University of Liège Aerospace & Mechanical Engineering

Aircraft Structures Overview

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

• Primary purpose of the structure

- To transmit and resist the applied loads
- To provide an aerodynamic shape
- To protect passengers, payload, systems

• The structure has to withstand

- Aerodynamic loadings
- Thrust
- Weight and inertial loadings
- Pressurization cycle
- Shocks at landing, ...

- Example: wing loading
 - Pressure distribution on an airfoil
 - Results from angle of attack and/or camber
 - This distribution can be modeled by
 - A lift (per unit length)
 - A drag (per unit length)
 - Applied at the Center of Pressure (CP)
 - As the CP moves with the angle of attack, this is more conveniently modeled by
 - Lift and drag
 - A constant moment
 - Applied at the fixed Aerodynamic Center (AC)
 - Can actually move due to compression effects
 - As the structural axis is not always at the CP
 - There is a torsion of the wing
 - (particularly when ailerons are actuated)
 - There is always flexion

3

Aerodynamic loading

Aerodynamic loading

- Example: wing loading (3)
 - The lift and moment distributions result into
 - A bending moment
 - Due to l(y)
 - A torsion
 - Due to m(y)
 - Due to the fact that l(y)
 - is not applied on the structural axis
 - Which depend on
 - Velocity
 - Altitude
 - Maneuver
 - Surface control actuation
 - Configuration (flaps down or up)
 - Gust
 - Take off weight

5

• Load intensity

- Global loading can be represented
 by the load factor *n* (in g-unit)
 - *n* corresponds to the ratio between
 - The resulting aerodynamic loads perpendicular to the aircraft *x*-axis
 - The weight Tail load • When flying: $n \sim L / W$ Steady flight: n = 1Ζ. Wing lift Pullout: n > 1Pitching Tail load Loading factor depends on moment X Thrust Velocity Altitude Inertia Maneuver ۲ Surface control actuation ۲ Drag Configuration (flaps down or up) • Weight Gust ۲ Take off weight ٠

_

- Placard diagram (Altitude-Velocity dependency)
 - Design altitude
 - High enough to reduce drag (as density decreases with the altitude)
 - Above turbulence zone
 - Design cruise Mach (M_C)
 - Usually maximum operating Mach: Mach obtained at maximum engine thrust $\implies M_C = M_{mo} \sim 1.06 M_{cruise}$
 - Temperature evolves linearly with altitude until the stratosphere

- Placard diagram (2)
 - Above the design altitude
 - Although density is reduced, the compressibility effects do not allow flying at higher Mach
 - The plane will fly at the same M_C number
 - Ceiling
 - At high altitude the density is too small
 - The wing cannot produce the required lift
 - The engines cannot produce the required thrust

Aerodynamic loading

- Placard diagram (3)
 - 1957, Lockheed U2
 - Ceiling 21 km (70000 ft)
 - Only one engine
 - AR ~ 10
 - Stall speed close to maximum speed

- Placard diagram (4)
 - Below design altitude, when getting closer to the sea level
 - Density increases
 - Engines cannot deliver enough thrust to maintain M_C (drag increases with ρ)
 - Drag has to be kept constant
 - $\implies \rho V_{\text{True}}^2/2 \text{ constant } (V_{\text{True}} \text{ is the true airspeed})$
 - From the dynamical pressure $\rho V_{\text{True}}^2/2$, the equivalent velocity at sea level can be deduced: $V_e = V_{\text{True}} (\rho / \rho_0)^{1/2}$ (ρ_0 = density at sea level)
 - Equivalent velocity is constant true airspeed is decreasing
 - There can be an operational limit as take off speed

- Placard diagram (5)
 - Maximum velocity?
 - During a dive the plane can go faster than the design mach cruise
 - Design dive Mach (FAR) is defined as the minimum between
 - $-1.25 M_{C}$
 - Mach actually obtained after a 20-second dive at 7.5°

followed by a 1.5-g pullout $\implies M_D \sim 1.07 M_C$

- Above design altitude the maximum velocity is limited by M_D constant
- Below design altitude the maximum dive velocity V_D is the minimum of
 - $1.25 V_{C}$
 - The dive velocity (20-second dive at ...) ~ 1.15 V_C

- The velocity corresponding to M_D

- Maneuver envelope (Velocity-load factor dependency)
 - Extreme load factors
 - Light airplanes (*W* < 50000 lb)
 - From -1.8 to minimum of
 - » 2.1 + 24000 lb/(W [lb] + 10000 lb)
 - » 3.8
 - Airliners (*W* > 50000 lb)
 - From -1 to 2.5
 - Acrobatic airplanes
 - From -3 to 6
 - Two design velocities
 - These are equivalent velocities
 - Design dive velocity V_D
 - The plane cannot fly faster
 - Design cruise velocity V_C
 - Are these load limits relevant if the plane fly slower than V_C ?

