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Elasticity

• Balance of body B
– Momenta balance 

• Linear 

• Angular

– Boundary conditions
• Neumann

• Dirichlet

• Small deformations with linear elastic, homogeneous & isotropic material

– (Small) Strain tensor                                        , or

– Hooke’s law                     , or

with

– Inverse law

with

b

T

n

2ml = K - 2m/3
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• General expression for unsymmetrical beams

– Stress 

With

– Curvature

– In the principal axes Iyz = 0 

• Euler-Bernoulli equation in the principal axis

– for x in [0 L] 

– BCs 

– Similar equations for uy

Pure bending: linear elasticity summary
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• General relationships

–

• Two problems considered

– Thick symmetrical section

• Shear stresses are small compared to bending stresses if h/L << 1

– Thin-walled (unsymmetrical) sections

• Shear stresses are not small compared to bending stresses

• Deflection mainly results from bending stresses

• 2 cases

– Open thin-walled sections 

» Shear = shearing through the shear center + torque

– Closed thin-walled sections

» Twist due to shear has the same expression as torsion

Beam shearing: linear elasticity summary
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• Shearing of symmetrical thick-section beams

– Stress                             

• With

• Accurate only if h > b

– Energetically consistent averaged shear strain

• with

• Shear center on symmetry axes

– Timoshenko equations

• &

• On [0 L]: 

Beam shearing: linear elasticity summary
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• Shearing of open thin-walled section beams

– Shear flow

•

• In the principal axes

– Shear center S

• On symmetry axes

• At walls intersection

• Determined by momentum balance

– Shear loads correspond to

• Shear loads passing through the shear center &

• Torque

Beam shearing: linear elasticity summary
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• Shearing of closed thin-walled section beams

– Shear flow

•

• Open part (for anticlockwise of q, s)

• Constant twist part 

• The q(0) is related to the closed part of the section, 

but there is a qo(s) in the open part which should be

considered for the shear torque

Beam shearing: linear elasticity summary
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• Shearing of closed thin-walled section beams

– Warping

•

• With

– ux(0)=0 for symmetrical section if origin on 

the symmetry axis

– Shear center S

• Compute q for shear passing thought S

• Use

Beam shearing: linear elasticity summary
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• Torsion of symmetrical thick-section beams

– Circular section

•

•

– Rectangular section

•

•

• If h >> b

– & 

–

–

Beam torsion: linear elasticity summary
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• Torsion of open thin-walled section beams

– Approximated solution for twist rate

• Thin curved section  

–

–

• Rectangles  

–

–

– Warping of s-axis

•

Beam torsion: linear elasticity summary
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• Torsion of closed thin-walled section beams

– Shear flow due to torsion

– Rate of twist  

•

• Torsion rigidity for constant m

– Warping due to torsion

•

• ARp from twist center

Beam torsion: linear elasticity summary
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• Panel idealization

– Booms’ area depending on loading 

• For linear direct stress distribution

Structure idealization summary
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• Consequence on bending

– If Direct stress due to bending is carried by booms only

• The position of the neutral axis, and thus the second moments of area

– Refer to the direct stress carrying area only

– Depend on the loading case only

• Consequence on shearing

– Open part of the shear flux

• Shear flux for open sections

• Consequence on torsion

– If no axial constraint

• Torsion analysis does not involve axial stress 

• So torsion is unaffected by the structural idealization

Structure idealization summary
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• Virtual displacement

– In linear elasticity the general formula of virtual displacement reads 

• s (1) is the stress distribution corresponding to a (unit) load P(1)

• DP is the energetically conjugated displacement to P in the direction of P(1) that 

corresponds to the strain distribution e

– Example bending of semi cantilever beam

•

– In the principal axes

– Example shearing of semi-cantilever beam

•

Deflection of open and closed section beams summary
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• Torsion of a built-in end closed-section beam

– If warping is constrained (built-in end)

• Direct stresses are introduced

• Different shear stress distribution

– Example: square idealized section

• Warping 

• Shear stress

Structural discontinuities summary
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• Shear lag of a built-in end closed-section beam

– Beam shearing

• Shear strain in cross-section

• Deformation of cross-section

• Elementary theory of bending

– For pure bending

– Not valid anymore because of the

cross section deformation

– Example

• 6-boom wing

• Deformation of top cover

Structural discontinuities summary
z

y

x

L

d

h

Tz/2d

A1 A2
A1 qh

qd

Tz/2

d

y

x

d

2013-2014 Aircraft Structures - Instabilities 16



• Torsion of a built-end open-section beam

– If warping is constrained (built-in end)

