Aircraft Structures Plates – Reissner-Mindlin Theory

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Aircraft Structures - Plates – Reissner-Mindlin Theory

Elasticity

- Balance of body *B*
 - Momenta balance
 - Linear
 - Angular
 - Boundary conditions
 - Neumann
 - Dirichlet

• Small deformations with linear elastic, homogeneous & isotropic material

$$- \text{ (Small) Strain tensor } \boldsymbol{\varepsilon} = \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right), \text{ or } \begin{cases} \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial \boldsymbol{x}_i} \boldsymbol{u}_j + \frac{\partial}{\partial \boldsymbol{x}_j} \boldsymbol{u}_i \right) \\ \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\boldsymbol{u}_{j,i} + \boldsymbol{u}_{i,j} \right) \end{cases}$$

- Hooke's law
$$oldsymbol{\sigma}=\mathcal{H}:oldsymbol{arepsilon}$$
 , or $oldsymbol{\sigma}_{ij}=\mathcal{H}_{ijkl}oldsymbol{arepsilon}_{kl}$

with
$$\mathcal{H}_{ijkl} = \underbrace{\frac{E\nu}{(1+\nu)(1-2\nu)}}_{\lambda=K-2\mu/3} \delta_{ij}\delta_{kl} + \underbrace{\frac{E}{1+\nu}}_{2\mu} \left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$$

- Inverse law $\varepsilon = \mathcal{G} : \sigma$ $\lambda = K - 2\mu/3$

ZKZ

2013-2014

with

 $\mathcal{G}_{ijkl} = \frac{1+\nu}{E} \left(\frac{1}{2} \delta_{ik} \delta_{jl} + \frac{1}{2} \delta_{il} \delta_{jk} \right) - \frac{\nu}{E} \delta_{ij} \delta_{kl}$

Plate kinematics

- Description
 - In the reference frame E_i
 - The plate is defined by

$$oldsymbol{\xi} = \xi^I oldsymbol{E}_I \quad ext{with} \ egin{cases} (\xi^1,\,\xi^2) \in \mathcal{A} \ \xi^3 \in [-rac{h_0}{2};\,rac{h_0}{2}] \end{cases}$$

- Mapping of the plate
 - Neutral plane $arphi_0\left(\xi^1,\,\xi^2
 ight)=\xi^lpha E_lpha$ lpha =1 or 2, I = 1, 2 or 3
 - Cross section $oldsymbol{t}_0(\xi^1,\,\xi^2)\,,\,\,\|oldsymbol{t}\|=1$ with $oldsymbol{t}_0=oldsymbol{E}_3$
 - Initial plate S_0

- $S_0 = \mathcal{A} \times [-h_0/2 h_0/2]$, for a plate of initial thickness h_0

$$- \boldsymbol{X} = \boldsymbol{\Phi}_0\left(\boldsymbol{\xi}^I\right) = \boldsymbol{\varphi}_0\left(\boldsymbol{\xi}^\alpha\right) + \boldsymbol{\xi}^3 \boldsymbol{t}_0(\boldsymbol{\xi}^1,\,\boldsymbol{\xi}^2)$$

• Deformed plate S

-
$$\boldsymbol{x} = \boldsymbol{\Phi}\left(\xi^{I}\right) = \boldsymbol{\varphi}\left(\xi^{lpha}\right) + \xi^{3}\boldsymbol{t}(\xi^{1},\,\xi^{2})$$

Plate kinematics

Assumptions

- Small deformations/displacements
 - $\mathcal{S} \simeq \mathcal{S}_0$
 - $\nabla \simeq \nabla_0$ • $\int_{\mathcal{S}} \simeq \int_{\mathcal{S}_0}$

- $oldsymbol{arphi}=oldsymbol{arphi}_0+oldsymbol{u}$ with $\|oldsymbol{u}\|<<\sqrt[3]{|\mathcal{S}_0|}$
- Kirchhoff-Love assumption (no shearing)
 - Normal is assumed to remain
 - Planar
 - Perpendicular to the neutral plane
- Reissner-Mindlin (shearing is allowed)
 - Normal is assumed to remain planar
 - But not perpendicular to neutral plane

Ζ.

• Idea

- Avoiding discretization on the thickness
 - *u* and *t* constant on the thickness
- Equations are integrated on the thickness
- Linear momentum equation

-
$$ho \ddot{m{x}} = m{b} + m{
abla} \cdot m{\sigma}^T$$

$$\implies \int_{\mathcal{S}} \left\{ \rho \left(\ddot{\boldsymbol{\varphi}} + \xi^3 \ddot{\boldsymbol{t}} \right) \right\} dV = \int_{\mathcal{S}} \boldsymbol{b} dV + \int_{\mathcal{S}} \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^T dV$$

- Small transformations assumptions ($S \simeq S_0$, $\nabla \simeq \nabla_0$, $\int_S \simeq \int_{S_0}$

$$\implies \int_{\mathcal{S}_0} \left\{ \rho_0 \left(\ddot{\boldsymbol{\varphi}} + \xi^3 \ddot{\boldsymbol{t}} \right) \right\} dV = \int_{\mathcal{S}_0} \boldsymbol{b} dV + \int_{\mathcal{S}_0} \boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T dV$$

- Using
$$oldsymbol{arphi}=oldsymbol{arphi}_0+oldsymbol{u}$$

$$\implies \int_{\mathcal{S}_0} \left\{ \rho_0 \left(\ddot{\boldsymbol{u}} + \xi^3 \ddot{\boldsymbol{t}} \right) \right\} dV = \int_{\mathcal{S}_0} \boldsymbol{b} dV + \int_{\mathcal{S}_0} \boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T dV$$

- Linear momentum equation (2)
 - Inertial term

$$\int_{\mathcal{S}_{0}} \left\{ \rho_{0} \left(\ddot{u} + \xi^{3} \ddot{t} \right) \right\} dV = \frac{\mathcal{A}}{\int_{\mathcal{A}} \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \rho_{0} \ddot{u} d\xi^{3} d\mathcal{A} + \int_{\mathcal{A}} \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \rho_{0} \xi^{3} \ddot{t} d\xi^{3} d\mathcal{A} \mathbf{E}_{1} \mathbf{E}_{2} \mathbf$$

• As the main idea in plates is to consider u and t constant on the thickness

$$\implies \int_{\mathcal{S}_0} \left\{ \rho_0 \left(\ddot{\boldsymbol{u}} + \xi^3 \ddot{\boldsymbol{t}} \right) \right\} dV = \int_{\mathcal{A}} \rho_0 \ddot{\boldsymbol{u}} \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\xi^3 d\mathcal{A} + \int_{\mathcal{A}} \rho_0 \ddot{\boldsymbol{t}} \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \xi^3 d\xi^3$$
$$\implies \int_{\mathcal{S}_0} \left\{ \rho_0 \left(\ddot{\boldsymbol{u}} + \xi^3 \ddot{\boldsymbol{t}} \right) \right\} dV = \int_{\mathcal{A}} \rho_0 h_0 \ddot{\boldsymbol{u}} d\mathcal{A}$$

Volume loading term

•
$$\int_{\mathcal{S}_0} \boldsymbol{b} dV = \int_{\mathcal{A}} \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{b} d\xi^3 d\mathcal{A} \implies \int_{\mathcal{S}_0} \boldsymbol{b} dV = \int_{\mathcal{A}} \bar{\boldsymbol{b}} d\mathcal{A}$$

• With the loading per unit area \bar{b} .

 $E_{43} = \phi(\xi^{1}, \xi^{2}) + \xi^{3} t(\xi^{1}, \xi^{2})$

- Linear momentum equation (3)
 - Stress term
 - Gauss theorem

$$\int_{\mathcal{S}_0} \boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T dV = \int_{\partial \mathcal{S}_0} \boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}}_0 dS$$

- Where $\widehat{n_0}$ is the normal to the plate

surface (3D volume) in the reference

configuration

- On top/bottom faces
$$\hat{n}_0 = \pm E^3$$

- On lateral surface:
$$\widehat{n}_0 = v_{\alpha} E^{\alpha}$$

$$\int_{\mathcal{S}_0} \boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T dV = \int_{\mathcal{A}} \boldsymbol{\sigma}|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \cdot \boldsymbol{E}^3 d\mathcal{A} + \int_{\partial \mathcal{A}} \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma} \cdot \nu_{\alpha} \boldsymbol{E}^{\alpha} d\xi^3 d\boldsymbol{\lambda}$$

- Let us define the resultant stresses: $n^{\alpha} = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \sigma \cdot E^{\alpha} d\xi^3$

2013-2014

cst

=CS¹

 $\Phi = \varphi(\xi^1, \xi^2) + \xi^3 t(\xi^1, \xi^2)$

S

 E_2

 $\widehat{\boldsymbol{n}}_0 = \boldsymbol{v}_{\alpha} E^{\alpha}$

 E_2

А

 E_{2}

E

 ∂_n

- Linear momentum equation (4)
 - **Resultant stresses** _

$$\boldsymbol{n}^{lpha} = \int_{-rac{h_0}{2}}^{rac{h_0}{2}} \boldsymbol{\sigma} \cdot \boldsymbol{E}^{lpha} d\xi^3$$