2013-2014

12

Université 🛛 🦉

Aircraft Structures - Overview

- Maneuver envelope (2)
 - At velocity lower than design cruise V_C
 - A pullout is limited by the maximum lift the plane can withstand before stalling
 - In terms of equivalent velocity and maximum lift coefficient flaps up, the maximum load factor becomes: $n = \frac{L}{W} = \frac{\rho_0 V_e^2 S C_{L\max,1}}{2W}$
 - V_A : Intersection between stall line and n_{max}
 - » This is the maximum velocity at which maximum deflection of controls

- Maneuver envelope (3)
 - Negative load factor
 - At low velocities
 - Same thing than for pullout: stall limits the load factor
 - At high velocities
 - When diving only a pullout is meaningful
 - Linear interpolation between

»
$$V_e = V_D$$
 & $n = 0$

»
$$V_e = V_C \& n = -1$$

- Maneuver envelope (4)
 - Configuration flaps down
 - The maximum lift coefficient changes, so the load factor •

- Landing configuration
$$n = \frac{L}{W} = \frac{\rho_0 V_e^2 S C_{L \max,0}}{2W}$$

- Takeoff configuration $n = \frac{L}{W} = \frac{\rho_0 V_e^2 S C_{L \max}}{2W}$

- Stall velocities
 - $-V_{\rm s}$: take off
 - $-V_{s0}$: landing
 - $-V_{sl}$: flaps up
- V_{F} : velocity below which the flaps can be down (structural limit)
- FAR requirements
 - $-V_F > 1.6 V_{sl}$ in take off configuration (MTOW)
 - $-V_F > 1.8 V_{sl}$ in approach configuration (weight)
 - $-V_F > 1.8 V_{s0}$ at landing configuration (weight)

Aircraft Structures - Overview

- Maneuver envelope (5)
 - Altitude dependency
 - Use of equivalent velocity reduces the effect of altitude
 - But the envelope still depends on the altitude
 - With the altitude the speed of sounds decreases and density is reduced
 - » For a given equivalent velocity the compressibility effects are higher (higher Mach number) and the maximum lift coefficient decreases
 - The computed V_D will be lower as limited by M_D constant
 - One flight envelope is therefore valid for an altitude range
 - Another factor which is altitude-dependant, and that should also be considered, is the gust factor

Aerodynamic loading

- Gust effect
 - Airfoil in still air
 - Airplane velocity V
 - Attack angle α_0
 - Sudden vertical gust U
 - The plane keeps temporarily the same
 - Velocity V
 - Attitude α_0
 - Due to the vertical velocity the angle of attack $\Delta \alpha$ becomes $\alpha = \alpha_0 + \Delta \alpha \simeq \alpha_0 + \frac{U}{V}$
 - Resulting increase of plane lift (neglecting change of plane velocity)

$$\Delta L \simeq \frac{\rho V^2 S \partial_{\alpha} C_{L \, \text{plane}} \Delta \alpha}{2} \simeq \frac{\rho V S C_{L \, \alpha \, \text{plane}} U}{2}$$

Increase in load factor

2013-2014

• As
$$\rho UV = \rho_0 U_e V_e \implies \Delta n \simeq \frac{\rho_0 V_e S C_{L \alpha \text{plane}} U_e}{2W}$$

m

m

 $l + \Lambda l$

- Gust effect (2)
 - Realistic vertical gust _
 - The plane do not really see a sudden vertical gust
 - A real vertical gust can be modeled as graded •
 - Ramp
 - Cosine

- Modern methods consider power spectrum analysis •
- Gust alleviation factor: Before gust has reached its maximum value _
 - The aircraft has developed a vertical velocity *reduces* the severity ٠
 - The aircraft might be pitching \implies effect on the loading (increase of decrease) ٠
 - Elastic deformations of the structure *might* increase the severity •

$$- \text{So } \Delta n \simeq \frac{\rho_0 V_e S C_{L\alpha \text{plane}} U_e}{2W} \quad \text{becomes } \Delta n \simeq \frac{\rho_0 V_e S F C_{L\alpha \text{plane}} U_e}{2W}$$

• *F* is the gust alleviation factor (<1)

Gust alleviation factor

- Expression $\Delta n \simeq \frac{\rho_0 V_e SFC_{L\alpha \text{plane}} U_e}{2W}$ is difficult to be evaluated

- FAR simple rule
$$n_g = 1 + \frac{FC_{L\alpha \text{ plane}}U_eV_eS}{498W}$$

- W plane weight in lb
- V_e equivalent plane velocity in knots (1 knots = 1.852 km/h)

• Gust alleviation factor
$$F = \frac{0.88\mu}{5.3 + \mu}$$

• Airplane weigh ratio $\mu = \frac{2W}{\rho C_{L\alpha \text{ plane}} cgS}$

- c mean aerodynamic chord
- U_e equivalent gust velocity in ft/s
 - Is interpolated from statistical values at different altitudes and for different planes velocities
 - $-V_B$: Velocity when maximum load

U _e in ft/s	$V_e = V_B$	$V_e = V_C$	$V_e = V_D$
Sea level	± 56	± 56	± 28
15000 ft	± 44	± 44	± 22
60000 ft	±20.86	±20.86	±10.43

factor is governed by gust (see next slide)

_		Б	7	K	2	_
	4	1	1	1		
4	1	L	1			

• Gust envelope

Gust load factor

•
$$n_g = 1 + \frac{FC_{L\,\alpha\,\text{plane}}U_eV_eS}{498W}$$

- This gives two branches for $n_g(V_e)$ for $U_e > 0$
- V_B is the intersection between
 - The stall curve
 - $n_g(V_e)$
- This means that if
 - $V_e < V_B$ the plane might stall in case of gust
 - So V_B is minimum speed to enter a gust region
- FAR requirement

2013-2014

$$-V_B \text{ can be } < V_{s1} [n_g(V_C)]^{1/2}$$

$$-V_C > V_B + 1.32U_e$$

U _e in ft/s	$V_e = V_B$	$V_e = V_C$	$V_e = V_D$
Sea level	± 56	± 56	± 28
15000 ft	± 44	± 44	± 22
60000 ft	±20.86	±20.86	±10.43

