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Elasticity 

• Balance of body B 
– Momenta balance  

• Linear  

• Angular 

– Boundary conditions 
• Neumann 

• Dirichlet 

 

• Small deformations with linear elastic, homogeneous & isotropic material 

– (Small) Strain tensor                                        , or 

– Hooke’s law                     , or 

            with 

– Inverse law 

            with 

b 

T 

n 

2m l = K - 2m/3 
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• Description 

– In the reference frame Ei  

• The plate is defined by                    

          with           

 

– Mapping of the plate  

• Neutral plane 

• Cross section                                                   with t0 = E3  

• Initial plate S0  

– S0 = A x [-h0/2 h0/2], for a plate of initial thickness h0  

–    

• Deformed plate S  

–   

Plate kinematics 

a =1 or 2, I = 1, 2 or 3 

F = j(x1, x2)+x3 t(x1, x2) 
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• Assumptions 

– Small deformations/displacements 

•   

•   

•   

•                        with 

– Kirchhoff-Love assumption (no shearing) 

• Normal is assumed to remain  

– Planar 

– Perpendicular to the neutral plane 

– Reissner-Mindlin (shearing is allowed) 

• Normal is assumed to remain planar  

• But not perpendicular to neutral plane 

Plate kinematics 

F = j(x1, x2)+x3 t(x1, x2) 
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• Idea 

– Avoiding discretization on the thickness 

•  u and t constant on the thickness 

– Equations are integrated on the thickness 

• Linear momentum equation 

–   

 

 

– Small transformations assumptions (            ,                  ,                         ) 

 

 

• Using 

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Linear momentum equation (2) 

–  Inertial term 

 

 

 

• As the main idea in plates is to consider u and t constant on the thickness 

 

 

 

 

– Volume loading term 

•   

 

• With the loading per unit area  

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 

E1 

E2 

E3 

x1 

x2 
A 

x2=cst 

t 
S 

x1=cst 

2013-2014 Aircraft Structures - Plates – Reissner-Mindlin Theory 6 



• Linear momentum equation (3) 

–  Stress term 

• Gauss theorem 

 

– Where n0  is the normal to the plate  

 surface (3D volume) in the reference  

 configuration  

– On top/bottom faces n0 = ± E3  

– On lateral surface: n0 = na Ea  

 

 

 

– Let us define the resultant stresses: 

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Linear momentum equation (4) 

–  Resultant stresses 

 

 

• These are two vectors 

–   

 

–   

• Which correspond to the integration of the  

 surface traction on the thickness 

–   

– Symmetric 2x2 matrix + 

 Out of plane component 

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Linear momentum equation (5) 

–  From 

•   

•   

•   

• Applying Gauss theorem on last term leads to 

 

– Resultant linear momentum equation 

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Linear momentum equation (6) 

–  Defining 

• Density per unit area 

• Volume loading per unit area 

• Resultant loading  

– The linear momentum equation  

•    

 becomes  after being integrated on the volume 

 

• Is rewritten in the Cosserat plane A as     

• With the resultant stresses  

• With the resultant loading 

– But we have no equation for bending (yet) 

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Angular momentum equation 

–   

 

 

 

 

– Small transformations assumptions (            ,                  ,                         ) 

 

 

• Using 

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 

E1 

E2 

E3 

x1 

x2 
A 

x2=cst 

t 
S 

x1=cst 

2013-2014 Aircraft Structures - Plates – Reissner-Mindlin Theory 11 



• Angular momentum equation (2) 

– Small transformations assumptions (2) 

 

 

 

 

• As second order terms can be neglected 

 

 

 

 

• With  

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Angular momentum equation (3) 

– Inertial term 

•   

 

 

 

• As the main idea in plates is to consider u and t constant on the thickness 

 

 

– With the density per unit area 

– With the mass inertia 

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Angular momentum equation (4) 

– Loading term 

•   

 

 

 

– With the loading per unit area 

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Angular momentum equation (5) 

– Stress term 

•   

 

 

 

• Integration by parts 

 

 

 

• Gauss theorem 

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 

E1 

E2 

E3 

x1 

x2 
A 

x2=cst 

t 
S 

x1=cst 

∂NA 

n 

n0 = na Ea  
E1 

E2 

E3 

A 
∂DA 

djl 

i 

i 

i 

2013-2014 Aircraft Structures - Plates – Reissner-Mindlin Theory 15 

as s symmetric 



• Angular momentum equation (6) 

– Stress term (2) 

•   

 

 

– Where n0  is the normal to the plate  

 surface (3D volume) in the reference  

 configuration  

– On top/bottom faces n0 = ± E3  

– On lateral surface: n0 = na Ea  

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Angular momentum equation (7) 

– Stress term (3) 

•   

 

 

 

• Resultant bending stresses & resultant stresses 

–                                              ,  

 

Resultant equilibrium equations 
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• Angular momentum equation (8) 

– Resultant bending stress 

•   

• These are two vectors 

–   

 