These are two vectors •

$$n^{x} = n^{1} = \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \sigma \cdot E^{1} d\xi^{3} = \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \begin{pmatrix} \sigma_{xx} \\ \sigma_{yx} \\ \sigma_{zx} \end{pmatrix} d\xi^{3}$$

$$n^{y} = n^{2} = \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \sigma \cdot E^{2} d\xi^{3} = \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \begin{pmatrix} \sigma_{xy} \\ \sigma_{yy} \\ \sigma_{zy} \end{pmatrix} d\xi^{3} E_{3}$$

$$Which correspond to the integration of the surface traction on the thickness$$

$$= \tilde{n}^{i\alpha} = n_{i}^{\alpha} = \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \sigma_{i\alpha} d\xi^{3}$$

$$- Symmetric 2x2 matrix + Out of plane component$$

 \tilde{n}^{11}

cst

²=CS1

 $\Phi = \varphi(\xi^1, \xi^2) + \xi^3 t(\xi^1, \xi^2)$

S

 E_{3}

***E**₁

٤2,

 E_2

- Linear momentum equation (5) - From $\cdot \int_{\mathcal{S}_{0}} \left\{ \rho_{0} \left(\ddot{u} + \xi^{3} \ddot{t} \right) \right\} dV = \int_{\mathcal{A}} \rho_{0} h_{0} \ddot{u} d\mathcal{A}$ $\cdot \int_{\mathcal{S}_{0}} b dV = \int_{\mathcal{A}} \bar{b} d\mathcal{A}$ $\cdot \int_{\mathcal{S}_{0}} \nabla_{0} \cdot \sigma^{T} dV = \int_{\mathcal{A}} \sigma |_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \cdot E^{3} d\mathcal{A} + \int_{\partial \mathcal{A}} n^{\alpha} \nu_{\alpha} dl$
 - Applying Gauss theorem on last term leads to

$$\int_{\mathcal{S}_0} \boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T dV = \int_{\mathcal{A}} \boldsymbol{\sigma} |_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \cdot \boldsymbol{E}^3 d\mathcal{A} + \int_{\mathcal{A}} (\boldsymbol{n}^{\alpha})_{,\alpha} d\mathcal{A}$$

Resultant linear momentum equation

$$\int_{\mathcal{S}_0} \left\{ \rho_0 \left(\ddot{\boldsymbol{\varphi}} + \xi^3 \dot{\boldsymbol{t}} \right) \right\} dV = \int_{\mathcal{S}_0} \boldsymbol{b} dV + \int_{\mathcal{S}_0} \boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T dV$$
$$\implies \int_{\mathcal{A}} \rho_0 h_0 \ddot{\boldsymbol{u}} d\mathcal{A} = \int_{\mathcal{A}} \left\{ \bar{\boldsymbol{b}} + \boldsymbol{\sigma} \Big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \cdot \boldsymbol{E}^3 + (\boldsymbol{n}^\alpha)_{,\alpha} \right\} d\mathcal{A}$$

- Linear momentum equation (6)
 - Defining
 - Density per unit area $\bar{\rho}$
 - Volume loading per unit area \bar{b}
 - Resultant loading $ar{m{n}}=ar{m{b}}+\left(m{\sigma}\cdotm{E}^3
 ight)ig|_{-rac{h_0}{2}}^{rac{h_0}{2}}$
 - The linear momentum equation

•
$$\rho \ddot{\boldsymbol{x}} = \boldsymbol{b} + \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^T$$

becomes after being integrated on the volume

$$\int_{\mathcal{A}} \rho_0 h_0 \ddot{\boldsymbol{u}} d\mathcal{A} = \int_{\mathcal{A}} \left\{ \bar{\boldsymbol{b}} + \boldsymbol{\sigma} \Big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \cdot \boldsymbol{E}^3 + (\boldsymbol{n}^{\alpha})_{,\alpha} \right\} d\mathcal{A}$$

• Is rewritten in the Cosserat plane *A* as $({m n}^{lpha})_{,lpha}+ar{m n}=ar{
ho}\ddot{m u}$

• With the resultant stresses
$$\,\,m{n}^lpha=\int_{-rac{h_0}{2}}^{rac{h_0}{2}}m{\sigma}\cdotm{E}^lpha d\xi^3$$

- With the resultant loading $\ ar{m{n}}=ar{m{b}}+\left(m{\sigma}\cdotm{E}^3
ight)ig|_{-rac{h_0}{2}}^{rac{h_0}{2}}$

But we have no equation for bending (yet)

Angular momentum equation $E_{3} \Phi = \phi(\xi^{1}, \xi^{2}) + \xi^{3} t(\xi^{1}, \xi^{2})$ =c⁄st $ho\ddot{x} = oldsymbol{b} + oldsymbol{
abla} \cdot oldsymbol{\sigma}^T$ $\implies
ho \Phi \wedge \ddot{\boldsymbol{x}} = \Phi \wedge \boldsymbol{b} + \Phi \wedge (\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^T)$ $\frac{\xi^2}{E_2}$ S $\implies \int_{\mathcal{S}} \rho \left(\boldsymbol{\varphi} + \xi^3 \boldsymbol{t} \right) \wedge \left(\ddot{\boldsymbol{\varphi}} + \xi^3 \ddot{\boldsymbol{t}} \right) dV =$ $\int_{\mathcal{O}} (\boldsymbol{\varphi} + \xi^3 \boldsymbol{t}) \wedge \boldsymbol{b} dV + \int_{\mathcal{O}} (\boldsymbol{\varphi} + \xi^3 \boldsymbol{t}) \wedge (\boldsymbol{\nabla} \cdot \boldsymbol{\sigma}^T) dV$ - Small transformations assumptions ($S \simeq S_0$, $\nabla \simeq \nabla_0$, $\int_{S} \simeq \int_{S}$ $\implies \int_{\mathcal{S}} \rho_0 \left(\boldsymbol{\varphi} + \xi^3 \boldsymbol{t} \right) \wedge \left(\ddot{\boldsymbol{\varphi}} + \xi^3 \ddot{\boldsymbol{t}} \right) dV =$ $\int_{\mathcal{S}_0} (\boldsymbol{\varphi} + \xi^3 \boldsymbol{t}) \wedge \boldsymbol{b} dV + \int_{\mathcal{S}_0} (\boldsymbol{\varphi} + \xi^3 \boldsymbol{t}) \wedge (\boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T) \, dV$ Using $arphi=arphi_0+u$ $\implies \int_{\mathcal{C}} \rho_0 \left(\boldsymbol{\varphi}_0 + \boldsymbol{u} + \xi^3 \boldsymbol{t} \right) \wedge \left(\ddot{\boldsymbol{u}} + \xi^3 \ddot{\boldsymbol{t}} \right) dV =$ $\int_{\mathcal{S}_0} \left(\boldsymbol{\varphi}_0 + \boldsymbol{u} + \xi^3 \boldsymbol{t} \right) \wedge \boldsymbol{b} dV + \int_{\mathcal{S}_0} \left(\boldsymbol{\varphi}_0 + \boldsymbol{u} + \xi^3 \boldsymbol{t} \right) \wedge \left(\boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T \right) dV$

Aircraft Structures - Plates – Reissner-Mindlin Theory

11 Université

- Angular momentum equation (2)
 - Small transformations assumptions (2)

$$egin{aligned} &\int_{\mathcal{S}_0}
ho_0 \left(oldsymbol{arphi}_0 + oldsymbol{u} + \xi^3 oldsymbol{t}
ight) \wedge (oldsymbol{\ddot{u}} + \xi^3 oldsymbol{t}) \wedge (oldsymbol{\ddot{u}} + \xi^3 oldsymbol{t}) \wedge oldsymbol{b} dV + \ &\int_{\mathcal{S}_0} \left(oldsymbol{arphi}_0 + oldsymbol{u} + \xi^3 oldsymbol{t}
ight) \wedge oldsymbol{b} dV + \ &\int_{\mathcal{S}_0} \left(oldsymbol{arphi}_0 + oldsymbol{u} + \xi^3 oldsymbol{t}
ight) \wedge oldsymbol{\nabla}_0 \cdot oldsymbol{\sigma}^T
ight) dV \end{aligned}$$

$$E_{3} = \varphi(\xi^{1}, \xi^{2}) + \xi^{3} t(\xi^{1}, \xi^{2})$$

$$\xi^{1} = cst$$

$$\xi^{2} = cst$$

$$\xi^{2} = cst$$

$$\xi^{2} = cst$$

• As second order terms can be neglected

$$\implies \int_{\mathcal{S}_0} \rho_0 \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{t}_0 \right) \wedge \left(\ddot{\boldsymbol{u}} + \xi^3 \ddot{\boldsymbol{t}} \right) dV = \\ \int_{\mathcal{S}_0} \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{t}_0 \right) \wedge \boldsymbol{b} dV + \int_{\mathcal{S}_0} \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{t}_0 \right) \wedge \left(\boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T \right) dV$$

• With
$$t_0 = E_3$$

- Angular momentum equation (3)
 - Inertial term

$$\int_{\mathcal{S}_0} \rho_0 \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{E}_3 \right) \wedge \left(\ddot{\boldsymbol{u}} + \xi^3 \ddot{\boldsymbol{t}} \right) dV = \\ \int_{\mathcal{A}} \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \left\{ \rho_0 \boldsymbol{\varphi}_0 \wedge \ddot{\boldsymbol{u}} + \rho_0 \xi^3 \left(\boldsymbol{E}_3 \wedge \ddot{\boldsymbol{u}} + \boldsymbol{\varphi}_0 \wedge \ddot{\boldsymbol{t}} \right) + \rho_0 \xi^{3^2} \boldsymbol{E}^3 \wedge \ddot{\boldsymbol{t}} \right\} d\xi^3 d\mathcal{A}$$

• As the main idea in plates is to consider u and t constant on the thickness

$$\int_{\mathcal{S}_0} \rho_0 \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{E}_3 \right) \wedge \left(\ddot{\boldsymbol{u}} + \xi^3 \ddot{\boldsymbol{t}} \right) dV = \int_{\mathcal{A}} \bar{\rho} \boldsymbol{\varphi}_0 \wedge \ddot{\boldsymbol{u}} d\mathcal{A} + \int_{\mathcal{A}} \boldsymbol{E}_3 \wedge \ddot{\boldsymbol{t}} I_p d\mathcal{A}$$

- With the density per unit area ar
 ho
- With the mass inertia

$$I_p = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \rho_0 \xi^{3^2} d\xi^3 = \rho_0 \frac{h_0^3}{12}$$