20 Université Ug

- Gust envelope (2)
 - Gust load factor

•
$$n_g = 1 + \frac{FC_{L\,\alpha\,\text{plane}}U_eV_eS}{498W}$$

- This gives two branches for $n_g(V_e)$ for $U_e < 0$
- Gust envelope is the linear interpolation between
 - Positive stall
 - $n_g(V_B)$
 - $n_g(V_C)$
 - $n_g(V_D)$

U _e in ft/s	$V_e = V_B$	$V_e = V_C$	$V_e = V_D$
Sea level	± 56	± 56	± 28
15000 ft	± 44	± 44	± 22
60000 ft	±20.86	±20.86	±10.43

Design load factors

- Limit load factor n_{limit}
 - Maximum expected load during service (from gust envelope)
 - The plane cannot experience permanent deformations
- Ultimate load factor *n*_{ultimate}
 - Limit load times a security factor (1.5)
 - The plane can experience permanent deformations
 - The structure must be able to withstand the ultimate load for 3 seconds without failure

2013-2014

Structure

- First structure designs
 - A wood internal structure smoothed by fabrics
 - A plywood structure was also used for the fuselage

Figure 1-5 Wood-and-fabric-type wing structure

2013-2014

• Was wood a good choice?

- Specific mechanical properties of wood are favorable to aluminum alloy

	Yield or tensile strength* [MPa]	Young [MPa]	Density [kg · m ⁻³]	Ratio Young- Density	Ratio Strength- Density
Wood	100*	14000	640	21.9	0.156
Structural steel	200	210000	7800	26.9	0.025
Aluminum	75	70000	2700	8.9	0.027
High strength steel alloy A514	690	210000	7800	26.9	0.088
Aluminum alloy 2014	400	73000	2700	9.3	0.148
Titanium alloy 6Al-4V	830	118000	4510	26.17	0.184
Carbon fiber reinforced plastic	1400* (theoretical)	130000	1800	72.2	0.777

Structure

- Was wood a good choice (2)?
 - Drawbacks of wood
 - Moisture absorption changed shape and dimensions
 - Glued structures affected by humidity
 - Strongly anisotropic
 - Oversee import
 - Not suited to stress concentration
 - Wood-fabric structures
 - Were not always waterproof
 - Picture Fokker Dr.I
 - Did not allow to build high-aspect ratio wing
 - Most of the planes were biplanes or triplanes with lower lift/drag ratio

Photo Courtesy Hans Franke

25

Université 🚺 🤇

Structure

• Was wood a good choice (3)?

 Nowadays, only light aircrafts are built using this concept (ex: Mudry)

- In 1915, Junkers constructed a steel plane
 - Cantilevered wing
 - Steel is too heavy (specific tensile strength too low)

" to powerdusters

Duralumin

- 1909, Alfred Wilm, Germany
 - An aluminum alloy containing
 - 3.5 per cent copper
 - 0.5 per cent magnesium
 - Silicon and iron as impurities

spontaneously hardened after quenching from about 480°C.

- This alloy had interesting specific mechanical properties
 - Yield 230 Mpa but
 - Density only 2700 kg · m⁻³
- The question was
 - How to efficiently use this duralumin?

Structure

Monocoque

- Instead of
 - Using a frame as main structure and
 - Covering it with thin metal sheets
- The skin of the structure can be such that it resists the load by itself
 - Lighter than framed structures
 - Sport cars (carbon fiber)
 - Soda can (aluminum)
 - As long as it is filled, it is resistant
 - Empty, it is subjected to buckling
- These structures are subject to buckling and cannot be used for an aircraft

Semi-monocoque

- Monocoques are subject to buckling
- The skin of the shell is usually supported by
 - Longitudinal stiffening members
 - Transverse frames

to enable it to resist bending, compressive and torsional loads without buckling

- These stiffeners are fixed to the skin instead of putting a skin on a structural frame
- First semi-monocoque aircrafts were made of duralumin (example: spitfire)

• Global view

De Havilland Canada Twin Otter (courtesy of De Havilland Aircraft of Canada Ltd.).

Semi-monocoque structure

- Wing: Box-beam structure
 - 2 or 3 spars
 - Ribs
 - Stringers fixed to the skin
 - Transport aircrafts
 - Skin >~ 1. mm
 - Ribs >~ 0.5 mm
 - Spars >~ 1. mm

2013-2014

Semi-monocoque structure

• Fuselage

- Circular if pressurized
- Longerons
- Stringers
- Frames or formers
- Bulkheads (see next slide)

Semi-monocoque structure

• Fuselage (2)

- Circular if pressurized
- Longerons
- Stringers
- Frames or formers
- Bulkheads
 - Reinforcement at
 - Wing root
 - Empennage fixation
 - Engine fixation
 - ...
 - Pressurization
 - Between cabin and tailfin
 - B747, Japan Airline 123: bulkhead repaired with a single row of rivets instead of two

2013-2014

Design method

• Structural integrity of the airframe

- Must be ensured in the event of
 - Failure of a single primary structural element
 - Partial damage occurrence in extensive structures (e.g. skin panels)
 - Crack propagation
 - Adequate residual strength and stiffness
 - Slow rate of crack propagation
- Design for a specified life in terms of
 - Operational hours
 - Number of flight cycles (ground-air-ground)

- « Infinite life design »
 - $\sigma_a < \sigma_e$: « infinite » life
 - Economically deficient
- « Safe life design »
 - No crack before a determined number of cycles
 - At the end of the expected life the component is changed even if no failure has occurred
 - Emphasis on prevention of crack initiation
 - Approach theoretical in nature
 - Assumes initial crack free structures
 - Use of $\sigma_a N_f$ curves (stress life)
 - Add factor of safety
 - Components of rotating structures vibrating with the flow cycles (blades)
 - Once cracks form, the remaining life is very short due to the high frequency of loading

