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Elasticity 

• Balance of body B 
– Momenta balance  

• Linear  

• Angular 

– Boundary conditions 
• Neumann 

• Dirichlet 

 

• Small deformations with linear elastic, homogeneous & isotropic material 

– (Small) Strain tensor                                        , or 

– Hooke’s law                     , or 

            with 

– Inverse law 

            with 

b 

T 

n 

2m l = K - 2m/3 
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• Deformations (small transformations) 

– In plane membrane 

•   

– Curvature  

•   

– Out-of-plane sliding 

•   

Reissner-Mindlin plate summary 
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• Resultant stresses in linear elasticity 

– Membrane stress 

•   

– Bending stress 

•   

– Out-of-plane shear stress 

•   

Reissner-Mindlin plate summary 
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• Resultant Hooke tensor in linear elasticity  

– Membrane mode 

•   

– Bending mode 

•   

– Shear mode 

•   

Reissner-Mindlin plate summary 
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• Resultant equations 

– Membrane mode 

•   

•   

–                                   with 

–                                   with 

• Clearly, the solution can be directly computed in plane Oxy (constant Hn) 

–   

– Boundary conditions 

» Neumann  

» Dirichlet 

 

• Remaining equation along E3: 

Reissner-Mindlin plate summary 
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• Resultant equations (2) 

– Bending mode  

•   

•                           & 

–                                    with 

–                               with 

• Solution is obtained by projecting into the plane Oxy (constant Hq, Hm) 

–   

– 2 equations (a=1, 2) with 3 unknowns (Dt1, Dt2, u3)  

– Use remaining equation 

Reissner-Mindlin plate summary 
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• Resultant equations (3) 

– Bending mode (2) 

• 3 equations with 3 unknowns 

–   

–   

• To be completed by BCs    

– Low order constrains 

» Displacement                    or  

» Shearing                        

 

 

– High order 

» Rotation                           or 

» Bending    

 

Reissner-Mindlin plate summary 
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• Resultant equations (4) 

– Remarks 

• Compare bending equations 

–   

–   

– With Timoshenko beam equations 

 

 

 

• Membrane and bending equations are uncoupled 

– No initial curvature 

– Small deformations (equilibrium on non curved configuration) 

Reissner-Mindlin plate summary 
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• Kirchhoff assumption 

– As  

•   

 

 

 

•   

 

– Kirchhoff assumption requires 

•    

• Where L is a characteristic distance 

Shear effect 
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• Membrane mode 

– On A:   

• With  

 

– Completed by appropriate BCs 

• Dirichlet 

• Neumann  

Kirchhoff-Love plate summary 
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• Bending mode 

– On A:  

•  With 

 

 

– Completed by appropriate BCs 

• Low order 

– On ∂NA:  

– On ∂DA:   

• High order 

– On ∂TA:  

  with 

– On ∂MA:  

Kirchhoff-Love plate summary 
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• Membrane-bending coupling 

– The first order theory is uncoupled 

– For second order theory 

• On A:  

• Tension increases the bending  

 stiffness of the plate 

– In case of small initial curvature (k >>) 

• On A: 

 

• Tension induces bending effect 

• General theories 

– For not small initial curvature: 

• Linear shells 

– To fully account for tension effect 

• Non-Linear shells 

Kirchhoff plate summary 
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• Shell kinematics 

– In the reference frame Ei  

• The shell is described by 

                        with                  

 

– Initial configuration S0 mapping 

• Neutral plane 

• Cross section 

• Thin body 

 

– Deformed configuration S mapping 

• Thin body 

– Two-point deformation mapping 

Introduction to shells 
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• Shell kinematics (2) 

– Deformation gradient 

• Two-point deformation mapping 

• Two-point deformation gradient 

– Small strain deformation gradient 

– It is more convenient to evaluate these tensors in a convected basis  

• Example g0I basis convected to S0  

– As S0 is described by 

– One has                                       with  

 the convected basis 

 

 

 

 