- Angular momentum equation (4)
 - Loading term

$$\cdot \int_{\mathcal{S}_0} \left(\varphi_0 + \xi^3 \mathbf{E}_3 \right) \wedge \mathbf{b} dV = \int_{\mathcal{A}} \varphi_0 \wedge \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \mathbf{b} d\xi^3 d\mathcal{A} + \int_{\mathcal{A}} \mathbf{E}_3 \wedge \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \xi^3 \mathbf{b} d\xi^3 d\mathcal{A}$$
$$\Longrightarrow \int_{\mathcal{S}_0} \left(\varphi_0 + \xi^3 \mathbf{E}_3 \right) \wedge \mathbf{b} dV = \int_{\mathcal{A}} \varphi_0 \wedge \bar{\mathbf{b}} d\mathcal{A} + \int_{\mathcal{A}} \mathbf{E}_3 \wedge \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \xi^3 \mathbf{b} d\xi^3 d\mathcal{A}$$

– With the loading per unit area $ar{b}$

2013-2014

Aircraft Structures - Plates – Reissner-Mindlin Theory

- Angular momentum equation (6)
 - Stress term (2)
 - $\int_{\mathcal{S}_0} \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{E}_3 \right) \wedge \left(\boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T \right) dV = \int_{\partial \mathcal{S}_0} \Phi_0 \wedge \left(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}} \right) dS$
 - Where $\widehat{n_0}$ is the normal to the plate surface (3D volume) in the reference configuration
 - On top/bottom faces $\hat{n}_0 = \pm E^3$

- On lateral surface:
$$\widehat{n}_0 = v_\alpha E^\alpha$$

$$\implies \int_{\mathcal{S}_0} \left(oldsymbol{arphi}_0 + \xi^3 oldsymbol{E}_3
ight) \wedge \left(oldsymbol{
abla}_0 \cdot oldsymbol{\sigma}^T
ight) dV =$$

=CS

 $\Phi = \varphi(\xi^1, \xi^2) + \xi^3 \boldsymbol{t}(\xi^1, \xi^2)$

S

 E_3

L .

Ĕ₁

23

- Angular momentum equation (7)
 - Stress term (3)

$$\begin{split} \bullet & \int_{\mathcal{S}_0} \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{E}_3 \right) \wedge \left(\boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T \right) dV = \\ & \int_{\mathcal{A}} \boldsymbol{\varphi}_0 \wedge \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \right) \Big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\mathcal{A} + \int_{\partial \mathcal{A}} \boldsymbol{\varphi}_0 \wedge \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^\alpha \nu_\alpha \right) d\xi^3 dl + \\ & \int_{\mathcal{A}} \xi^3 \boldsymbol{E}_3 \wedge \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \right) \Big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\mathcal{A} + \int_{\partial \mathcal{A}} \boldsymbol{E}_3 \wedge \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \xi^3 \boldsymbol{\sigma} \cdot \boldsymbol{E}^\alpha d\xi^3 \nu_\alpha dl \end{split}$$

Resultant bending stresses & resultant stresses

$$\begin{split} \tilde{\boldsymbol{m}}^{\alpha} &= \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma} \cdot \boldsymbol{E}^{\alpha} \xi^3 d\xi^3 \,, \, \boldsymbol{n}^{\alpha} = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma} \cdot \boldsymbol{E}^{\alpha} d\xi^3 \\ & \Longrightarrow \int_{\mathcal{S}_0} \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{E}_3 \right) \wedge \left(\boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T \right) dV = \\ & \int_{\mathcal{A}} \boldsymbol{\varphi}_0 \wedge \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \right) \Big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\mathcal{A} + \int_{\partial \mathcal{A}} \boldsymbol{\varphi}_0 \wedge \boldsymbol{n}^{\alpha} \nu_{\alpha} dl + \\ & \int_{\mathcal{A}} \xi^3 \boldsymbol{E}_3 \wedge \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \right) \Big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\mathcal{A} + \int_{\partial \mathcal{A}} \boldsymbol{E}_3 \wedge \tilde{\boldsymbol{m}}^{\alpha} \nu_{\alpha} dl \end{split}$$

- Angular momentum equation (8)
 - Resultant bending stress

•
$$\tilde{\boldsymbol{m}}^{lpha} = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma} \cdot \boldsymbol{E}^{lpha} \xi^3 d\xi^3$$

• These are two vectors

- Angular momentum equation (9)
 - Stress term (4)

$$\begin{array}{ll} \bullet & \int_{\mathcal{S}_0} \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{E}_3 \right) \wedge \left(\boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T \right) dV & = \\ & \int_{\mathcal{A}} \boldsymbol{\varphi}_0 \wedge \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \right) \big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\mathcal{A} + \int_{\partial \mathcal{A}} \boldsymbol{\varphi}_0 \wedge \boldsymbol{n}^{\alpha} \nu_{\alpha} dl + \\ & \int_{\mathcal{A}} \xi^3 \boldsymbol{E}_3 \wedge \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \right) \big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\mathcal{A} + \int_{\partial \mathcal{A}} \boldsymbol{E}_3 \wedge \tilde{\boldsymbol{m}}^{\alpha} \nu_{\alpha} dl \end{array}$$

Applying Gauss theorem

$$\begin{split} \int_{\mathcal{S}_0} \left(\boldsymbol{\varphi}_0 + \xi^3 \boldsymbol{E}_3 \right) \wedge \left(\boldsymbol{\nabla}_0 \cdot \boldsymbol{\sigma}^T \right) dV = \\ \int_{\mathcal{A}} \left. \boldsymbol{\varphi}_0 \wedge \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \right) \right|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\mathcal{A} + \int_{\mathcal{A}} \boldsymbol{\varphi}_{0,\alpha} \wedge \boldsymbol{n}^{\alpha} d\mathcal{A} + \int_{\mathcal{A}} \boldsymbol{\varphi}_0 \wedge \left(\boldsymbol{n}^{\alpha} \right)_{,\alpha} d\mathcal{A} + \\ \int_{\mathcal{A}} \xi^3 \boldsymbol{E}_3 \wedge \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \right) \right|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\mathcal{A} + \int_{\mathcal{A}} \boldsymbol{E}_3 \wedge \left(\tilde{\boldsymbol{m}}^{\alpha} \right)_{,\alpha} d\mathcal{A} \end{split}$$

Angular momentum equation (10)

From

$$\int_{\mathcal{S}_{0}} \rho_{0} \left(\varphi_{0} + \xi^{3} E_{3}\right) \wedge \left(\ddot{u} + \xi^{3} \ddot{t}\right) dV = \int_{\mathcal{A}} \bar{\rho} \varphi_{0} \wedge \ddot{u} d\mathcal{A} + \int_{\mathcal{A}} E_{3} \wedge \ddot{t} I_{p} d\mathcal{A}$$

$$\int_{\mathcal{S}_{0}} \left(\varphi_{0} + \xi^{3} E_{3}\right) \wedge b dV = \int_{\mathcal{A}} \varphi_{0} \wedge \bar{b} d\mathcal{A} + \int_{\mathcal{A}} E_{3} \wedge \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \xi^{3} b d\xi^{3} d\mathcal{A}$$

$$\int_{\mathcal{S}_{0}} \left(\varphi_{0} + \xi^{3} E_{3}\right) \wedge \left(\nabla_{0} \cdot \sigma^{T}\right) dV = \int_{\mathcal{A}} \varphi_{0} \wedge \left(\sigma \cdot E^{3}\right) \Big|_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} d\mathcal{A} + \int_{\mathcal{A}} \varphi_{0,\alpha} \wedge n^{\alpha} d\mathcal{A} + \int_{\mathcal{A}} \varphi_{0} \wedge (n^{\alpha})_{,\alpha} d\mathcal{A} + \int_{\mathcal{A}} \xi^{3} E_{3} \wedge \left(\sigma \cdot E^{3}\right) \Big|_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} d\mathcal{A} + \int_{\mathcal{A}} E_{3} \wedge (\tilde{m}^{\alpha})_{,\alpha} d\mathcal{A}$$

IL COMES

$$\int_{\mathcal{A}} \bar{\rho} \varphi_{0} \wedge \ddot{\boldsymbol{u}} d\mathcal{A} + \boldsymbol{E}_{3} \wedge \int_{\mathcal{A}} \ddot{\boldsymbol{t}} I_{p} d\mathcal{A} = \int_{\mathcal{A}} \varphi_{0} \wedge \bar{\boldsymbol{b}} d\mathcal{A} + \boldsymbol{E}_{3} \wedge \int_{\mathcal{A}} \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \xi^{3} \boldsymbol{b} d\xi^{3} d\mathcal{A} + \int_{\mathcal{A}} \varphi_{0} \wedge (\boldsymbol{\sigma} \cdot \boldsymbol{E}^{3}) \big|_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} d\mathcal{A} + \int_{\mathcal{A}} \varphi_{0,\alpha} \wedge \boldsymbol{n}^{\alpha} d\mathcal{A} + \int_{\mathcal{A}} \varphi_{0} \wedge (\boldsymbol{n}^{\alpha})_{,\alpha} d\mathcal{A} + \\ \mathbf{E}_{3} \wedge \int_{\mathcal{A}} \xi^{3} \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^{3}\right) \big|_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} d\mathcal{A} + \mathbf{E}_{3} \wedge \int_{\mathcal{A}} (\tilde{\boldsymbol{m}}^{\alpha})_{,\alpha} d\mathcal{A}$$