« Fail safe design »

- Even if an individual member of a component fails, there should be sufficient structural integrity to operate safely
- Load paths and crack arresters
- Mandate periodic inspection
- Accent on crack growth rather than crack initiation
- Example: 1988, B737, Aloha Airlines 243
 - 2 fuselage plates not glued
 - Sea water > rust and volume increased
 - Fatigue of the rivets
 - The crack followed a predefined path allowing a safe operation

2013-2014

« Damage tolerant design »

- Assume cracks are present from the beginning of service
- Characterize the significance of fatigue cracks on structural performance
 - Control initial crack sizes through manufacturing processes and (non-destructive) inspections
 - Estimate crack growth rates during service (Paris-Erdogan) & plan conservative inspection intervals (e.g. every so many years, number of flights)
 - Verify crack growth during these inspections
 - Predict end of life (a_f)
 - Remove old structures from service before predicted end-of-life (fracture) or implement repair-rehabilitation strategy
- Non-destructive inspections
 - Optical
 - X-rays
 - Ultrasonic (reflection on crack surface)

37

Design criteria

- Minimum structural weight
 - Wing
 - Fixed items & fuel tank outboard of wing (reduce wing loading)
 - 1-m free of fuel at wing tip (avoid fire risk in case of electrostatic loads)
 - Heavy mass at the wing in front • of the structural axis (reduce aeroelastic issues)
 - Use the same ribs to support landing gear, flaps, engine
 - If possible wing in one part (throughout the fuselage for mid-wing)
 - Landing gear
 - Commonly attached to the wing
 - Should not induce bending nor • shearing larger than in flight
 - Close to the root
 - Just forward of flexural axis

- Minimum structural weight (2) lacksquare
 - Fuselage
 - Heavy masses near the CG (reduce the inertia loads)
 - Limited number of bulkheads
 - Empennages
 - Far from the wing (to reduce the aerodynamic loading)
 - Supported by an existing bulkhead
 - Other
 - Simple structures (avoid rollers, ...)

• Ease of maintenance and inspection

- Aluminum alloys
 - Duralumin (2xxx)
 - 4-7% Cu, 0.5-1.5% Mg, 0.2-2% Mn, 0.3% Si, 0.2-1% Fe
 - Picture: F15 horizontal stabilizer skin
 - Magnesium-Silicon alloy (6xxx)
 - 0.1-0.4% Cu, 0.5-1.5% Mg, 0.1-0.4% Mn, 0.3-2% Si, 0.1-0.7% Fe
 - Aluminum-Zinc-Magnesium alloy (7xxx)
 - 1-2.5% Cu, 1-7% Zn, 1-3% Mg, 0.3% Si
 - Used on fuselage and wing, also for rivets, ..

	Yield [MPa]	Weldability	Machinability	Corrosion resistance	Fatigue properties
2024-T351	270	No	Average	Poor	Excellent
6061 T6	240	Excellent	Good	Good	Good
7075 T651	400	No	Average	Average	Good
TER S					

2013-2014

41

Université 🚺 🧕

• Steel

- Iron
 - Specific strength too low
- Ultra-high-tensile strength carbon alloys
 - Brittleness
 - Not easily machinable, nor to weld
- Maraging steel
 - Low carbon (<0.03%)
 - 17-19% Ni, 8-9% Co, 3-3.5 Mo, 0.15-0.25% Ti
 - High Yield strength (1400 MPa)
 - Compared to carbon-alloy
 - Higher toughness
 - Easier to machine and to weld
 - Better corrosion resistance
 - 3x more expensive
 - Aircraft arrester hook, undercarriage, ...
 - Can be used at elevated temperature (400°C)

Titanium alloy

- High specific strength
 - Example Ti 6AI-4V
 - Yield 830 MPa, density 4510 $kg \cdot m^{\text{-3}}$
- Properties
 - High toughness
 - Good fatigue resistance
 - Good corrosion resistance
 - Except at high T° and salt environment
 - Good Machinability and can be welded
 - Retains strength at high T° (500°C)
- High primary and fabrication cost
 - 7X higher than aluminum alloys
- Uses
 - Military aircrafts
 - Picture: F22 wing spars (Ti 6AI-4V)
 - Slat and flap tracks
 - Picture: B757 flap track (Ti 10V-2Fe-3Al)
 - Undercarriage

Composite

- Fibers in a matrix
 - Fibers: polymers, metals or ceramics
 - Matrix: polymers, metals or ceramics
 - Fibers orientation: unidirectional, woven, random
- Carbon Fiber Reinforced Plastic
 - Carbon woven fibers in epoxy resin
 - Picture: carbon fibers
 - Tensile strength: 1400 MPa
 - Density: 1800 kg·m⁻³
 - A laminate is a stack of CFRP plies
 - Picture: skin with stringers

- Composite (2)
 - Wing, fuselage, ...
 - Typhoon: CFRP
 - 70% of the skin
 - 40% of total weight
 - B787:
 - Fuselage all in CFRP

2013-2014

- Composite (3)
 - Drawbacks
 - "Brittle" rupture mode
 - Impact damage
 - Resin can absorb moisture

- Thin layers of aluminum interspersed with Glass Fiber Reinforced Plastic
- Improves damage resistance

2013-2014

Aircraft Structures - Overview

- Materials summary •
 - Military aircrafts use more
 - Composite •
 - **Titanium alloy**
 - Civil aircrafts
 - More and more composite •