• Direct stresses are introduced

• There is a bending contribution 

to the torque

– Examples

• Equation for pure torque 

with

• Equation for distributed torque

Structural discontinuities summary
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• 2 kinds of buckling

– Primary buckling

• No changes in cross-section

• Wavelength of buckle  ~ length of element

• Solid & thick-walled column

– Secondary (local) buckling

• Changes in cross-section

• Wavelength of buckle ~ cross-sectional dimensions

• Thin-walled column & stiffened panels

– Pictures:
– D.H. Dove wing (max loading test)
– Automotive beam 
– Local buckling

Column instabilities
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• Assumptions

– Perfectly symmetrical column (no imperfection)

– Axial load perfectly aligned along centroidal axis

– Linear elasticity

• Theoretically

– Deformed structure should remain symmetrical

– Solution is then a shortening of the column

– Buckling load PCR is defined as P such that if a 

small lateral displacement is enforced by a 

lateral force, once this force is removed  

• If P = PCR,  the lateral deformation is constant

(neutral stability)

• If P > PCR, this lateral displacement increases & 

the column is unstable

• If P < PCR, this lateral displacement disappears & 

the column is stable

• Practically

– The initial lateral displacement is due to

imperfections (geometrical or material)

Euler buckling
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• Euler critical axial load

– Bending theory

•

– Solution 

• General form:                                                    with

• BCs at x = 0 & x = L imply C1 = 0 & 

• Non trivial solution                     with k = 1, 2, 3, …

• In that case C2 is undetermined and can → ∞ 

– Euler critical load for pinned-pinned BCs

• with k = 1, 2, 3, …

Euler buckling
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• Euler critical axial load (2)

– Euler critical load for pinned-pinned BCs (2)

• with k = 1, 2, 3, …

• Buckling will occur for lowest PCR

– In the plane of lowest I

– For the lowest k k = 1

– In case modes 1, .. k-1 are prevented, critical load becomes the load k

Euler buckling
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• Euler critical axial load (3)

– For pinned-pinned BCs

•

• (compression) with gyration radius

– General case

• Euler critical loads                                    ,                                         (compressive)

• With le the effective length

Euler buckling
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• Practical case: initial imperfection

– Let us assume an initial small curvature of the beam

•

– As this curvature is small the equation of bending

for straight beam can still be used, but with the 

change of curvature being considered for the strain

•

• The general form of the initial deflection satisfying the BCs is

the deflection equation becomes

– Solution 

• With 

Initial imperfection
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• Practical case: initial imperfection (2)

– Solution for an initial small curvature of the beam

•

• With

• BCs at x = 0 & x = L imply C1 = C2 = 0, & as

• Clearly near buckling, so P→PCR, and the dominant term of the solution is for n = 1

Initial imperfection
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• Practical case: initial imperfection (3)

– Solution for an initial small curvature of the beam

• near buckling

– If central deflection is measured vs axial load

• As uz0(L/2) ~ A1

•

– Southwell diagram

•

• Allows measuring buckling loads without

breaking the columns 

• Remark

– Critical Euler loading depends on BCs

Initial imperfection
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• Thin-walled column under critical flexural loads

– Can twist without bending or

– Can twist and bend simultaneously

Flexural-torsional buckling of open thin-walled columns
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• Kinematics

– Consider

• A thin-walled section

• Centroid C

• Cyz principal axes 

• Shear center S

– Section motion (CSRD)

• Translation

– Shear center is moved

– By uy
S & uz

S

– To S’’   

• Rotation around shear (twist) center

– We assume shear center=twist center

– By q

• Centroid motion

– To C’ after section translation

– To C’’ after rotation

– Resulting displacements uy
C & uz

C

– Same decomposition for other

points of the section

Flexural-torsional buckling of open thin-walled columns
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• Kinematics (2)

– Relations

• Centroid

• Other points P of the section

• Considering axial loading

– If q remains small, the induced momentums are

– As we are in the principal axes (Iyz=0), and

as motion resulting from bending is uS

Flexural-torsional buckling of open thin-walled columns
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• Torsion

– Any point P of the section

– As torsion results from axial loading, 

this corresponds to a torque with 

warping constraint 

• See previous lecture

– Analogy between

beam bending/pin-ended column

– As 

– The momentum at point P can be substituted by lateral loading

– Contributions on ds

Flexural-torsional buckling of open thin-walled columns
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• Torsion (2)

– Lateral loading analogy

• Contributions on ds

• As axial load leads to uniform 

compressive stress on section

of area A

• Resulting distributed torque (per unit length) on ds

–

Flexural-torsional buckling of open thin-walled columns
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• Distributed torque

– As

– As C is the centroid

Flexural-torsional buckling of open thin-walled columns
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• Distributed torque (2)