- Angular momentum equation (11)
 - Resultant form

$$\begin{split} \bullet \int_{\mathcal{A}} \overline{\hat{\rho}\varphi_{0} \wedge \ddot{\boldsymbol{u}} d\mathcal{A}} + \boldsymbol{E}_{3} \wedge \int_{\mathcal{A}} \ddot{\boldsymbol{t}} I_{p} d\mathcal{A} &= \int_{\mathcal{A}} \varphi_{0} \wedge \bar{\boldsymbol{b}} d\mathcal{A} \neq \boldsymbol{E}_{3} \wedge \int_{\mathcal{A}} \int_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} \xi^{3} \boldsymbol{b} d\xi^{3} d\mathcal{A} + \\ \int_{\mathcal{A}} \varphi_{0} \wedge (\boldsymbol{\sigma} \cdot \boldsymbol{E}^{3}) \big|_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} d\mathcal{A} + \int_{\mathcal{A}} \varphi_{0,\alpha} \wedge \boldsymbol{n}^{\alpha} d\mathcal{A} + \int_{\mathcal{A}} \varphi_{0} \wedge (\boldsymbol{n}^{\alpha})_{,\alpha} d\mathcal{A} + \\ \mathbf{E}_{3} \wedge \int_{\mathcal{A}} \xi^{3} \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^{3} \right) \big|_{-\frac{h_{0}}{2}}^{\frac{h_{0}}{2}} d\mathcal{A} + \mathbf{E}_{3} \wedge \int_{\mathcal{A}} (\tilde{\boldsymbol{m}}^{\alpha})_{,\alpha} d\mathcal{A} \end{split}$$

• But the resultant linear momentum equation reads

$$iggl\{ \left(oldsymbol{n}^lpha
ight)_{,lpha}+oldsymbol{ar{n}}=ar{
ho}\ddot{oldsymbol{u}}\ iggl\{oldsymbol{ar{n}}=oldsymbol{ar{b}}+\left(oldsymbol{\sigma}\cdotoldsymbol{E}^3
ight)igg|_{-rac{h_0}{2}}^{rac{h_0}{2}} iggr\}$$

• So the angular momentum equation reads

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_3 &\wedge & \int_{\mathcal{A}} \int_{-rac{h_0}{2}} \xi^3 eta d\xi^3 d\mathcal{A} + & \int_{\mathcal{A}} eta_{0,lpha} &\wedge eta^lpha d\mathcal{A} + \ egin{aligned} eta_3 &\wedge & \int_{\mathcal{A}} \xi^3 \left(m{\sigma} \cdot m{E}^3
ight) \Big|_{-rac{h_0}{2}}^{rac{h_0}{2}} d\mathcal{A} + m{E}_3 &\wedge & \int_{\mathcal{A}} \left(ilde{m{m}}^lpha
ight)_{,lpha} d\mathcal{A} \end{aligned}$$

- Angular momentum equation (12)
 - Resultant form (2)

•
$$E_3 \wedge \int_{\mathcal{A}} \ddot{t} I_p d\mathcal{A} = E_3 \wedge \int_{\mathcal{A}} \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \xi^3 b d\xi^3 d\mathcal{A} + \int_{\mathcal{A}} \varphi_{0,\alpha} \wedge n^{\alpha} d\mathcal{A} + E_3 \wedge \int_{\mathcal{A}} \xi^3 \left(\boldsymbol{\sigma} \cdot E^3 \right) \Big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} d\mathcal{A} + E_3 \wedge \int_{\mathcal{A}} (\tilde{m}^{\alpha})_{,\alpha} d\mathcal{A}$$

• Defining the applied torque $\bar{\tilde{m}} = \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \xi^3 \right) \Big|_{-\frac{h}{2}}^{\frac{h}{2}} + \int_{-\frac{h}{2}}^{\frac{h}{2}} \xi^3 \boldsymbol{b} d\xi^3$

$$\implies \mathbf{E}_{3} \wedge \int_{\mathcal{A}} \ddot{\mathbf{t}} I_{p} d\mathcal{A} = \mathbf{E}_{3} \wedge \int_{\mathcal{A}} \bar{\tilde{\mathbf{m}}} d\mathcal{A} + \int_{\mathcal{A}} \boldsymbol{\varphi}_{0,\alpha} \wedge \mathbf{n}^{\alpha} d\mathcal{A} + \mathbf{E}_{3} \wedge \int_{\mathcal{A}} (\tilde{\mathbf{m}}^{\alpha})_{,\alpha} d\mathcal{A}$$

• Term which is preventing from uncoupling the equations is

$$\int_{\mathcal{A}} oldsymbol{arphi}_{0,lpha} \wedge oldsymbol{n}^{lpha} d\mathcal{A}$$

• Angular momentum equation (13)

- Term
$$\int_{\mathcal{A}} oldsymbol{arphi}_{0,lpha} \wedge oldsymbol{n}^{lpha} d\mathcal{A}$$

• Let us rewrite the Cauchy stress tensor in terms of its components

$$\sigma = \sigma^{ij} E_i \otimes E_j$$

$$\Rightarrow \sigma \cdot E^k = \sigma^{ij} E_i \otimes E_j \cdot E^k = \sigma^{ik} E_i$$
• As Cauchy stress tensor is symmetrical
$$E_k \wedge \sigma \cdot E^k = \sigma^{ik} E_k \wedge E_i = 0$$
• Using $E_\alpha = \varphi_{0,\alpha}$

$$\Rightarrow \varphi_{0,\alpha} \wedge \sigma \cdot E^\alpha + E_3 \wedge \sigma \cdot E^3 = 0$$
• This new equation can be integrated on the thickness
$$\int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \varphi_{0,\alpha} \wedge \sigma \cdot E^\alpha d\xi^3 + \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} E_3 \wedge \sigma \cdot E^3 d\xi^3 = 0$$
• Defining the out-of-plane resultant stress $n^3 = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \sigma \cdot E^3 d\xi^3$

$$\Rightarrow \varphi_{0,\alpha} \wedge n^\alpha = -E_3 \wedge n^3$$

- Angular momentum equation (14)
 - Resultant form (3)

•
$$E_3 \wedge \int_{\mathcal{A}} \ddot{t} I_p d\mathcal{A} = E_3 \wedge \int_{\mathcal{A}} \bar{\tilde{m}} d\mathcal{A} + \int_{\mathcal{A}} \varphi_{0,\alpha} \wedge n^{\alpha} d\mathcal{A} + E_3 \wedge \int_{\mathcal{A}} (\tilde{m}^{\alpha})_{,\alpha} d\mathcal{A}$$

• $\varphi_{0,\alpha} \wedge n^{\alpha} = -E_3 \wedge n^3$

$$\implies E_3 \wedge \int_{\mathcal{A}} \ddot{t} I_p d\mathcal{A} = E_3 \wedge \int_{\mathcal{A}} \bar{\tilde{m}} d\mathcal{A} - E_3 \wedge \int_{\mathcal{A}} n^3 d\mathcal{A} + E_3 \wedge \int_{\mathcal{A}} (\tilde{m}^{\alpha})_{,\alpha} d\mathcal{A}$$

- If λ is an undefined pressure applied through the thickness, the resultant angular momentum equation reads $\ddot{t}I_p = \bar{\tilde{m}} (n^3 \lambda E_3) + (\tilde{m}^{\alpha})_{,\alpha}$
- With

$$\tilde{\boldsymbol{m}}^{\alpha} = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma} \cdot \boldsymbol{E}^{\alpha} \xi^3 d\xi^3 = \bar{\boldsymbol{m}} = \left(\boldsymbol{\sigma} \cdot \boldsymbol{E}^3 \xi^3\right) \Big|_{-\frac{h_0}{2}}^{\frac{h_0}{2}} + \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \xi^3 \boldsymbol{b} d\xi^3 = I_p = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \rho_0 \xi^{3^2} d\xi^3 = \rho_0 \frac{h_0^3}{12}$$

- **Resultant equations summary**
 - Linear momentum

•
$$(\boldsymbol{n}^{lpha})_{,lpha}+ar{\boldsymbol{n}}=ar{
ho}\ddot{\boldsymbol{u}}$$

Resultant stresses •

$$m{n}^{lpha} = \int_{-rac{h_0}{2}}^{rac{\kappa_0}{2}} m{\sigma} \cdot m{E}^{lpha} d\xi^3$$

 h_{0}

- Angular momentum
 - $egin{aligned} \ddot{m{t}}I_p = ar{ar{m{m}}} ig(m{n}^3 \lambda m{E}_3ig) + ig(m{ ilde{m}}^lphaig)_{,lpha} \end{aligned}$
 - Resultant bending stresses $\tilde{m}^{\alpha} = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \sigma \cdot E^{\alpha} \xi^3 d\xi^3$
- Interpretation _

25

Université 🛛 🖉

- What is missing is the link between the deformations and the stresses
 - Idea: as the discretization does not involve the thickness, the deformations should be evaluated at neutral plane too
 - Works only in linear elasticity

Deformations

- In small deformations, the tensor reads

$$\boldsymbol{\varepsilon} = \frac{1}{2} \left(\frac{\partial \left(\boldsymbol{x} - \boldsymbol{X} \right)}{\partial \boldsymbol{X}} + \left(\frac{\partial \left(\boldsymbol{x} - \boldsymbol{X} \right)}{\partial \boldsymbol{X}} \right)^{T} \right)$$

But defining •

$$\Delta t\left(\xi^1,\,\xi^2
ight)=t-E_3$$

leads to

$$oldsymbol{x}-oldsymbol{X}=oldsymbol{arphi}_0+oldsymbol{u}+\xi^3oldsymbol{t}-oldsymbol{arphi}_0-\xi^3oldsymbol{E}_3=oldsymbol{u}\left(\xi^1,\,\xi^2
ight)+\xi^3oldsymbol{\Delta}oldsymbol{t}\left(\xi^1,\,\xi^2
ight)$$