Wings

Spars:

•Composite &

titanium alloy

Aft fuselage

Empennage

Spars & ribs:

Composite

Assembly

- Sub-assembly
 - Each sub-assembly is construct
 - In specialized designed jigs
 - In different factories, countries

2013-2014

Aircraft Structures - Overview

Structural idealization

- Example 2-spar wing (one cell)
 - Stringers to stiffen thin skins
 - Angle section form spar flanges
- Design stages
 - Conceptual
 - Define the plane configuration
 - Span, airfoil profile, weights, ...
 - Analyses should be fast and simple
 - Formula, statistics, ...
 - Preliminary design
 - Starting point: conceptual design
 - Define more variables
 - Number of stringers, stringer area, ...
 - Analyses should remain fast and simple
 - Use beam idealization
 - » Part I
 - FE model of thin structures
 - » Part II
 - Detailed design
 - All details should be considered (rivets, ...)
 - Most accurate analyses (3D, non-linear, FE)

Aircraft Structures - Overview

49

Wing section idealization

- Idealization of a 2-spar wing section
 - Booms
 - Stringers, spar flanges, ...
 - Have small sections compared to airfoil
 - Direct stress due to wing bending is
 constant in each of these
 - They are replaced by concentrated area called booms
 - Booms
 - Have their centroid on the skin
 - Are carrying most direct stress due to beam bending
 - Skin
 - Skin is essentially carrying shear stress
 - It can be assumed
 - Skin is carrying only shear stress
 - If direct stress carrying capacity of skin is reported to booms by appropriate modification of their area

• Two-cell tapered wing

Elasticity

- Balance of body *B*
 - Momenta balance
 - Linear
 - Angular
 - Boundary conditions
 - Neumann
 - Dirichlet

• Small deformations with linear elastic, homogeneous & isotropic material

$$- \text{ (Small) Strain tensor } \boldsymbol{\varepsilon} = \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right), \text{ or } \begin{cases} \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial \boldsymbol{x}_i} \boldsymbol{u}_j + \frac{\partial}{\partial \boldsymbol{x}_j} \boldsymbol{u}_i \right) \\ \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\boldsymbol{u}_{j,i} + \boldsymbol{u}_{i,j} \right) \end{cases}$$

– Hooke's law
$$oldsymbol{\sigma}=\mathcal{H}:oldsymbol{arepsilon}$$
 , or $oldsymbol{\sigma}_{ij}=\mathcal{H}_{ijkl}oldsymbol{arepsilon}_{kl}$

with
$$\mathcal{H}_{ijkl} = \underbrace{\frac{E\nu}{(1+\nu)(1-2\nu)}}_{\lambda=K-2\mu/3} \delta_{ij}\delta_{kl} + \underbrace{\frac{E}{1+\nu}}_{2\mu} \left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$$

- Inverse law $\varepsilon = \mathcal{G} : \sigma$ $\lambda = K - 2\mu/3$

• 1-D pure bending

- Assumptions
 - Symmetrical beam
 - Filled cross section
 - Cross-section remains plane (Bernoulli or Kirchhoff-Love)
 - Only for thin structures (h/L << 1)
 - Limited bending: $\kappa L << 1$
- Curvature radius

•
$$\kappa = -\frac{\partial^2 \boldsymbol{u}_z}{\partial x^2}$$

• 1-D pure bending (2)

- Kinematics

•
$$\boldsymbol{u}_x = \kappa x z$$

- 1-D pure bending (3)
 - Kinematics (2)

•
$$\boldsymbol{u}_x = \kappa xz$$

• $\boldsymbol{u}_z = -\frac{\kappa}{2}x^2 + ?$

Section remains plane, but the shape can change

$$\Longrightarrow \begin{cases} \boldsymbol{u}_{z} = -\frac{\kappa}{2}x^{2} + f\left(?\right) \\ \boldsymbol{u}_{y} = g\left(?\right) \end{cases}$$

Introduction to thin structures

 Z_{\cdot}

- 1-D pure bending (4)
 - Kinematics (3)
 - $\boldsymbol{u}_x = \kappa x z$
 - $\boldsymbol{u}_z = -\frac{\kappa}{2}x^2 + f(?)$
 - $\boldsymbol{u}_y = g\left(\tilde{?}\right)$
 - f & g should
 - Involve quadratic terms
 - Be independent of *x*
 - \implies terms in y^2 , yz, z^2
 - f(-y) should be equal to f(y) \implies terms in y^2 , z^2
 - g(-y) should be equal to -g(y)
 terms in yz

• No shearing
$$\Longrightarrow \varepsilon_{yz} = \frac{1}{2} \left(2y \partial_{y^2} f + y \partial_{yz} g \right) = 0 \& \varepsilon_{xz} = 0$$
, $\varepsilon_{xy} = 0$ satisfied

- For linear elasticity, Poisson's effect induces

$$\begin{bmatrix} \boldsymbol{u}_z = -\frac{\kappa}{2} \left[x^2 + \nu \left(\alpha z^2 - \beta y^2 \right) \right] \\ \boldsymbol{u}_y = -\kappa \nu \beta y z \end{bmatrix}$$

≺

2013-2014

56 Université de Liège

- 1-D pure bending (5)
 - Small deformations $\begin{cases}
 \boldsymbol{u}_{x} = \kappa xz \\
 \boldsymbol{u}_{y} = -\kappa \nu \beta yz \\
 \boldsymbol{u}_{z} = -\frac{\kappa}{2} \left[x^{2} + \nu \left(\alpha z^{2} - \beta y^{2} \right) \right]
 \end{cases}
 \Rightarrow
 \begin{cases}
 \varepsilon_{xx} = \kappa z \\
 \varepsilon_{yy} = -\kappa \beta \nu z \\
 \varepsilon_{zz} = -\kappa \alpha \nu z \\
 \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0
 \end{cases}$
 - For linear elasticity