– The picture shows the basis for x3 = 0 

» g0a (x3=0) = j0,a   

Introduction to shells 
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• Shell kinematics (3) 
– Convected basis g0I to S0  

 

 

 

 

 

– For x3 = 0  

• g0a are tangent to the mid-surface 

• g0a (x3=0) = j0,a   

– For x3 ≠ 0 

• If there is an initial curvature 

 g0a depends on x3  

• Initial curvature is measured by t0,a  

 

 

Introduction to shells 
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• Shell kinematics (4) 
– Convected basis g0I to S0 (2) 

 

 

 

 

• The basis is not orthonormal 

– A vector component is still defined as 

– So can                     be written? 

» If so                                                 which is not consistent 

 

Introduction to shells 
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• Shell kinematics (5) 
– Convected basis g0I to S0 (3) 

 

 

 

 

• The basis is not orthonormal (2) 

– A conjugate basis g0
I has to be defined 

» Such that 

» So vector components are defined by 

                                     & 

» The vector can be represented by 

 

 as 

– For plates 

Introduction to shells 
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• Assumptions  

– Small deformations/displacements 

•   

•    

•                        with 

 

– Kirchhoff-Love assumption (no shearing) 

• Normal is assumed to remain  

– Planar 

– Perpendicular to 

 the neutral plane 

– Reissner-Mindlin (shearing is allowed) 

• Normal is assumed to remain planar  

• But not perpendicular to neutral plane 

Resultant equilibrium equations 
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• Same idea as for plates 

– Avoiding discretization on the thickness 

•  u and t constant on the thickness 

– Equations are integrated on the  

 thickness 

• Linear momentum equation 

–   

 

 

– Small transformations assumptions (            ,                  ,                         ) 

 

 

• Using 

Shell equations 
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• Linear momentum equation (2) 

–  Inertial term (2) 

 

 

• Main idea in shells  

– u and t constant on the thickness 

– u and t defined in terms of x1 & x2          integrate equations in A x [-h0/2 h0/2]  

• To transform an integral on S0 to an integral on  A x [-h0/2 h0/2]  

– Consider the Jacobian of the mapping: 

 

 

 

 

– Expression of the Jacobian? 

Resultant equilibrium equations 
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• Jacobian 

–  Mapping F0 from A x [-h0/2 h0/2] to S0  

• Jacobian: 

– Gradient of mapping 

  

 With                                                    & 

 

 

 

 

 

                                                                as t0 is initially perpendicular to mid-surface  

• Mid-surface Jacobian      corresponds to the change of mid-plane surface 

between the curvilinear frame (x1, x2) and the initial configuration S0  

Resultant equilibrium equations 

E1 

E2 

E3 

x1 

x2 
A 

F0 = j0(x
1, x2)+x3 t0(x

1, x2) 

x1=cst 

t0 

S0 

x2=cst 

Laplace formula 
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• Linear momentum equation (3) 

–  Inertial term (3) 

 

 

 

• Position of the mid-surface is redefined such that 

–   

– Rigorously, integration is not always from –h0/2 to h0/2 as the mid-surface  

 does not always correspond to the geometrical center 

– We will consider r0 constant on the thikcness (but not j0) 

– We define the surface density 

Resultant equilibrium equations 
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• Linear momentum equation (4) 

–  Volume loading 

 

 

• With the surface force 

– Stress term 

Resultant equilibrium equations 
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• Linear momentum equation (5) 

–  Stress term (2) 

• How to transform surface integral dS in S0 to in surface integral dS in A x h0 ? 