• A vector can always be written in terms of its components

$$oldsymbol{a} = oldsymbol{a} \cdot oldsymbol{E}_i oldsymbol{E}^i = oldsymbol{a} \cdot oldsymbol{E}_lpha oldsymbol{E}^lpha + oldsymbol{a} \cdot oldsymbol{E}_3 oldsymbol{E}^3$$

$$\implies \boldsymbol{x} - \boldsymbol{X} = \boldsymbol{u} \left(\xi^1, \, \xi^2 \right) \cdot \boldsymbol{E}_{\alpha} \boldsymbol{E}^{\alpha} + \boldsymbol{u} \left(\xi^1, \, \xi^2 \right) \cdot \boldsymbol{E}_3 \boldsymbol{E}^3 + \\ \xi^3 \boldsymbol{\Delta} t \left(\xi^1, \, \xi^2 \right) \cdot \boldsymbol{E}_{\alpha} \boldsymbol{E}^{\alpha} + \xi^3 \boldsymbol{\Delta} t \left(\xi^1, \, \xi^2 \right) \cdot \boldsymbol{E}_3 \boldsymbol{E}^3$$

cst

 $\Phi = \phi(\xi^1, \xi^2) + \xi^3 t(\xi^1, \xi^2)$

S

 E_{3}

۲3

 E_1

2ع

 E_2

• Deformations (2)

- In small deformations, the tensor reads (2)
 - Relations on the normal
 - By definition $t \cdot t = 1$
 - In small deformations
 - $(E_3 + \Delta t) \cdot (E_3 + \Delta t) =$ $E_3 \cdot E_3 + 2E_3 \cdot \Delta t = 1$

- Which implies $\Delta t \cdot E_3 = 0$ & $\Delta t_{,\alpha} \cdot E_3 = 0$
- So relation

$$egin{aligned} m{x} - m{X} &= m{u}\left(\xi^1,\,\xi^2
ight) \cdot m{E}_lpha m{E}^lpha + m{u}\left(\xi^1,\,\xi^2
ight) \cdot m{E}_3 m{E}^3 + \ & \xi^3 m{\Delta} m{t}\left(\xi^1,\,\xi^2
ight) \cdot m{E}_lpha m{E}^lpha + \xi^3 m{\Delta} m{t}\left(\xi^1,\,\xi^2
ight) \cdot m{E}_3 m{E}^3 \end{aligned}$$

 $\implies x - X = u\left(\xi^1,\,\xi^2
ight)\cdot E_lpha E^lpha + u\left(\xi^1,\,\xi^2
ight)\cdot E_3 E^3 + \xi^3 \Delta t\left(\xi^1,\,\xi^2
ight)\cdot E_lpha E^lpha$

- Interpretation
 - See next slide

• Deformations (4)

and as only the last term depends on ξ^3 , the gradient reads

$$egin{array}{rll} rac{\partial\left(m{x}-m{X}
ight)}{\partialm{X}} &=& m{u}_{,eta}\left(\xi^{1},\,\xi^{2}
ight)\cdotm{E}_{lpha}\,m{E}^{lpha}\otimesm{E}^{eta}+m{u}_{,eta}\left(\xi^{1},\,\xi^{2}
ight)\cdotm{E}_{3}\,m{E}^{3}\otimesm{E}^{eta}+ \ & \xi^{3}m{\Delta}m{t}_{,eta}\left(\xi^{1},\,\xi^{2}
ight)\cdotm{E}_{lpha}m{E}^{lpha}\otimesm{E}^{eta}+m{\Delta}m{t}\left(\xi^{1},\,\xi^{2}
ight)\cdotm{E}_{lpha}m{E}^{lpha}\otimesm{E}^{3} \end{array}$$

• So the deformations tensor
$$\varepsilon = \frac{1}{2} \left(\frac{\partial (x - X)}{\partial X} + \left(\frac{\partial (x - X)}{\partial X} \right)^T \right)$$
 reads

$$egin{array}{rcl} arepsilon &=& \displaystyle rac{oldsymbol{u}_{,eta}\cdotoldsymbol{E}_{lpha}+oldsymbol{u}_{,lpha}\cdotoldsymbol{E}_{eta}}{2}\,oldsymbol{E}^{lpha}\otimesoldsymbol{E}^{eta}+oldsymbol{u}_{,eta}\cdotoldsymbol{E}_{3}}{\displaystyle rac{oldsymbol{\Delta}oldsymbol{t}_{,eta}\cdotoldsymbol{E}_{lpha}+oldsymbol{\Delta}oldsymbol{t}_{,lpha}\cdotoldsymbol{E}_{eta}}{2}\,oldsymbol{E}^{lpha}\otimesoldsymbol{E}^{eta}+oldsymbol{\Delta}oldsymbol{t}_{,eta}\cdotoldsymbol{E}_{\alpha}}{\displaystyle rac{oldsymbol{\Delta}oldsymbol{t}_{,eta}\cdotoldsymbol{E}_{\alpha}+oldsymbol{\Delta}oldsymbol{t}_{,lpha}\cdotoldsymbol{E}_{3}}{2}oldsymbol{E}^{lpha}\otimesoldsymbol{E}^{eta}+oldsymbol{\Delta}oldsymbol{t}_{,eta}\cdotoldsymbol{E}_{\alpha}\otimesoldsymbol{E}^{eta}+oldsymbol{u}_{,eta}\cdotoldsymbol{E}_{3}}{\displaystyle rac{oldsymbol{\Delta}oldsymbol{t}_{,eta}\cdotoldsymbol{E}_{\alpha}+oldsymbol{\Delta}oldsymbol{t}_{,lpha}\cdotoldsymbol{E}_{\beta}}{\displaystyle 2}oldsymbol{E}^{lpha}\otimesoldsymbol{E}^{eta}+oldsymbol{\Delta}oldsymbol{t}_{,eta}\cdotoldsymbol{E}_{3}}{\displaystyle 2}oldsymbol{E}^{lpha}\otimesoldsymbol{E}^{eta}+oldsymbol{\Delta}oldsymbol{t}_{,eta}\cdotoldsymbol{E}_{3}}{\displaystyle 2}oldsymbol{E}^{lpha}\otimesoldsymbol{E}^{eta}+oldsymbol{\Delta}oldsymbol{t}_{,eta}\cdotoldsymbol{E}_{3}}{\displaystyle 2}oldsymbol{E}^{lpha}\otimesoldsymbol{E}_{3}+oldsymbol{E}^{lpha}\otimesoldsymbol{E}^{eta}+oldsymbol{\Delta}oldsymbol{t}_{,eta}\cdotoldsymbol{E}_{3}}{\displaystyle 2}oldsymbol{E}^{lpha}\otimesoldsymbol{E}^{eta}+oldsymbol{\Delta}oldsymbol{t}_{,eta}\circoldsymbol{E}^{\eta}+oldsymbol{E}_{3}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+oldsymbol{E}^{\eta}\otimesoldsymbol{E}^{\eta}+$$

30

Université 🚺 Ø

- Deformations (5)
 - Deformation modes

$$\boldsymbol{\varepsilon} = \underbrace{\frac{\boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{u}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2}}_{\xi^{3}} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{3}} \frac{\boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{E}^{\beta} \otimes \boldsymbol{E}^{3}}{2} + \\ \xi^{3} \frac{\boldsymbol{\Delta} \boldsymbol{t}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{\Delta} \boldsymbol{t} \cdot \boldsymbol{E}_{\alpha} \frac{\boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{3} + \boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\alpha}}{2}$$

• Interpretation: membrane mode

$$-\varepsilon_{\alpha\beta} = \frac{\boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{u}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \implies \varepsilon_{\alpha\beta} = \frac{\boldsymbol{u}_{\alpha,\beta} + \boldsymbol{u}_{\beta,\alpha}}{2}$$

- Location in the deformation tensor

$$oldsymbol{arepsilon} oldsymbol{arepsilon} = \left(egin{array}{cccc} ullet & ullet & ullet \\ ullet & ullet & ullet \\ ullet & ullet & ullet \\ ullet & ullet & ullet \end{array}
ight)$$

Corresponds to the in-plane

deformations of the neutral plane

- Deformations (6)
 - Deformation modes (2)

$$\boldsymbol{\varepsilon} = \frac{\boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{u}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{3} \frac{\boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{E}^{\beta} \otimes \boldsymbol{E}^{3}}{2} + \boldsymbol{\xi}^{3} \underbrace{\boldsymbol{\Delta} \boldsymbol{t}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{\Delta} \boldsymbol{t} \cdot \boldsymbol{E}_{\alpha} \frac{\boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{3} + \boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\alpha}}{2}$$

• Interpretation: bending mode

$$-\kappa_{\alpha\beta} = \frac{\Delta t_{,\beta} \cdot E_{\alpha} + \Delta t_{,\alpha} \cdot E_{\beta}}{2} \implies \kappa_{\alpha\beta} = \frac{\Delta t_{\alpha,\beta} + \Delta t_{\beta,\alpha}}{2}$$

- Location in the deformation tensor

$$oldsymbol{arepsilon} oldsymbol{arepsilon} = \left(egin{array}{cccc} ullet & ullet & ullet \\ ullet & ullet & ullet \\ ullet & ullet & ullet \\ ullet & ullet & ullet \end{array}
ight)$$

- Corresponds to the final

curvature of the neutral plane

32

Université de Liège

Aircraft Structures - Plates – Reissner-Mindlin Theory

- **Deformations** (7)
 - Deformation modes (3) _

$$\varepsilon = \frac{\boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{u}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \underbrace{\boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{3}}{2} \frac{\boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{E}^{\beta} \otimes \boldsymbol{E}^{3}}{2} + \underbrace{\boldsymbol{\xi}^{3} \frac{\boldsymbol{\Delta} \boldsymbol{t}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \underbrace{\boldsymbol{\Delta} \boldsymbol{t} \cdot \boldsymbol{E}_{\alpha}}{2} \frac{\boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{3} + \boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\alpha}}{2}$$

Z.