•
$$\boldsymbol{\sigma} = \mathcal{H} : \boldsymbol{\varepsilon}$$
 with $\mathcal{H}_{ijkl} = \frac{E\nu}{(1+\nu)(1-2\nu)} \delta_{ij} \delta_{kl} + \frac{E}{1+\nu} \left(\frac{1}{2} \delta_{ik} \delta_{jl} + \frac{1}{2} \delta_{il} \delta_{jk}\right)$

$$\implies \begin{cases} \boldsymbol{\sigma}_{xx} = \frac{\kappa E z}{(1+\nu)(1-2\nu)} \left[1-\nu-(\alpha+\beta)\nu^{2}\right] \\ \boldsymbol{\sigma}_{yy} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\beta+\nu(\beta-\alpha)\right] \\ \boldsymbol{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta)\right] \end{cases}$$

• Balance equation:
$$\nabla \cdot \sigma = 0$$

 $\implies \partial_z \sigma_{zz} = 0 \implies \alpha = \frac{1 - \beta \nu}{1 - \nu} \quad \text{or} \quad \nu = 0$

• 1-D pure bending of beams

– Small deformations

$$\begin{cases} \varepsilon_{xx} = \kappa z \\ \varepsilon_{yy} = -\kappa \beta \nu z \\ \varepsilon_{zz} = -\kappa \alpha \nu z \\ \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0 \end{cases}$$

- Beam
 - Stress-free on all cross-section edges

$$- \sigma_{yy} = \sigma_{zz} = 0$$
$$\implies \alpha = \beta = 1$$

Balance equation

& linear elasticity $\boldsymbol{\sigma}_{xx} = \frac{\kappa E z}{(1+\nu)(1-2\nu)} \left[1 - \nu - (\alpha+\beta)\nu^2 \right]$ $\boldsymbol{\sigma}_{yy} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1 - \beta + \nu \left(\beta - \alpha\right)\right]$ $\sigma_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\alpha+\nu(\alpha-\beta) \end{bmatrix}$ Z. х y h κ

2013-2014

Aircraft Structures - Overview

58

Université de Liège

Introduction to thin structures

- 1-D pure bending of beams (2) z
 - Equations

$$\begin{cases} \boldsymbol{\sigma}_{xx} = \kappa Ez \\ \boldsymbol{\sigma}_{yy} = \boldsymbol{\sigma}_{zz} = 0 \end{cases}$$

Momentum

$$M_{xx} = \int_A \kappa E z^2 dy dz = \kappa E I$$

• Inertia

$$I=\int_A z^2 dy dz$$

• For a rectangular cross-section $I = \frac{bh^3}{12}$

- 1-D pure bending of plates
 - Small deformations

$$\begin{cases} \varepsilon_{xx} = \kappa z \\ \varepsilon_{yy} = -\kappa \beta \nu z \\ \varepsilon_{zz} = -\kappa \alpha \nu z \\ \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0 \end{cases}$$

- Plate (plane σ state)
 - No deformation along y

 $\implies \beta = 0$

- Stress-free on upper and lower sides $\implies \sigma_{zz} = 0$ $\implies \alpha = 1 / (1-v)$
- Balance equation

 $\alpha = \frac{1-\beta\nu}{1-\nu} \text{ satisfied}$

$$\begin{cases} \mathbf{\sigma}_{xx} = \frac{\kappa E z}{(1+\nu)(1-2\nu)} \left[1-\nu-(\alpha+\beta)\nu^2 \right] \\ \mathbf{\sigma}_{yy} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\beta+\nu(\beta-\alpha) \right] \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu(\alpha-\beta) \right] \\ z \\ \mathbf{\sigma}_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1-\alpha+\nu$$

2013-2014

60

Université

• 1-D pure bending of plates (2)

– Small deformations

$$\begin{cases} \varepsilon_{xx} = \kappa z \\ \varepsilon_{yy} = -\kappa \beta \nu z \\ \varepsilon_{zz} = -\kappa \alpha \nu z \\ \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0 \end{cases}$$

- Plate (plane ε state)
 - No deformation along y

 $\implies \beta = 0$

• No deformation along *z*

 $\implies \alpha = 0$

Balance equation

$$\alpha = \frac{1 - \beta \nu}{1 - \nu} \quad \text{NOT satisfied}$$

• This state actually requires v = 0

& linear elasticity $\int \boldsymbol{\sigma}_{xx} = \frac{\kappa E z}{(1+\nu)(1-2\nu)} \left[1 - \nu - (\alpha+\beta)\nu^2 \right]$ $\boldsymbol{\sigma}_{yy} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \left[1 - \beta + \nu \left(\beta - \alpha\right)\right]$ $\sigma_{zz} = \frac{\kappa E \nu z}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\alpha+\nu(\alpha-\beta) \end{bmatrix}$ Ζ. y h κ

2013-2014

Introduction to thin structures

- 1-D pure bending of plates (3) z
 - Back to plane σ state
 - Equations

$$\begin{cases} \boldsymbol{\sigma}_{xx} = \frac{\kappa E z}{1 - \nu^2} \\ \boldsymbol{\sigma}_{zz} = 0 \\ \boldsymbol{\sigma}_{yy} = \frac{\nu \kappa E z}{1 - \nu^2} \end{cases}$$