• Nanson’s Formula, for a mapping F0: 

 

 

 

Resultant equilibrium equations 
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• Linear momentum equation (6) 

–  Stress term (3) 

 
• As                                    &  

Resultant equilibrium equations 
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• Linear momentum equation (7) 

–  Stress term (4) 

•   

 

• Where N  is the normal  

 in the reference frame  

• On top/bottom faces N = ± E3  

• On lateral surface: N = na Ea  

 

 

 

 

– Let us define the resultant stresses: 

Resultant equilibrium equations 
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• Linear momentum equation (8) 

–  Resultant stresses 

                                                      

 for plates we found 

• Compared to plates 

– There is the Jacobian mapping (1 for plates) 

– Cauchy stresses have to be projected in the body basis  

» ga for shells 

» EI for plates  

• We can write it in terms of the components in  

 the mid-surface basis 

–   

Resultant equilibrium equations 
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• Linear momentum equation (9) 

–  From 

•   

•   

•   

• Applying Gauss theorem on last term leads to 

 

– Resultant linear momentum equation 

Resultant equilibrium equations 
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• Linear momentum equation (10) 

–  Defining 

• Surface density 

• Surface loading  

• Resultant loading  

– The linear momentum equation                        becomes  after being 

integrated on the volume: 

• Is rewritten in the Cosserat plane A as     

• With the resultant stresses  

• Remark, for plates we found 

Resultant equilibrium equations 
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• Angular momentum equation 

–   

 

 

 

 

 

– Small transformations assumptions 

 

 

• Using 

Resultant equilibrium equations 
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• Angular momentum equation (2) 

– Proceeding as before (see annex 1), leads to 

•   

• If l is an undefined pressure applied through the thickness, the resultant angular 

momentum equation reads 

• With 

–   

–   

–   

• Remark, for plates: 

Resultant equilibrium equations 
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• Angular momentum equation (3) 

–  Resultant bending stresses 

•                                                        

 for plates we found 

• Compared to plates 

– There is the Jacobian mapping (1 for plates) 

– Cauchy stresses have to be projected in the body basis  

» ga for shells 

» EI for plates  

• We can write it in terms of the components in  

 the mid-surface basis 

–   

Resultant equilibrium equations 
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• Resultant equations summary 

– Linear momentum 

•   

• Resultant stresses 

– Angular momentum 

•   

• Resultant bending stresses  

– Interpretation 

• Everything is projected on the convected basis 

• We have the ncoupling 

 traction/bending as for plate 

 only if no curvature (t0,a=0) 

• What happens if initial 

 curvature? 

Resultant equilibrium equations 
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• What is missing is the link between the deformations and the stresses 

– Idea: as the discretization does not involve the thickness, the deformations 

should be evaluated at neutral plane too 

– Works only in linear elasticity 

– For non-linear materials, Cauchy tensor has to be evaluated through the 

thickness 

 

Material law 
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• Deformations 

– Deformation gradient 

• Two-point deformation mapping 

• Two-point deformation gradient 

– Small strain deformation gradient 

– In terms of convected bases 

• We have the reference convected basis 

 

 

 

 

 
• Similarly, the deformed  convected basis 

Material law 

In frame EI        with 

respect to xI   
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• Deformations (2) 

– Deformation gradient in terms of convected bases 

•   

• With                                        ,                                       &  

• As EI . EJ = dIJ   

– Remarks:  

» As the basis is not orthonormal g3 ≠ g3 = t  

» Identity matrix should also be defined in the convected basis 

» When g = g0, there is no deformation              F = I 

 

• Small deformations 

 

 

 

Material law 
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• Deformations (3) 

– Small deformation tensor 

•   

 

• If u =j - j0 is the displacement of the mid-surface 

 

 

• With 

Material law 
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• Deformations (4) 

– Small deformation tensor (2) 

•   

– Remarks: As ||t|| = ||t0|| = 1 

•   

 

 

 

 

•     

•    

Material law 
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• Deformations (5) 

– Components of the deformation tensor 

•   

•  But a vector can always be expressed in a basis 

Material law 

2013-2014 Aircraft Structures - Shells 40 



• Deformations (6) 

– Components of the deformation tensor (2) 

•   

  

 

 