Interpretation: Through-the-thickness shearing •

$$- 2\delta_{\alpha} = \gamma_{\alpha} = \boldsymbol{u}_{,\alpha} \cdot \boldsymbol{E}_{3} + \boldsymbol{\Delta} \boldsymbol{t} \cdot \boldsymbol{E}_{\alpha} \implies \gamma_{\alpha} = \boldsymbol{u}_{3,\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{\alpha}$$

Location in the deformation tensor

$$oldsymbol{arepsilon} oldsymbol{arepsilon} = \left(egin{array}{cccc} \cdot & \cdot & oldsymbol{arepsilon} \\ \cdot & \cdot & \bullet \\ oldsymbol{arepsilon} & oldsymbol{arepsilon} \end{array}
ight)$$

Corresponds to the average angle between

the neutral plane normal and the direction

vector *t* (initially the same)

Université 🚺 Ø

- Deformations (8)
 - Deformation modes (4)

$$\boldsymbol{\varepsilon} = \frac{\boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{u}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{3} \frac{\boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{E}^{\beta} \otimes \boldsymbol{E}^{3}}{2} + \\ \boldsymbol{\xi}^{3} \frac{\boldsymbol{\Delta} \boldsymbol{t}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{\Delta} \boldsymbol{t} \cdot \boldsymbol{E}_{\alpha} \frac{\boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{3} + \boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\alpha}}{2}$$

- Interpretation: Through-the-thickness elongation
 - In this model there is no through-the-thickness elongation

- Actually the plate is in plane- σ state, meaning there is such a deformation
 - » To be introduced: $\xi^3 t$ should be substituted by $\lambda_h(\xi^3) t$ in the shell kinematics
 - » We have to introduce it to get the plane- σ effect
 - » In small deformations this term would lead to second order effects on other components

- Deformations (9)
 - Final expression
 - We had

$$\begin{split} \varepsilon &= \frac{\boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{u}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \, \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{3} \, \frac{\boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{E}^{\beta} \otimes \boldsymbol{E}^{3}}{2} + \\ & \xi^{3} \frac{\boldsymbol{\Delta} \boldsymbol{t}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \boldsymbol{\Delta} \boldsymbol{t} \cdot \boldsymbol{E}_{\alpha} \frac{\boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{3} + \boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\alpha}}{2} \\ & - \text{With} \quad \begin{cases} \varepsilon_{\alpha\beta} = \frac{\boldsymbol{u}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{u}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \\ \kappa_{\alpha\beta} = \frac{\boldsymbol{\Delta} \boldsymbol{t}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \\ \kappa_{\alpha\beta} = \frac{\boldsymbol{\Delta} \boldsymbol{t}_{,\beta} \cdot \boldsymbol{E}_{\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{,\alpha} \cdot \boldsymbol{E}_{\beta}}{2} \\ 2\delta_{\alpha} = \gamma_{\alpha} = \boldsymbol{u}_{,\alpha} \cdot \boldsymbol{E}_{3} + \boldsymbol{\Delta} \boldsymbol{t} \cdot \boldsymbol{E}_{\alpha} \end{split}$$

• And through-the-thickness elongation $\lambda_h(\xi^3) t$

$$\implies \varepsilon = \varepsilon_{\alpha\beta} E^{\alpha} \otimes E^{\beta} + \delta_{\alpha} \left(E^{3} \otimes E^{\alpha} + E^{\alpha} \otimes E^{3} \right) + \xi^{3} \kappa_{\alpha\beta} E^{\alpha} \otimes E^{\beta} + \lambda_{h} E^{3} \otimes E^{3}$$

- Hooke's law
 - Small strain tensor

 $\boldsymbol{\varepsilon} = \varepsilon_{\alpha\beta} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \delta_{\alpha} \left(\boldsymbol{E}^{3} \otimes \boldsymbol{E}^{\alpha} + \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{3} \right) + \xi^{3} \kappa_{\alpha\beta} \boldsymbol{E}^{\alpha} \otimes \boldsymbol{E}^{\beta} + \lambda_{h} \boldsymbol{E}^{3} \otimes \boldsymbol{E}^{3}$

- There are 4 contributions
 - Membrane mode

 $- \sigma_{\varepsilon}^{ij} = \mathcal{H}^{ij\alpha\beta}\varepsilon_{\alpha\beta} \quad \text{as frame is orthonormal } \mathcal{H}^{ijkl} = \mathcal{H}_{ijkl} \text{ (notation abuse)}$ with $\mathcal{H}_{ijkl} = \frac{E\nu}{(1+\nu)(1-2\nu)}\delta_{ij}\delta_{kl} + \frac{E}{1+\nu}\left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$

$$\implies \boldsymbol{\sigma}_{\varepsilon}^{ij} = \frac{E\nu}{(1+\nu)\left(1-2\nu\right)} \delta^{ij} \varepsilon_{\alpha\alpha} + \frac{E}{1+\nu} \varepsilon_{\alpha\beta} \delta^{i\alpha} \delta^{j\beta}$$

 $\begin{array}{l} - \text{ As } \quad \varepsilon_{\alpha\beta} = \displaystyle \frac{\boldsymbol{u}_{\alpha,\beta} + \boldsymbol{u}_{\beta,\alpha}}{2} \quad \text{ the non-zero components are} \\ \left\{ \boldsymbol{\sigma}_{\varepsilon}^{\alpha\beta} = \displaystyle \frac{E\nu}{(1+\nu)\left(1-2\nu\right)} \boldsymbol{u}_{\gamma,\gamma} \delta^{\alpha\beta} + \displaystyle \frac{E}{1+\nu} \displaystyle \frac{\boldsymbol{u}_{\alpha,\beta} + \boldsymbol{u}_{\beta,\alpha}}{2} \right. \\ \left. \boldsymbol{\sigma}_{\varepsilon}^{33} = \displaystyle \frac{E\nu}{(1+\nu)\left(1-2\nu\right)} \boldsymbol{u}_{\gamma,\gamma} \right\} \right\}$

- Hooke's law (2)
 - There are 4 contributions (2)
 - Bending mode

$$- \sigma_{\kappa}^{ij} = \mathcal{H}^{ij\alpha\beta}\xi^{3}\kappa_{\alpha\beta}$$
with $\mathcal{H}_{ijkl} = \frac{E\nu}{(1+\nu)(1-2\nu)}\delta_{ij}\delta_{kl} + \frac{E}{1+\nu}\left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$

$$\implies \sigma_{\kappa}^{ij} = \frac{E\nu}{(1+\nu)(1-2\nu)}\delta^{ij}\xi^{3}\kappa_{\alpha\alpha} + \frac{E}{1+\nu}\xi^{3}\kappa_{\alpha\beta}\delta^{i\alpha}\delta^{j\beta}$$

- As
$$\kappa_{\alpha\beta} = \frac{\Delta t_{\alpha,\beta} + \Delta t_{\beta,\alpha}}{2}$$
 the non-zero components are

$$\begin{cases} \boldsymbol{\sigma}_{\kappa}^{\alpha\beta} = \frac{E\nu}{(1+\nu)(1-2\nu)} \xi^{3} \Delta t_{\gamma,\gamma} \delta^{\alpha\beta} + \frac{E}{1+\nu} \xi^{3} \frac{\Delta t_{\alpha,\beta} + \Delta t_{\beta,\alpha}}{2} \\ \boldsymbol{\sigma}_{\kappa}^{33} = \frac{E\nu}{(1+\nu)(1-2\nu)} \xi^{3} \Delta t_{\gamma,\gamma} \end{cases}$$

- Hooke's law (3)
 - There are 4 contributions (3)
 - Shearing mode

$$- \sigma_{\delta}^{ij} = \mathcal{H}^{ij3\alpha}\delta_{\alpha} + \mathcal{H}^{ij\alpha3}\delta_{\alpha}$$
with $\mathcal{H}_{ijkl} = \frac{E\nu}{(1+\nu)(1-2\nu)}\delta_{ij}\delta_{kl} + \frac{E}{1+\nu}\left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$

$$\implies \sigma_{\delta}^{ij} = \frac{E}{1+\nu}\delta_{\alpha}\left(\delta^{i\alpha}\delta^{j3} + \delta^{i3}\delta^{j\alpha}\right)$$

- As
$$2\delta_{lpha}=\gamma_{lpha}=oldsymbol{u}_{,lpha}\cdotoldsymbol{E}_3+oldsymbol{\Delta}oldsymbol{t}\cdotoldsymbol{E}_{lpha}$$

we can deduce the non-zero components

$$\sigma_{\delta}^{\alpha 3} = \sigma_{\delta}^{3 lpha} = rac{E}{1+
u} rac{oldsymbol{u}_{3,lpha} + oldsymbol{\Delta} oldsymbol{t}_{lpha}}{2}$$

- As we did for beams, we have to account for the non-uniformity of γ by a shear section T_z reduction $\sigma_{\delta}^{\alpha 3} = \sigma_{\delta}^{3\alpha} = \frac{E}{1+\nu} \frac{A'}{A} \frac{u_{3,\alpha} + \Delta t_{\alpha}}{2}$

- Hooke's law (4)
 - There are 4 contributions (4)
 - Through-the thickness elongation

$$\sigma_{\lambda}^{ij} = \mathcal{H}^{ij33}\lambda_{h}$$
with $\mathcal{H}_{ijkl} = \frac{E\nu}{(1+\nu)(1-2\nu)}\delta_{ij}\delta_{kl} + \frac{E}{1+\nu}\left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$

$$\implies \sigma_{\lambda}^{ij} = \frac{E\nu}{(1+\nu)(1-2\nu)}\delta^{ij}\lambda_{h} + \frac{E}{1+\nu}\lambda_{h}\delta^{i3}\delta^{j3}$$