Z. Ŀ y h κ

• Momentum

$$m_{xx} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{\kappa E}{1 - \nu^2} z^2 dz = D\kappa$$

• Flexural rigidity

$$D = \frac{Eh^3}{12\,(1-\nu^2)}$$

Université de Liège

- Elastic beam
 - Equations

$$\begin{cases} M_{xx} = \int_{A} \kappa E z^{2} dy dz = \kappa E I \\ \kappa = -\frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \end{cases}$$

- Concentrated load ____
 - For a uniform cross-section hxb: $I = \frac{bh^3}{12}$

$$P(L-x) = \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} EI \implies \boldsymbol{u}_z = \frac{P}{EI} \left(\frac{Lx^2}{2} - \frac{x^3}{6}\right)$$

• Stress

$$\sigma_{xx}|_{z=-\frac{h}{2}} = -\kappa E \frac{h}{2} = \frac{Ph}{2I} (L-x) = \frac{6P}{bh^2} (L-x)$$

Shearing •

- There is a shearing
$$T_z = P$$
: $T_z = \frac{\partial M_{xx}}{\partial x} = \frac{\partial P (x - L)}{\partial x} = P$

- Its effect on shearing stress can be neglected if $h/L \ll$ as

$$\boldsymbol{\sigma}_{xy} = \mathcal{O}\left(\frac{P}{bh}\right) = \mathcal{O}\left(\frac{h}{L}\boldsymbol{\sigma}_{xx}\left(x=0,\ z=-\frac{h}{2}\right)\right)$$

de Liège

- Elastic beam (2)
 - Equations

$$\begin{cases} M_{xx} = \int_{A} \kappa E z^{2} dy dz = \kappa E I \\ \kappa = -\frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \end{cases}$$

- Non-uniform loading
 - Internal energy variation

$$\delta E_{\rm int} = \int_0^L \int_A \boldsymbol{\sigma}_{xx} \delta \boldsymbol{\varepsilon}_{xx} dA dx = \int_0^L \int_A E \kappa \delta \kappa z^2 dA dx = \int_0^L \int_A E \delta \frac{\kappa^2}{2} z^2 dA dx = \delta \int_0^L \frac{M_{xx} \kappa}{2} dx$$

Work variation of external forces

$$\delta W_{\text{ext}} = \int_{0}^{L} f(x) \,\delta \boldsymbol{u}_{z} dx + \bar{T}_{z} \delta \boldsymbol{u}_{z} \Big]_{0}^{L} - \bar{M}_{xx} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \Big|_{0}^{L}$$

$$\Rightarrow \int_{0}^{L} \frac{1}{2} EI\left(\frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}}\right)^{2} dx = \int_{0}^{L} f(x) \boldsymbol{u}_{z} dx + \bar{T}_{z} \boldsymbol{u}_{z} \Big]_{0}^{L} - \bar{M}_{xx} \frac{\partial \boldsymbol{u}_{z}}{\partial x} \Big|_{0}^{L}$$

Elastic beam (3)

Integration by parts of the internal energy variation •

$$\delta E_{\text{int}} = \int_{0}^{L} EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2} \delta \boldsymbol{u}_{z}}{\partial x^{2}} dx = \left[EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \right]_{0}^{L} - \int_{0}^{L} \frac{\partial}{\partial x} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} dx$$
$$\delta E_{\text{int}} = \left[EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \right]_{0}^{L} - \left[\frac{\partial}{\partial x} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \delta \boldsymbol{u}_{z} \right]_{0}^{L} + \int_{0}^{L} \frac{\partial^{2}}{\partial x^{2}} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \delta \boldsymbol{u}_{z} dx$$

Work variation of external forces

$$\delta W_{\text{ext}} = \int_0^L f(x) \,\delta \boldsymbol{u}_z dx + \bar{T}_z \delta \boldsymbol{u}_z \Big]_0^L - \bar{M}_{xx} \frac{\partial \delta \boldsymbol{u}_z}{\partial x} \Big]_0^L$$

2013-2014

- Elastic beam (4)
 - Energy conservation (2)
 - As δu_z is arbitrary:
 ⇒ Euler-Bernoulli equations

•
$$\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = f(x)$$
 on $[0, L]$
• $\left\{ -\frac{\partial}{\partial x} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) \right|_{0, L} = \bar{T}_z |_{0, L}$
• $EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} |_{0, L} = \bar{M}_{xx} |_{0, L}$

Exercise: Airframe loading

Plane

- Total weight: W = 196000 N
- Span: b = 27.5 m
- MAC: $\bar{c} = 3.05 \, m$
- Aerodynamic centers
 - Wing: forward of G
 - $l_w = 0.915 \, m$
 - Tail: aft of G
 - $l_t = 16.7 \, m$
- Pitching moment
 - $C_{M,0} = -0.0638$
 - Wing and body contributions
- Thrust and drag
 - Supposed to be applied at G
- Flight envelope known

2013-2014

Aircraft Structures - Overview

Exercise: Airframe loading

- Fuselage bending moment at G
 - Due to
 - Fuselage weight
 - For *n*=1, the resulting bending moment is called *M*_{LEV,FLT}
 - So, at other points of the flight envelope the contribution is $n M_{LEV,FLT}$
 - Tail load P
 - At cruising flight, sea-level bending moment at G is given: $M_{\text{CG, cruise point}} = 600000 Nm$
 - Maximum value of M_{CG} on the flight envelope?