• If thickness of the shell is reduced compared to the curvature 

– Then x3 << k & x3t0,a ~x3/k << j0,a   

– An approximation consist in  

 considering the mid-surface  

 basis in the dyadic products 

– g0
a → j0

,a   

– g0
3 → t0  as initially t0 is 

 perpendicular to the  

 mid-surface 

 

Material law 
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• Deformations (7) 

– Components of the deformation tensor (3) 

•   

  

 

 

• Thickness reduced compared to the curvature: g0
a → j0

,a  & g0
3 → t0   

Material law 
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• Deformations (8) 

– Components of the deformation tensor (4) 

•   

  

 

• Defining 

–   

–   

–   

 

Material law 
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• Deformations (9) 

– Deformation mode 

•   

•  Term in 

– Corresponds to the relative “in-plane” deformation of the mid-surface plane  

– Relative because expressed in the metric of the convected basis at mid-

surface 

–  Remark, for plates we had 

 

 

Material law 
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• Deformations (10) 

– Deformation mode (2) 

•   

•  Term in 

– Corresponds to the relative change in curvature of the mid-surface plane  

– Relative because expressed in the metric of the convected basis at mid-

surface 

–  Remark, for plates we had 

 

 

Material law 
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• Deformations (11) 

– Deformation mode (3) 

•   

•  Term in 

– Corresponds to the relative  

 average change in  

 neutral plane direction   

– Plate analogy 

 

 

Material law 
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• Deformations (12) 

– Deformation mode (4) 

•   

• Term in 

– Thickness dependence of the out-of-plane shearing 

– For thin structure we consider the average one 

   neglected 

Material law 
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• Deformations (13) 

– Deformation modes (5) 

•   

• With                          neglected 

• Through-the-thickness elongation 

– In this model there is no through-the-thickness elongation 

– Actually the plate is in plane-s state, meaning there is such a deformation 

» To be introduced: x3 t should be substituted by lh(x
3) t in the shell 

kinematics 

» We have to introduce it to get the plane-s effect 

» In small deformations this term would lead to second order effects on 

other components 

Material law 
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• Hooke’s law 

– Hooke’s law in the convected basis metric 

• In reference frame: 

 with 

• But here deformations are relative because in the metric of the convected basis             

 stress components should also be in this metric 

– Let us consider a basis aI ,with e components known in this basis  

 

– Component of s in the conjugate basis can be deduced 

 

 

 

 

• Eventually                                    with 

Material law 
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• Hooke’s law (2) 

– From  

– There are 4 contributions  

• Membrane mode 

– With  

 

 

• In the conjugate convected basis j0
,a, t0 (abuse of notation): 

– As t0 initially perpendicular to j0
,a, and ||t0|| = 1 

– The non-zero components are 

Material law 
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• Hooke’s law (3) 

– From  

– There are 4 contributions (2) 

• Bending mode 

– With  

 

 

• In the conjugate convected basis j0
,a, t0: 

– As t0 initially perpendicular to j0
,a, and ||t0|| = 1 

– The non-zero components are 

Material law 
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• Hooke’s law (4) 

– From  

– There are 4 contributions (3) 

• Shearing mode 

– With  

 

 

• In the conjugate convected basis j0
,a, t0: 

– As t0 initially perpendicular to j0
,a, and ||t0|| = 1   

– The non-zero components are 

 

 

– To account for non uniformity of shearing 

Material law 

da 

x 

z 

Tz 

dx 

Tz+ ∂xTz dx 

gmax 

g 

g dx 
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• Hooke’s law (5) 

– From  

– There are 4 contributions (4) 

• Through-the thickness elongation 

– With  

 

 

• In the conjugate convected basis j0
,a, t0: 

– As t0 initially perpendicular to j0
,a, and ||t0|| = 1   

– The non-zero components are 

 

 

Material law 
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• Resultant stresses 

– Plane-s state 

• Contributions 

 

• Elongation depends on x3  

– Part is stretched and  

 part is compressed 

– For pure bending the change  

 of sign is on the neutral axis 

• Average trough the thickness elongation   

 

 