–   

• Which correspond to the integration of the  

 surface couple on the thickness 

–   

– Symmetric 2x2 matrix 

Resultant equilibrium equations 

E1 

E2 

E3 

A 

m11 ~ m21 ~ 

m22 ~ 

m12 ~ 

2013-2014 Aircraft Structures - Plates – Reissner-Mindlin Theory 18 



• Angular momentum equation (9) 

– Stress term (4) 

•   

 

 

 

• Applying Gauss theorem  

 

Resultant equilibrium equations 
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• Angular momentum equation (10) 

– From 

•   

  

•   

 

•   

 

 

• It comes 

Resultant equilibrium equations 
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• Angular momentum equation (11) 

– Resultant form 

•   

 

 

 

• But the resultant linear momentum equation reads  

 

 

• So the angular momentum equation reads 

Resultant equilibrium equations 
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• Angular momentum equation (12) 

– Resultant form (2) 

•   

 

 

• Defining the applied torque 

 

 

• Term which is preventing from uncoupling the equations is  

Resultant equilibrium equations 
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• Angular momentum equation (13) 

– Term 

•  Let us rewrite the Cauchy stress tensor in terms of its components 

 

• As Cauchy stress tensor is symmetrical 

 

• Using  

• This new equation can be integrated on the thickness 

 

• Defining the out-of-plane resultant stress  

Resultant equilibrium equations 

F = j(x1, x2)+x3 t(x1, x2) 
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• Angular momentum equation (14) 

– Resultant form (3) 

•   

•   

 

 

• If l is an undefined pressure applied through the thickness, the resultant angular 

momentum equation reads 

• With 

–   

–   

–   

Resultant equilibrium equations 
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• Resultant equations summary 

– Linear momentum 

•   

• Resultant stresses 

– Angular momentum 

•   

• Resultant bending stresses  

– Interpretation 

Resultant equilibrium equations 
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• What is missing is the link between the deformations and the stresses 

– Idea: as the discretization does not involve the thickness, the deformations 

should be evaluated at neutral plane too 

– Works only in linear elasticity 

 

Material law 
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• Deformations 

– In small deformations, the tensor reads 

 

 

• But defining 

 

 leads to 

 

 

• A vector can always be written in terms of its components 

Material law 

F = j(x1, x2)+x3 t(x1, x2) 
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• Deformations (2) 

– In small deformations, the tensor reads (2) 

• Relations on the normal 

– By definition 

– In small deformations 

 

 

– Which implies                           & 

• So relation 

 

 

 

 

 

• Interpretation 

– See next slide 

 

Material law 

F = j(x1, x2)+x3 t(x1, x2) 
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• Deformations (3) 

– In small deformations, the tensor reads (2)  

• Interpretation 

Material law 

F = j(x1, x2)+x3 t(x1, x2) 

E1 

E2 

E3 

x1 

x2 
A 

x2=cst 

t 
S 

x1=cst 

Motion of the neutral plane 

in its plane (2D in-plane 

problem): membrane 

mode 

Motion of the neutral plane 

out-of-its-plane: bending 

mode 

Change of the neutral plane 

direction resulting from  

1) Bending  

2) Out-of-plane shearing 
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2013-2014 Aircraft Structures - Plates – Reissner-Mindlin Theory 29 



• Deformations (4) 

– In small deformations, the tensor reads (3) 

• From 

 

 

 

• As  

 and as only the last term depends on x3, the gradient reads 

 

 

 

 

• So the deformations tensor                                                                           reads 

Material law 

F = j(x1, x2)+x3 t(x1, x2) 
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• Deformations (5) 

– Deformation modes 

•   

 

 

 

• Interpretation: membrane mode 

–   

– Location in the deformation tensor  

 

 

– Corresponds to the in-plane  

 deformations of the neutral plane 

Material law 

E1 

E2 

E3 

A 
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• Deformations (6) 

– Deformation modes (2) 

•   

 

 

 

• Interpretation: bending mode 

–   

– Location in the deformation tensor  

 

 

– Corresponds to the final    

 curvature of the neutral plane 

Material law 

E1 

E2 

E3 

A 1/k11 
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Dt 
Dt 
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• Deformations (7) 

– Deformation modes (3) 

•   

 

 

 

• Interpretation: Through-the-thickness shearing 

–   

– Location in the deformation tensor  

 

 

– Corresponds to the average angle between 

 the neutral plane normal and the direction  

 vector t (initially the same) 

Material law 

z 
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g1 
qy = Dt1 

-uz,1 

qy = Dt1 
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• Deformations (8) 

– Deformation modes (4) 

•   

 

 

 

• Interpretation: Through-the-thickness elongation 

– In this model there is no through-the-thickness elongation 

 

 

– Actually the plate is in plane-s state, meaning there is such a deformation 

» To be introduced: x3 t should be substituted by lh(x
3) t in the shell 

kinematics 

» We have to introduce it to get the plane-s effect 

» In small deformations this term would lead to second order effects on 

other components 

Material law 
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• Deformations (9) 

– Final expression 

• We had  

 

 

 

 

 

– With 

 

 

 

• And through-the-thickness elongation lh(x
3) t  

 

Material law 
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• Hooke’s law 

– Small strain tensor 

 