References

Lecture notes

- Aircraft Structures for engineering students, T. H. G. Megson, Butterworth-Heinemann, An imprint of Elsevier Science, 2003, ISBN 0 340 70588 4

de Liège

Exercise: Airframe loading

Method

- Write down the equilibrium equations
 - Translation and
 - Moment around the G
- Write down an expression of the y bending moment M_{CG} in the fuselage at the CG in terms of
 - The load factor *n*
 - The equivalent velocity V
- Evaluate this expression in cruising conditions
 - In order to determine the extra unknowns
- Finally, calculate this bending moment for all critical flight conditions
 - Points *A*, *B*, *C*, *D*, *E*
 - Bottom point of a symmetric

maneuver

Aircraft Structures - Overview

Z.

 M_{CG}

Ρ

nW_{LEV.FLT}

- Equilibrium equations
 - Bottom point of a symmetric maneuver

- Balance equations (vertical and moment)

$$\begin{cases} 0.915L + M_0 - 16.7P = 0\\ L + P = nW \end{cases}$$
$$= \frac{16.7nW - M_0}{17.615}\\ P = \frac{0.915nW + M_0}{17.615} \end{cases}$$

- Equilibrium equations (2)
 - At sea level (or taking equivalent velocities):

•
$$M_0 = \frac{1}{2}\rho V^2 S_{wing} \bar{c} C_{M_0} = \frac{1}{2} * 1.223 * 27.5 * 3.05^2 * -0.0638 * V^2$$

 $\implies M_0 = -9.98V^2$
• As $P = \frac{0.915nW + M_0}{17.615}$
 $\implies P = \frac{0.915 * 196000 * n - 9.98 * V^2}{17.615}$

17.615

Exercise: Airframe loadsing

 \mathcal{Z}

 M_{CG}

- Bending moment of fuselage at CG
 - Due to
 - Fuselage weight
 - For *n*=1, the resulting bending moment is called *M*_{LEV,FLT}
 - So, at other points of the flight envelope the contribution
 - is *n M_{LEV.FLT}*
 - Tail load P
 - By equilibrium

•
$$M_{CG} = nM_{LEV.FLT} - 16.7P$$

• As $P = \frac{0.915 * 196000 * n - 9.98 * V^2}{17.615}$
 $\implies M_{CG} = nM_{LEV.FLT} - 16.7 * \left[\frac{0.915 * 196000 * n - 9.98V^2}{17.615}\right]$

 $\implies M_{CG} = n \left(M_{LEV.FLT} - 170020 \right) + 9.47 V^2$

Ρ

*nW*_{LEV.FLT}

Exercise: Airframe loading

 $\mathbf{1}$

 M_{CG}

Ρ

nW_{LEV.FLT}

Missing term

- $\ln M_{CG} = n \left(M_{LEV.FLT} 170020 \right) + 9.47 V^2$
 - We need to evaluate the resulting bending moment $M_{LEV.FLT}$ due to the rear fuselage weight at cruise condition y
- At cruise conditions
 - *n* = 1
 - $V = 152.5 \ m/s$
 - $M_{\rm CG, \ cruise \ point} = 600000 \ Nm$

• Flight envelope

• At *n* = 3.5 and *V* = 152.5 m/s

Annex I: Elastoplastic beam

- Elastoplastic beam
 - Pure bending $\implies \boldsymbol{\varepsilon}_{xx} = \kappa z$ is always satisfied

 • Elastoplastic beam (2)

- Pure bending $\implies \varepsilon_{xx} = \kappa z$ is always satisfied (2)

Normal plastic flow:

$$\boldsymbol{\varepsilon}^{\mathrm{p}} = \bar{\varepsilon}^{\mathrm{p}} \frac{\partial f}{\partial \boldsymbol{\sigma}} = \bar{\varepsilon}^{\mathrm{p}} \sqrt{\frac{3}{2}} \frac{\mathbf{s}}{\sqrt{\mathbf{s}:\mathbf{s}}} \implies \boldsymbol{\varepsilon}^{\mathrm{p}}_{ij} = \bar{\varepsilon}^{\mathrm{p}} \left(\frac{3}{2} \delta_{ix} \delta_{jx} - \frac{1}{2} \delta_{ij}\right)$$

2013-2014

78 Université Ug

• Elastoplastic beam (3)

- Pure bending $\implies \varepsilon_{xx} = \kappa z$ is always satisfied (3)

Aircraft Structures - Overview

79

Université U 🖉

• Elastoplastic beam (4)

- Pure bending $\implies \varepsilon_{xx} = \kappa z$ is always satisfied (4)

- Bending moment:

$$M_{xx} = 2\int_0^b \left\{ \int_0^{z^*} \kappa E z^2 dz + \int_{z^*}^{\frac{h}{2}} \frac{E}{E + h^p} \left(\sigma_p^0 + h^p \kappa z\right) z dz \right\} dy$$

• Elastoplastic beam (5)

- Pure bending $\implies \varepsilon_{xx} = \kappa z$ is always satisfied (5)

$$- z^* = \frac{\sigma_p^0}{E |\kappa|} \to \mathbf{0}$$

 $- M_{xx} \to 2 \int_0^b \int_0^{\frac{h}{2}} \frac{E}{E+h^p} \left(\sigma_p^0 + h^p \kappa z\right) z dz dy = \frac{E \sigma_p^0 h^2 b}{4 \left(E+h^p\right)} + \frac{E h^p \kappa I}{E+h^p}$

- For perfectly plastic materials there is a plastic hinge as

$$M_{xx} \to 2 \int_0^b \int_0^{\frac{h}{2}} \sigma_p^0 z dz dy = \frac{\sigma_p^0 h^2 b}{4} \qquad \text{is independent of } \kappa$$