– Depends on the membrane mode only                             

Material law 

x 

z 

h 
L y 

z 
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• Resultant stresses (2) 

– Plane s-stated (2) 

• Values ab can now be deduced 

–   

                                                             with 

• Can be rewritten as a through-the-thickness constant term and a linear term 

–   

– With 

• Out-of-plane shearing remains the same 

–   

Material law 
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• Resultant stresses (3) 

– From stress fields  

•   

 

  

With                                         &  

– Membrane resultant stress  

•   

 

 

• As 

Material law 
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Material law 

• Resultant stresses (4) 

– Membrane resultant stress (2) 

•   

 

 With                                         &  

– Membrane resultant stress components 

• We had previously defined  

 

 

 

 

• Similarly 

New term 

compared to 

plates 
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• Resultant stresses (5) 

– Membrane resultant stress components (2) 

•   

 

 

 

• Due to the curvature t0,a has components in the basis j0
,b  

    no component along t0 as  

• As integration of 

–              corresponds to tension 

–              corresponds to bending 

 Due to the initial curvature 

 there is a coupling 

Material law 

t0 

S0 

 j0,1(x
1, x2) 

t0,1 

? 
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• Resultant stresses (6) 

– Membrane resultant stress components (3) 

• Using fields   

 

 

• Leads to (see annex 2) 

 

 

 

 

• With   

Material law 

See later for 

interpretation 
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• Resultant stresses (7) 

– The resultant Hooke tensors in the shell metric reads (see annex 2)   

 

 

 

 

 

 

 

 

 

– Doing the same developments for the bending mode leads to (see annex 2) 

•   

• With 

   

Material law 

New term 

compared to 

plates 
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• Resultant equations 

– Equations 

 

 

– Resultant stresses 

•                                               , 

– Coupling 

•   

 

 
– Hookes’law 

 

•                 with 

Summary 

Initial curvature 

of the shell 
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• Resultant equations (2) 

– Analysis of coupling 

• Force F, mid-plane length L,  

 curvature radius 1/k, section A  

• First term of coupling  

 

– In general L ~ 1/k for shells (for plates L << 1/k) 

 

 

• Second term of coupling 

 

 

 

 

– If h0
2 <<  L/k ~1/k2, which was already assumed, this term can be neclected  

Summary 

F/A F/A 
FL/A k 

FLk/A 

t0 

S0 

 j0,1(x
1, x2) 

t0,1 

1/k 

FL/A FL/A 
F/A k 

Fh0
2k/A 
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• Resultant equations summary 

– Equations 

 

 

– Resultant stresses 

•                                         ,                                        , 

– Hookes’law 

 

•                  

 

 

 

with 

Summary 
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• Membrane equations 

– Assuming no external loading,                                           becomes 

 

 

– This equation can be projected into 

 (j0,a) plane, and is completed by BCs 

• Neumann 

• Dirichlet 

• For plate we had 

 

 

• Remark, for shells j0,ab is not equal to zero 

– This equation projected on t0 leads to the shearing equation 

• For plate we had 

Summary 

∂NA 

n 

N = na Ea  
E1 

E2 

E3 

A 
∂DA 

coupling 
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• Bending equations 

– Assuming no external loading,                                                           becomes 

 

 

– This equation can be projected into 

 (j0,a) plane, and is completed by BCs 

• Low order                     or 

• High order                    or 

• For plate we had 

 

 

 

– With the shearing equation 

Summary 

∂NA 

T 

N = na Ea  
E1 

E2 

E3 

A 
∂DA 

p 

∂MA 

M 

N = na Ea  
E1 

E2 

E3 

A 
∂TA 

p 
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• Membrane-bending coupling 

– If t0,a ≠ 0 (there is a curvature) 

• Tension and bending are coupled 

• This leads to locking with a FE integration: stiffness of the FE → ∞  

• Locking can be avoided by  

– Adding internal degrees of freedom (EAS)            more expensive 

– Using only one Gauss point (reduced integration)            hourglass modes 

 (zero energy spurious deformation modes) 