– There are 4 contributions 

• Membrane mode 

–                                    as frame is orthonormal Hijkl = Hijkl (notation abuse)               

 with 

 

 

 

– As                                            the non-zero components are 

Material law 
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• Hooke’s law (2) 

– There are 4 contributions (2) 

• Bending mode 

–                                   

 with 

 

 

 

– As                       the non-zero components are 

Material law 
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• Hooke’s law (3) 

– There are 4 contributions (3) 

• Shearing mode 

–                                   

 with 

 

 

– As 

 
 we can deduce the non-zero components  
 
 
 
 
– As we did for beams, we have to account 
 
 for the non-uniformity of g by a shear section  
 
 reduction 

Material law 
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• Hooke’s law (4) 

– There are 4 contributions (4) 

• Through-the thickness elongation 

–   

 with  

 

 

 
– We can deduce the non-zero components  
 
 

                                

Material law 
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• Resultant stresses 

– Plane-s state 

• Contributions 

 

• Elongation depends on x3  

– Part is stretched and  

 part is compressed 

– For pure bending the change  

 of sign is on the neutral axis 

• Average trough the thickness elongation   

 

 

– Depends on the membrane mode only                             

Material law 

x 

z 

h 
L y 

z 

2013-2014 Aircraft Structures - Plates – Reissner-Mindlin Theory 40 



• Resultant stresses (2) 

– Plane s-stated (2) 

• Values ab can now be deduced 

–   

                                                             with 

• Can be rewritten as a through-the-thickness constant term and a linear term 

–   

– With 

• Out-of-plane shearing remains the same 

–   

Material law 
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• Resultant stresses (3) 

– From stress fields  

•   

 

•   

– Membrane resultant stresses  

•   

 

 

 

Material law 

In plane membrane stress Out-of plane shear stress 
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• Resultant stresses (4) 

– Membrane resultant stresses (2) 

•   

• In plane component: membrane stress 

– As                                                                                      is cst with x3  

 

– Defining the membrane Hooke tensor 

»     

 

» As  

– 2D plane-s problem 

Material law 
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• Resultant stresses (5) 

– Membrane resultant stresses (3) 

•   

• Out-of-plane component: shear stress 

– As                                                                 is cst with x3  

 

– Defining the shearing Hooke tensor 

»     

» As  

 

– Corresponds to the average 

 shearing of a beam 

Material law 
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• Resultant stresses (6) 

– Out-of-plane resultant stresses 

• We defined   

 

 

– Owing to previous definitions 

»   

» With 

 

– Corresponds to the shearing 

 symmetrical to the out-of-plane  

 shearing 

Material law 
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• Resultant stresses (7) 

– From stress fields (2) 

•   

 

•   

– Bending resultant stresses  

•   

 

 

 

Material law 

Bending stress 
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• Resultant stresses (8) 

– Bending resultant stresses (2) 

•   

– As                                                                                                

 

– Defining the bending Hooke tensor 

»     

 

» As  

 

– 2D bending problem 

Material law 
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• Deformations (small transformations) 

– In plane membrane 

•   

– Curvature  

•   

– Out-of-plane sliding 

•   

Reissner-Mindlin equations summary 
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• Resultant stresses in linear elasticity 

– Membrane stress 

•   

– Bending stress 

•   

– Out-of-plane shear stress 

•   

Reissner-Mindlin equations summary 
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• Resultant equations 

– Membrane mode 

•   

•   

–                                   with 

–                                   with 

• Clearly, the solution can be directly computed in plane Oxy (constant Hn) 

–   

– Boundary conditions 

» Dirichlet  

» Neumann 

 

• Remaining equation along E3: 

Reissner-Mindlin equations summary 

∂NA 
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n0 = na Ea  
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E3 
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• Resultant equations (2) 

– Bending mode  

•   

•                           & 

–                                    with 

–                               with 

• Solution is obtained by projecting into the plane Oxy (constant Hq, Hm) 

–   

– 2 equations (a=1, 2) with 3 unknowns (Dt1, Dt2, u3)  

– Use remaining equation 

Reissner-Mindlin equations summary 
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• Resultant equations (3) 

– Bending mode (2) 

• 3 equations with 3 unknowns 

–   

–   

• To be completed by BCs    

– Low order constrains 

» Displacement                    or  

» Shearing                        

 

 

– High order 

» Rotation                           or 

» Bending    

 

Reissner-Mindlin equations summary 
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• Membrane problem 

– Similar to 2D elasticity 

• Bending problem 

– 3 degree of freedom by nodes 

– Shear locking 

• For reduced thickness (h/L→0) the structure is too stiff 

• This results from the fact that for thin thickness u3,a → Dta  physically 

– Bernoulli assumption for beams 

• Then we have extra constrains but no new degree of freedom 

• The solution found is then zero deformation 

– In order to avoid shear locking 

• Different techniques  

• High order elements 

• Shear strains g evaluated at particular points (assumed strain method) 

– These values can be formulated in terms of the displacements/rotations 

degrees of freedom  

• Internal degrees of freedom (enhanced assumed strain method) 

• …. 

Finite-element implementation 
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