– The analogous torque by unit length resulting from the bending reads

– Polar second moment of area around S:

– For a built-in end open-section beam

• Warping is constrained

– Bending contribution to the torque

• New equation

• For a constant section

Flexural-torsional buckling of open thin-walled columns
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• Equations

– In the principal axes

•

•

•

Flexural-torsional buckling of open thin-walled columns
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• Example

– Column with 

• Deflection and rotation around x

constrained at both ends

– uy(0) = uy(L) = 0 & uz(0) = uz(L) = 0

– q(0) = 0 & q(L) = 0

• Warping and rotation around y & z allowed at both ends

– Twist center = shear center

– My(0) = My(L) = 0 uy,xx(0) = uy,xx(L) = 0

– Mz(0) = Mz(L) = 0 uz,xx(0) = uz,xx(L) = 0

– As warping is allowed

are equal to zero 

q,xx(0) = 0 & q,xx(L) = 0

Flexural-torsional buckling of open thin-walled columns
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• Resolution

– Assuming the following fields satisfying the BCs

•

•

•

– The system of equations 

Flexural-torsional buckling of open thin-walled columns
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• Resolution (2)

– Non trivial solution leads to buckling load P

• Buckling load is the minimum root

Flexural-torsional buckling of open thin-walled columns
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• If shear center and centroid coincide

– System becomes

– This system is uncoupled and leads to 3 critical loads

– Buckling load is the minimum value

Flexural-torsional buckling of open thin-walled columns
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• Example

– Column

• Length: L = 1 m

• Young: E = 70 GPa

• Shear modulus: m = 30 GPa

– Buckling load?

• Deflection and rotation around x

constrained at both ends

– uy(0) = uy(L) = 0 & uz(0) = uz(L) = 0

– q(0) = 0 & q(L) = 0

• Warping and rotation around y & z allowed 

at both ends

Flexural-torsional buckling of open thin-walled columns
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• Centroid position

–

– By symmetry on Oy

• Second moment of area

–

–

– By symmetry

Flexural-torsional buckling of open thin-walled columns
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• Shear center

– On Cy by symmetry

– Consider shear force Tz

• As Iyz = 0 

• Lower flange, considering frame O’y’z’

• Upper flange by symmetry

• As Tz passes through the shear center: no torsional flux

Flexural-torsional buckling of open thin-walled columns
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• Uncoupled critical loads

– Using following definitions

• These values would be the critical loads

for an uncoupled system (if C = S) 

? 

Some values are missing

Flexural-torsional buckling of open thin-walled columns
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• Uncoupled critical loads (2)

–

•

•

•

•

– Requires ARp(s)

Flexural-torsional buckling of open thin-walled columns
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• Uncoupled critical loads (3)

– Evaluation of the ARp(s)

• Lower flange

• Web

• Upper flange

Flexural-torsional buckling of open thin-walled columns
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• Uncoupled critical loads (4)

–

• Lower flange: 

–

–

–

–

Flexural-torsional buckling of open thin-walled columns
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• Uncoupled critical loads (5)

–

• Web: 

–

–

–

–

Flexural-torsional buckling of open thin-walled columns
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• Uncoupled critical loads (6)

–

• Upper flange: 

–

Flexural-torsional buckling of open thin-walled columns

y

t = 2 mm

h
=

 1
0

0
 m

m

b = 100 mm

z

y’

z’

C

t = 2 mm

t = 2 mm

S(yS, 0) O’

s

Tz

q

q

q

2013-2014 Aircraft Structures - Instabilities 46



• Uncoupled critical loads (7)

–

• Upper flange (2): 

–

–

Flexural-torsional buckling of open thin-walled columns
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• Uncoupled critical loads (8)

–

• All contributions

–

–

–

Flexural-torsional buckling of open thin-walled columns
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• Uncoupled critical loads (9)

–

•

•

•

•

Flexural-torsional buckling of open thin-walled columns
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• Critical load 
– As the uncoupled critical loads read

,                               &

& as zS = 0, the coupled system is rewritten

Flexural-torsional buckling of open thin-walled columns
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• Critical load (2)

– Resolution

Flexural-torsional buckling of open thin-walled columns

>
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• Thin plates

– Are subject to primary buckling

• Wavelength of buckle  ~ 

length of element

– So they are stiffened               

Buckling of thin plates
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• Primary buckling of thin plates

– Plates without support

• Similar to column buckling

– Same shape

– Use D instead of EIzz

– Supported plates

• Other displacement buckling shapes

• Depend on BCs

Buckling of thin plates
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• Kirchhoff-Love membrane mode

– On A:  