– Both methods lead to complex computational schemes 

Numerical aspect 
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• Angular momentum equation 

–   

 

 

 

 

 

– Small transformations assumptions 

 

 

• Using 

Annex 1: Resultant equilibrium equations 

c = F o F0
-1 

F = j(x1, x2)+x3 t(x1, x2) 

E1 

E2 

E3 

x1 

x2 
A 

F0 = j0(x
1, x2)+x3 t0(x

1, x2) 

x2=cst 

t 
S 

x1=cst 

x1=cst 

t0 

S0 

x2=cst 
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• Angular momentum equation (2) 

– Small transformations assumptions (2) 

 

 

 

• As second order terms can be neglected 

 

 

 

Annex 1: Resultant equilibrium equations 

E1 

E2 

E3 

x1 

x2 
A 

F0 = j0(x
1, x2)+x3 t0(x

1, x2) 

x1=cst 

t0 

S0 

x2=cst 
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• Angular momentum equation (3) 

– Inertial term 

•   

 

 

 

• As  
– Main idea in plates is to consider u and t constant on the thickness 

–   

–   

 

– With 

 

Annex 1: Resultant equilibrium equations 
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• Angular momentum equation (4) 

– Loading term 

•   

 

 

 

– With the surface loading  

Annex 1: Resultant equilibrium equations 

E1 

E2 

E3 

x1 

x2 
A 

F0 = j0(x
1, x2)+x3 t0(x

1, x2) 

x1=cst 

t0 

S0 

x2=cst 
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• Angular momentum equation (5) 

– Stress term 

•   

 

 

• Integration by parts 

 

 

 

Annex 1: Resultant equilibrium equations 

c = F o F0
-1 

F = j(x1, x2)+x3 t(x1, x2) 

E1 

E2 

E3 

x1 

x2 
A 

F0 = j0(x
1, x2)+x3 t0(x

1, x2) 

x2=cst 

t 
S 

x1=cst 

x1=cst 

t0 

S0 

x2=cst 
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• Angular momentum equation (6) 

– Stress term (2) 

•   

 

 

 

 

 

• Where n  is the normal to the  

 shell S0  

 

Annex 1: Resultant equilibrium equations 

as s symmetric 

c = F o F0
-1 

F = j(x1, x2)+x3 t(x1, x2) 

E1 

E2 

E3 

x1 

x2 
A 

F0 = j0(x
1, x2)+x3 t0(x

1, x2) 

x2=cst 

t 
S 

x1=cst 

x1=cst 

t0 

S0 

x2=cst 

djl as here grad is in S0 frame 
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• Angular momentum equation (7) 

– Stress term (2) 

•   

• Transform surface integral dS in S0 to in surface integral dS in A x h0  

• Nanson’s Formula, for a mapping F0: 

 

 

 

 

• As  

Annex 1: Resultant equilibrium equations 

c = F o F0
-1 

F = j(x1, x2)+x3 t(x1, x2) 

E1 

E2 

E3 

x1 

x2 
A 

F0 = j0(x
1, x2)+x3 t0(x

1, x2) 

x2=cst 

t 
S 

x1=cst 

x1=cst 

t0 

S0 

x2=cst 
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• Angular momentum equation (8) 

– Stress term (3) 

•   

• Where N  is the normal in the reference frame  

– On top/bottom faces: N = ± E3  

– On lateral surface: N = na Ea  

•   

 

Annex 1: Resultant equilibrium equations 

∂NA 

n 

N = na Ea  
E1 

E2 

E3 

A 
∂DA 
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• Angular momentum equation (9) 

– Stress term (4) 

•   

 

 

 

• Resultant bending stresses & resultant stresses 

–                                                    ,  

 

Annex 1: Resultant equilibrium equations 
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• Angular momentum equation (10) 

–  Resultant bending stresses 

•                                                        

 for plates we found 

• Compared to plates 

– There is the Jacobian mapping (1 for plates) 

