i

$$\implies C^{\Gamma} = \int_{C} 4A_{R_{p}}^{2} Et_{\text{direct}} ds + \sum_{i} 4A_{R_{p}}^{2} \left(s^{i}\right) EA_{i} - \frac{\left(\int_{C} Et_{\text{direct}} 2A_{R_{p}} \left(s\right) ds + \sum_{i} 2A_{R_{p}} \left(s^{i}\right) EA_{i}\right)^{2}}{\int_{C} Et_{\text{direct}} ds + \sum_{i} EA_{i}}$$

Z

 δx

y

- Applications of beam subjected to torsion with built-in end,
 - Solution for pure torque
 - $M_x = C\theta_{,x} C^{\Gamma}\theta_{,xxx}$ $\implies \theta_{,xxx} - w^2\theta_{,x} = -\frac{w^2}{C}M_x$ with $w^2 = \frac{C}{C^{\Gamma}}$
 - Solution

$$\theta_{,x} = C_1 \cosh wx + C_2 \sinh wx + \frac{M_2}{C}$$

- Boundary conditions
 - At built-in end x = 0: No warping, and as $\boldsymbol{u}_x^s(s) = \boldsymbol{u}_x^s(0) \theta_{,x} \int_0^{\infty} p_R ds'$ $\implies \theta_{,x}(0) = 0 \implies C_1 = -\frac{M_x}{C}$
 - At free end x = L: no direct load,

and as
$$\begin{cases} \boldsymbol{\sigma}_{xx}^{\Gamma}(s) = E\boldsymbol{u}_{x,x}^{s}(0) - 2EA_{R_{p}}(s)\,\theta_{,xx}\\ \boldsymbol{u}_{x,x}^{s}(0) = \frac{\theta_{,xx}\int_{C}Et2A_{R_{p}}(s)\,ds}{\int_{C}Etds}\\ &\longrightarrow \theta_{,xx}\left(L\right) = 0 \Longrightarrow C_{2} = \frac{M_{x}}{C}\tanh wL \end{cases}$$

 х

 M_{r}
- Applications of beam subjected to torsion with built-in $end_{2}(2)$
 - Solution for pure torque (2)
 - Twist rate

Z

- Applications of beam subjected to torsion with built-in end (3)
 - Solution for pure torque (3)
 - Angle of twist

- As
$$\theta_{,x} = \frac{M_x}{C} \left(1 - \frac{\cosh(wL - wx)}{\cosh wL} \right)$$

 $\implies \theta(x) = \frac{M_x}{C} \left(x + \frac{\sinh(wL - wx)}{w\cosh wL} + C_3 \right)$

- Boundary condition at built end x = 0: No twist

$$0 = \theta(0) = \frac{M_x}{C} \left(\frac{\sinh wL}{w \cosh wL} + C_3 \right)$$

$$\implies \theta(x) = \frac{M_x}{C} \left(x + \frac{\sinh (wL - wx)}{w \cosh wL} - \frac{\sinh wL}{w \cosh wL} \right)$$

we end

• At free end

$$\theta\left(L\right) = \frac{M_{x}L}{C} \left(1 - \frac{\tanh wL}{wL}\right) \quad \begin{array}{l} \text{Reduction compared to free-free case} \\ \text{free case} \end{array}$$

S

х

 M_{x}

- Applications of beam subjected to torsion with built-in end (4)
 - Distributed torque loading m_x
 - Two contributions to torque

$$- M_x = M_x^t + M_x^b$$

Balance equation

$$M_x^t + \partial_x M_x^t \delta x + M_x^b + \partial_x M_x^b \delta x + m_x \delta x = M_x^t + M_x^b$$

$$\implies \partial_x M_x = \partial_x M_x^t + \partial_x M_x^b = -m_x$$

• As
$$\begin{cases} M_x^t = C\theta_{,x} \\ M_x^b = -C^{\Gamma}\theta_{,xxx} \end{cases} \implies \partial_x \left(C^{\Gamma}\theta_{,xxx} - C\theta_{,x} \right) = m_x \left(x \right)$$

- To be solved with adequate boundary conditions
 - Built-in end: $\theta = 0 \& \theta_{x} = 0$ (no warping)
 - Free end: $\theta_{,xx} = 0$ (no direct stress) & No torque at free end

• Remark

- We have studied
 - Axial loading resulting from torsion
 - A similar theory can be derived to deduce torsion resulting from axial loading

References

• Lecture notes

 Aircraft Structures for engineering students, T. H. G. Megson, Butterworth-Heinemann, An imprint of Elsevier Science, 2003, ISBN 0 340 70588 4

• Other references

- Books
 - Mécanique des matériaux, C. Massonet & S. Cescotto, De boek Université, 1994, ISBN 2-8041-2021-X