- We can deduce the non-zero components

$$\begin{cases} \boldsymbol{\sigma}_{\lambda}^{\alpha\beta} = \frac{E\nu}{(1+\nu)(1-2\nu)} \delta^{\alpha\beta} \lambda_{h} \\ \boldsymbol{\sigma}_{\lambda}^{33} = \left(\frac{E\nu}{(1+\nu)(1-2\nu)} + \frac{E}{1+\nu}\right) \lambda_{h} \\ \implies \boldsymbol{\sigma}_{\lambda}^{33} = E \frac{1-\nu}{(1+\nu)(1-2\nu)} \lambda_{h} \end{cases}$$

 \mathbf{T}

- Resultant stresses
 - Plane-σ state
 - Contributions

$$\boldsymbol{\sigma}_{\varepsilon}^{33} = \frac{E\nu}{(1+\nu)(1-2\nu)} \boldsymbol{u}_{\gamma,\gamma}$$
$$\boldsymbol{\sigma}_{\kappa}^{33} = \frac{E\nu}{(1+\nu)(1-2\nu)} \boldsymbol{\xi}^{3} \boldsymbol{\Delta} \boldsymbol{t}_{\gamma,\gamma}$$
$$\boldsymbol{\sigma}_{\lambda}^{33} = E \frac{1-\nu}{(1+\nu)(1-2\nu)} \lambda_{h}$$

$$\implies \lambda_h = \frac{\nu}{\nu - 1} \left(\boldsymbol{u}_{\gamma,\gamma} + \xi^3 \boldsymbol{\Delta} \boldsymbol{t}_{\gamma,\gamma} \right) z$$

- Elongation depends on ξ³
 - Part is stretched and part is compressed
 - For pure bending the change of sign is on the neutral axis
- Average trough the thickness elongation

$$\frac{1}{h_0} \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \lambda_h d\xi^3 = \frac{1}{h_0} \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \frac{\nu}{\nu - 1} \boldsymbol{u}_{\gamma,\gamma} d\xi^3$$

- Depends on the membrane mode only

- Resultant stresses (2)
 - Plane σ -stated (2)
 - Values $\alpha\beta$ can now be deduced

$$-\begin{cases} \boldsymbol{\sigma}_{\varepsilon}^{\alpha\beta} = \frac{E\nu}{(1+\nu)(1-2\nu)} \boldsymbol{u}_{\gamma,\gamma} \delta^{\alpha\beta} + \frac{E}{1+\nu} \frac{\boldsymbol{u}_{\alpha,\beta} + \boldsymbol{u}_{\beta,\alpha}}{2} \\ \boldsymbol{\sigma}_{\kappa}^{\alpha\beta} = \frac{E\nu}{(1+\nu)(1-2\nu)} \xi^{3} \boldsymbol{\Delta} \boldsymbol{t}_{\gamma,\gamma} \delta^{\alpha\beta} + \frac{E}{1+\nu} \xi^{3} \frac{\boldsymbol{\Delta} \boldsymbol{t}_{\alpha,\beta} + \boldsymbol{\Delta} \boldsymbol{t}_{\beta,\alpha}}{2} \\ \boldsymbol{\sigma}_{\lambda}^{\alpha\beta} = \frac{E\nu}{(1+\nu)(1-2\nu)} \delta^{\alpha\beta} \lambda_{h} \text{ with } \lambda_{h} = \frac{\nu}{\nu-1} \left(\boldsymbol{u}_{\gamma,\gamma} + \xi^{3} \boldsymbol{\Delta} \boldsymbol{t}_{\gamma,\gamma} \right) \end{cases}$$

• Can be rewritten as a through-the-thickness constant term and a linear term

$$- \sigma^{\alpha\beta} = \sigma^{\alpha\beta}_{\tilde{n}} + \xi^{3}\sigma^{\alpha\beta}_{\tilde{m}}$$

$$- \text{With} \begin{cases} \sigma^{\alpha\beta}_{\tilde{n}} = \frac{E\nu}{(1-\nu^{2})}\boldsymbol{u}_{\gamma,\gamma}\delta^{\alpha\beta} + \frac{E}{1+\nu}\frac{\boldsymbol{u}_{\alpha,\beta} + \boldsymbol{u}_{\beta,\alpha}}{2} \\ \sigma^{\alpha\beta}_{\tilde{m}} = \frac{E\nu}{(1-\nu^{2})}\boldsymbol{\Delta}\boldsymbol{t}_{\gamma,\gamma}\delta^{\alpha\beta} + \frac{E}{1+\nu}\frac{\boldsymbol{\Delta}\boldsymbol{t}_{\alpha,\beta} + \boldsymbol{\Delta}\boldsymbol{t}_{\beta,\alpha}}{2} \end{cases}$$

• Out-of-plane shearing remains the same

$$- \boldsymbol{\sigma}_{\delta}^{\alpha 3} = \boldsymbol{\sigma}_{\delta}^{3\alpha} = \frac{E}{1+\nu} \frac{A'}{A} \frac{\boldsymbol{u}_{3,\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{\alpha}}{2}$$

2013-2014

- Resultant stresses (3)
 - From stress fields • $\sigma^{\alpha\beta} = \sigma^{\alpha\beta}_{\tilde{z}} + \xi^3 \sigma^{\alpha\beta}_{\tilde{z}}$ • $\boldsymbol{\sigma}_{\delta}^{\alpha 3} = \boldsymbol{\sigma}_{\delta}^{3 \alpha} = \frac{E}{1+\nu} \frac{A'}{A} \frac{\boldsymbol{u}_{3,\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{\alpha}}{2}$ Membrane resultant stresses • $n^lpha = \int_{-rac{h_0}{2}}^{rac{\kappa_0}{2}} \sigma \cdot E^lpha d\xi^3$ $\implies n^{\alpha} = \int_{-\frac{h_0}{2}}^{\frac{n_0}{2}} \sigma^{\alpha I} E_I d\xi^3 = \int_{-\frac{h_0}{2}}^{\frac{n_0}{2}} \sigma^{\alpha \beta}_{\tilde{n}} E_{\beta} d\xi^3 + \int_{-\frac{h_0}{2}}^{\frac{n_0}{2}} \sigma^{\alpha 3}_{\delta} E_3 d\xi^3$ $\implies n^{\alpha} = \left(\int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \sigma_{\tilde{n}}^{\alpha\beta} d\xi^3 E_{\beta} + \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \sigma_{\delta}^{\alpha3} d\xi^3 E_{3} = \tilde{n}^{\alpha\beta} E_{\beta} + \tilde{q}^{\alpha} E_{3}$ In plane membrane stress Out-of plane shear stress

Resultant stresses (4)

_

- Membrane resultant stresses (2) • $\boldsymbol{n}^{\alpha} = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma}_{\tilde{n}}^{\alpha\beta} d\xi^3 \boldsymbol{E}_{\beta} + \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma}_{\delta}^{\alpha3} d\xi^3 \boldsymbol{E}_{3} = \tilde{n}^{\alpha\beta} \boldsymbol{E}_{\beta} + \tilde{q}^{\alpha} \boldsymbol{E}_{3}$
 - In plane component: membrane stress •

- As
$$\sigma_{\tilde{n}}^{\alpha\beta} = \frac{E\nu}{(1-\nu^2)} u_{\gamma,\gamma} \delta^{\alpha\beta} + \frac{E}{1+\nu} \frac{u_{\alpha,\beta} + u_{\beta,\alpha}}{2}$$
 is cst with ξ^3

$$\implies \tilde{n}^{\alpha\beta} = h_0 \boldsymbol{\sigma}_{\tilde{n}}^{\alpha\beta} = \frac{E\nu h_0}{(1-\nu^2)} \boldsymbol{u}_{\gamma,\gamma} \delta^{\alpha\beta} + \frac{Eh_0}{1+\nu} \frac{\boldsymbol{u}_{\alpha,\beta} + \boldsymbol{u}_{\beta,\alpha}}{2} = \mathcal{H}_n^{\alpha\beta\gamma\delta} \varepsilon_{\alpha\beta}$$

Defining the membrane Hooke tensor

Aircraft Structures - Plates – Reissner-Mindlin Theory

- Resultant stresses (5)
 - Membrane resultant stresses (3)

•
$$\boldsymbol{n}^{lpha} = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma}_{\tilde{n}}^{lpha\beta} d\xi^3 \boldsymbol{E}_{eta} + \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma}_{\delta}^{lpha3} d\xi^3 \boldsymbol{E}_3 = \tilde{n}^{lpha\beta} \boldsymbol{E}_{eta} + \tilde{q}^{lpha} \boldsymbol{E}_3$$

• Out-of-plane component: shear stress

- As
$$\boldsymbol{\sigma}_{\delta}^{\alpha 3} = \boldsymbol{\sigma}_{\delta}^{3\alpha} = \frac{E}{1+\nu} \frac{A'}{A} \frac{\boldsymbol{u}_{3,\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{\alpha}}{2}$$
 is cst with ξ^{3}
 $\implies \tilde{q}^{\alpha} = h_{0} \boldsymbol{\sigma}_{\delta}^{\alpha 3} = \frac{Eh_{0}}{1+\nu} \frac{A'}{A} \frac{\boldsymbol{u}_{3,\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{\alpha}}{2}$

Defining the shearing Hooke tensor

»
$$\mathcal{H}_q^{\alpha\beta} = \frac{Eh_0}{1+\nu} \frac{A'}{A} \delta^{\alpha\beta}$$

» As
$$2\delta_{lpha}=\gamma_{lpha}=oldsymbol{u}_{,lpha}\cdotoldsymbol{E}_3+oldsymbol{\Delta}oldsymbol{t}\cdotoldsymbol{E}_{lpha}$$

$$\implies \tilde{q}^{\alpha} = \mathcal{H}_q^{\alpha\beta} \delta_{\beta} = \frac{1}{2} \mathcal{H}_q^{\alpha\beta} \gamma_{\beta}$$

 Corresponds to the average shearing of a beam

Université 🔰 🧕

Z.