– Cauchy stresses have to be projected in the body basis  

» ga for shells 

» EI for plates  

• We can write it in terms of the components in  

 the mid-surface basis 

–   

Annex 1: Resultant equilibrium equations 

E1 

E2 

E3 

x1 

x2 
A 

F0 = j0(x
1, x2)+x3 t0(x

1, x2) 

x1=cst 

t0 

S0 

x2=cst 

t0 

S0 

x2=cst 

 j0,1(x
1, x2) 

 j0,2(x
1, x2) 

~
m1 
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• Angular momentum equation (11) 

– Stress term (5) 

•   

 

 

 

• Applying Gauss theorem  

 

Annex 1: Resultant equilibrium equations 
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• Angular momentum equation (12) 

– From 

•   

  

•   

 

•   

 

 

 It comes 

Annex 1: Resultant equilibrium equations 
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• Angular momentum equation (13) 

– Resultant form 

•   

 

 

• But the resultant linear momentum equation reads  

 

 

 

 

• So the angular momentum equation reads 

Annex 1: Resultant equilibrium equations 
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• Angular momentum equation (14) 

– Resultant form (2) 

•   

 

 

• Defining the applied torque 

 

 

• Terms which are preventing from uncoupling the equations are  

Annex 1: Resultant equilibrium equations 
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• Angular momentum equation (15) 

– Terms 

• Let us rewrite the Cauchy stress tensor in terms of its components in the 

convected basis: 

 

• As Cauchy stress tensor is symmetrical 

 

• As  

 

• After integration on the thickness:  

Annex 1: Resultant equilibrium equations 

E1 

E2 

E3 

x1 

x2 
A 

F0 = j0(x
1, x2)+x3 t0(x

1, x2) 

x1=cst 

t0 

S0 

x2=cst 
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• Angular momentum equation (16) 

– Terms                                                      (2) 

• Using symmetry of Cauchy stress tensor 

 

– Defining the out-of-plane resultant stress 

 

– As  

 

 

– Equation 

Annex 1: Resultant equilibrium equations 
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• Angular momentum equation (17) 

– Resultant form (3) 

•   

• If l is an undefined pressure applied through the thickness, the resultant angular 

momentum equation reads 

• With 

–   

–   

–   

• Remark, for plates: 

Annex 1: Resultant equilibrium equations 
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• Resultant stresses closed form 

– Membrane resultant stress components 

•                                       , 

 

 

 

• As                                          , 

 &                                  ,    for constant density it leads to 

 

 

 

 

 With 

Annex 2: Material law 
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• Resultant stresses closed form (2) 

– Membrane resultant stress components (2) 

•                                       , 

  

  

 with 

 

 

• As                                       & 

                                     with 

 

 

                       with 

Annex 2: Material law 

See later for 

interpretation 
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• Resultant stresses closed form (3) 

– Membrane resultant stress components (3) 

•                                       , 

  

 with 

 

• As 

        with 

Annex 2: Material law 
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• Resultant stresses closed form (4) 

– From stress fields  

•   

 

  

With                                         &  

– Bending resultant stress  

•   

 

 

• As 

Annex 2: Material law 
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• Resultant stresses closed form (5) 

– Bending resultant stress (2) 

•   

 

 With                                         &  

– Bending resultant stress components 

• We previously defined  

 

 

 

 

Annex 2: Material law 

New term 

compared to 

plates 
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• Resultant stresses closed form (6) 

– Bending resultant stress components (2) 

•   

 

 

 

• Due to the curvature t0,a has component in the basis j0
,b  

    no component along t0 as  

 

Annex 2: Material law 

t0 

S0 

 j0,1(x
1, x2) 

t0,1 

? 
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• Resultant stresses closed form (7) 

– Bending resultant stress components (3) 

•                                               , 

 

 

 

• As                                          , 

 &                                  , and neglecting term in (x3)3 leads to, for constant density, 

 

 

 

 

 With 

Annex 2: Material law 
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