- Resultant stresses (6)
 - Out-of-plane resultant stresses • We defined $n^3 = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \sigma \cdot E^3 d\xi^3$ $\implies n^3 = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \sigma^{\alpha 3} d\xi^3 E_{\alpha} = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \sigma^{\alpha 3}_{\delta} d\xi^3 E_{\alpha}$
 - Owing to previous definitions

»
$$\boldsymbol{n}^3 = h_0 \boldsymbol{\sigma}_{\tilde{q}}^{\alpha 3} \boldsymbol{E}_{\alpha} = \tilde{q}^{\alpha} \boldsymbol{E}_{\alpha}$$

» With $\tilde{q}^{\alpha} = \mathcal{H}_q^{\alpha \beta} \delta_{\beta} = \frac{1}{2} \mathcal{H}_q^{\alpha \beta} \gamma_{\beta}$

 Corresponds to the shearing symmetrical to the out-of-plane shearing

- Resultant stresses (7)
 - From stress fields (2)

•
$${m \sigma}^{lphaeta}={m \sigma}^{lphaeta}_{ ilde{n}}+\xi^3{m \sigma}^{lphaeta}_{ ilde{m}}$$

•
$$\boldsymbol{\sigma}_{\delta}^{\alpha 3} = \boldsymbol{\sigma}_{\delta}^{3 \alpha} = \frac{E}{1+\nu} \frac{A'}{A} \frac{\boldsymbol{u}_{3,\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{\alpha}}{2}$$

- Bending resultant stresses

•
$$\tilde{m}^{\alpha} = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma} \cdot \boldsymbol{E}^{\alpha} \xi^3 d\xi^3 = \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} \boldsymbol{\sigma}^{\alpha I} \boldsymbol{E}_I \xi^3 d\xi^3 = \boldsymbol{\sigma}^{\alpha \beta}_{\tilde{m}} \int_{-\frac{h_0}{2}}^{\frac{h_0}{2}} (\xi^3)^2 d\xi^3 \boldsymbol{E}_{\beta}$$

 $\implies \tilde{m}^{\alpha} = \underbrace{\frac{h_0^3}{12} \boldsymbol{\sigma}^{\alpha \beta}_{\tilde{m}}}_{I2} \boldsymbol{E}_{\beta} = \underbrace{\tilde{m}^{\alpha \beta}}_{B} \boldsymbol{E}_{\beta}$
Bending stress

Resultant stresses (8)

•

Bending resultant stresses (2) _

$$\tilde{m}^{\alpha} = \frac{h_{0}^{3}}{12} \sigma_{\tilde{m}}^{\alpha\beta} E_{\beta} = \tilde{m}^{\alpha\beta} E_{\beta}$$

$$- \text{ As } \sigma_{\tilde{m}}^{\alpha\beta} = \frac{E\nu}{(1-\nu^{2})} \Delta t_{\gamma,\gamma} \delta^{\alpha\beta} + \frac{E}{1+\nu} \frac{\Delta t_{\alpha,\beta} + \Delta t_{\beta,\alpha}}{2}$$

$$\implies \tilde{m}^{\alpha\beta} = \frac{h_{0}^{3} E\nu}{12(1-\nu^{2})} \Delta t_{\gamma,\gamma} \delta^{\alpha\beta} + \frac{h_{0}^{3} E}{12(1+\nu)} \frac{\Delta t_{\alpha,\beta} + \Delta t_{\beta,\alpha}}{2}$$

Defining the bending Hooke tensor

2013-2014

Aircraft Structures - Plates – Reissner-Mindlin Theory

Reissner-Mindlin equations summary

Reissner-Mindlin equations summary

- Resultant stresses in linear elasticity
 - Membrane stress

•
$$\tilde{n}^{\alpha\beta} = \mathcal{H}_n^{\alpha\beta\gamma\delta} \varepsilon_{\gamma\delta}$$

- Bending stress
 - $\tilde{m}^{\alpha\beta} = \mathcal{H}_m^{\alpha\beta\gamma\delta}\kappa_{\gamma\delta}$
- Out-of-plane shear stress

49

Université de Liège

- Resultant equations
 - Membrane mode

•
$$(\boldsymbol{n}^{lpha})_{,lpha}+ar{\boldsymbol{n}}=ar{
ho}\ddot{\boldsymbol{u}}$$

$$\begin{array}{ll} \bullet & \boldsymbol{n}^{\alpha} = \tilde{n}^{\alpha\beta} \boldsymbol{E}_{\beta} + \tilde{q}^{\alpha} \boldsymbol{E}_{3} \\ & - & \tilde{n}^{\alpha\beta} = \mathcal{H}_{n}^{\alpha\beta\gamma\delta} \varepsilon_{\gamma\delta} & \quad \text{with} \quad \varepsilon_{\alpha\beta} = \frac{\boldsymbol{u}_{\alpha,\beta} + \boldsymbol{u}_{\beta,\alpha}}{2} \\ & - & \tilde{q}^{\alpha} = \frac{1}{2} \mathcal{H}_{q}^{\alpha\beta} \gamma_{\beta} & \quad \text{with} \quad \gamma_{\alpha} = \boldsymbol{u}_{3,\alpha} + \boldsymbol{\Delta} \boldsymbol{t}_{\alpha} \end{array}$$

• Clearly, the solution can be directly computed in plane Oxy (constant \mathcal{H}_n)

• Remaining equation along E³: $\mathcal{H}_q^{\alpha\beta} \frac{u_{3,\beta\alpha} + \Delta t_{\beta,\alpha}}{2} + \bar{n}_3 = \bar{\rho}\ddot{u}_3$

- Resultant equations (2)
 - Bending mode

•
$$\vec{\boldsymbol{t}}I_p = \bar{\boldsymbol{m}} - (\boldsymbol{n}^3 - \lambda \boldsymbol{E}_3) + (\tilde{\boldsymbol{m}}^{\alpha})_{,\alpha}$$

•
$$\tilde{\boldsymbol{m}}^{lpha} = \tilde{m}^{lpha\beta} \boldsymbol{E}_{eta} \ \boldsymbol{\&} \ \boldsymbol{n}^{3} = \tilde{q}^{lpha} \boldsymbol{E}_{lpha}$$

 $- \tilde{m}^{lpha\beta} = \mathcal{H}^{lpha\beta\gamma\delta}_{m} \kappa_{\gamma\delta}$ with $\kappa_{lpha\beta} = \frac{\boldsymbol{\Delta} t_{lpha,eta} + \boldsymbol{\Delta} t_{eta,lpha}}{2}$
 $- \tilde{q}^{lpha} = \frac{1}{2} \mathcal{H}^{lpha\beta}_{q} \gamma_{eta}$ with $\gamma_{lpha} = \boldsymbol{u}_{3,lpha} + \boldsymbol{\Delta} t_{lpha}$

• Solution is obtained by projecting into the plane Oxy (constant $\mathcal{H}_q, \mathcal{H}_m$)

$$- I_p \ddot{\Delta t}_{\alpha} = \bar{\tilde{m}}_{\alpha} - \frac{1}{2} \mathcal{H}_q^{\alpha\beta} \left(\boldsymbol{u}_{3,\beta} + \Delta t_{\beta} \right) + \mathcal{H}_m^{\alpha\beta\gamma\delta} \frac{\Delta t_{\gamma,\delta\beta} + \Delta t_{\delta,\gamma\beta}}{2}$$

- 2 equations (α =1, 2) with 3 unknowns (Δt_1 , Δt_2 , u_3)

- Use remaining equation
$$\ {\cal H}_q^{lphaeta} {{f u}_{3,etalpha}+\Delta t_{eta,lpha}\over 2}+ar{m n}_3=ar{
ho}\ddot{m u}_3$$

- Resultant equations (3)
 - Bending mode (2)
 - 3 equations with 3 unknowns

- To be completed by BCs
 - Low order constrains
 - » Displacement $oldsymbol{u}_3=ar{oldsymbol{u}}_3$ or
 - » Shearing

$$\mathcal{H}_q^{\alpha\beta} \frac{\boldsymbol{u}_{3,\beta} + \boldsymbol{\Delta} \boldsymbol{t}_\beta}{2} \nu_\alpha = \bar{T}$$

- High order
 - » Rotation $\Delta t = ar{\Delta t}$ or
 - » Bending

$$ilde{m}^{lpha}_{eta}
u_{lpha}=\mathcal{H}^{lphaeta\gamma\delta}_{m}rac{oldsymbol{\Delta} t_{\gamma,\delta}+oldsymbol{\Delta} t_{\delta,\gamma}}{2}
u_{lpha}=ar{M}_{eta}$$

- Membrane problem
 - Similar to 2D elasticity
- Bending problem
 - 3 degree of freedom by nodes
 - Shear locking
 - For reduced thickness $(h/L \rightarrow 0)$ the structure is too stiff
 - This results from the fact that for thin thickness $u_{3,\alpha} \rightarrow \Delta t_{\alpha}$ physically
 - Bernoulli assumption for beams
 - Then we have extra constrains but no new degree of freedom
 - The solution found is then zero deformation
 - In order to avoid shear locking
 - Different techniques
 - High order elements
 - Shear strains γ evaluated at particular points (assumed strain method)
 - These values can be formulated in terms of the displacements/rotations degrees of freedom
 - Internal degrees of freedom (enhanced assumed strain method)

References

• Lecture notes

 Aircraft Structures for engineering students, T. H. G. Megson, Butterworth-Heinemann, An imprint of Elsevier Science, 2003, ISBN 0 340 70588 4

• Other references

- Papers
 - Simo JC, Fox DD. On a stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization. *Computer Methods in Applied Mechanics and Engineering* 1989; **72**:267–304.
 - Simo JC, Fox DD, Rifai MS. On a stress resultant geometrically exact shell model. Part II: the linear theory, computational aspects. *Computer Methods in Applied Mechanics and Engineering* 1989; **73**:53–92.