• With 

– Completed by appropriate BCs

• Dirichlet

• Neumann 

Buckling of thin plates
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• Kirchhoff-Love bending mode

– On A: 

• With

– Completed by appropriate BCs

• Low order

– On ∂NA: 

– On ∂DA:  

• High order

– On ∂TA: 

with

– On ∂MA: 

Buckling of thin plates
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• Membrane-bending coupling

– The first order theory is uncoupled

– For second order theory

• On A: 

• Tension increases the bending 

stiffness of the plate

• Internal energy

– In case of small initial curvature (k >>)

• On A:

• Tension induces bending effect

Buckling of thin plates
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• Primary buckling theory of thin plates

– Second order theory

• On A: 

– Simply supported plate

with arbitrary pressure

• Pressure is written in a Fourier series

• Displacements with these BCs can also be written

with

• There is a buckling load ñ11 leading to   

infinite displacements for every couple (m, n) 

– Lowest one?

Buckling of thin plates
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• Primary buckling theory of thin plates (2)

– Simply supported plate

• Displacements in terms of

• Buckling load ñ11

– Minimal (in absolute value) for n=1 

– Or again

with the buckling coefficient k

– Depends on ration a/b

Buckling of thin plates
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• Primary buckling theory of thin plates (3)

– Simply supported plate (2)

• Buckling coefficient k

• Mode of buckling depends on a/b

• k is minimal (=4) for a/b = 1, 2, 3, …

• Mode transition for

• For a/b > 3: k ~ 4

– This analysis depends on the BCs, but same behaviors for 

• Other BCs 

• Other loadings (bending, shearing) instead of compression

• Only the value of k is changing (tables)

Buckling of thin plates
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• Primary buckling theory of thin plates (4)

– Shape of the modes for 

• Simply supported plate

• In compression

• n=1  

Buckling of thin plates
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• Primary buckling theory of thin plates (5)

– Critical stress

• We found

• Or again 

• This can be generalized to other loading

cases with k depending on the problem

– Picture for simply supported plate in

compression

– As 

•

• k ~ cst for a/b >3 

We use stiffeners to reduce b

to increase sCR of the skin

• As long as sCR < sp
0

Buckling of thin plates

b
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• Primary buckling theory of thin plates (6)

– What happens for other BCs?

• We cannot say                                                                        anymore

• But buckling corresponds to a stationary point of the internal energy

(neutral equilibrium)

• So we can plug any Fourier series or displacement approximations in the form

and find the stationary point

Buckling of thin plates
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• Primary buckling theory of thin plates (7)

– Energy method

• Let us analyze the simply supported plate

• Internal energy

• First term

– As                                                                  the cross-terms vanish

Buckling of thin plates
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• Primary buckling theory of thin plates (8)

– Energy method (2)

• Internal energy

– As

– And as cross-terms vanish

Buckling of thin plates
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• Primary buckling theory of thin plates (9)

– Energy method (3)

• As

Buckling of thin plates
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• Primary buckling theory of thin plates (10)

– Energy method (4)

• As

• At buckling we have at least for one couple (m, n)

• Most critical value for n=1

• In general

Buckling of thin plates
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• Experimental determination of critical load

– Avoid buckling            Southwell diagram

– Plate with small initial curvature

•

– Particular case of p = 0, tension ñ11,

simply supported edges

• For

with

• When ñ11 →                                                          

– Term bm1 is the dominant one in the solution

– Displacement takes the shape of buckling mode m (n=1)

Buckling of thin plates
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• Experimental determination of critical load (2)

– Particular case of p=0, tension ñ11 , simply supported edges (2)

• When ñ11 →                                                          

– Term bm1 is the dominant one in the solution

– As 

with

• Rearranging:

– m depends on ratio a/b

Buckling of thin plates
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• Primary to secondary buckling of columns

– Slenderness ratio le/r with

• le: effective length of the column

– Depends on BCs and mode

• r: radius of gyration

– High slenderness (le/r >80)

• Primary buckling

– Low slenderness (le/r <20)

• Secondary (local) buckling

• Usually in flanges

– In between slenderness

• Combination

Secondary buckling of columns

le = L/2
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• Example of secondary buckling

– Composite beam

– Design such that

• Load of primary buckling >

limit load > 

web local buckling load

– Final year project

• Alice Salmon

• Realized by  

• How to determine secondary buckling?

– Easy cases: particular sections

Secondary buckling of columns
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• Secondary buckling of a L-section

– Represent the beam as plates

– Take critical plate and evaluate

k from plate analysis 

• k = 0.43, mode m=1

– Deduce buckling load

•

• Check if lower than sp
0

– This method is an approximation

• Experimental determination

Secondary buckling of columns

Loaded edges simply 

supported

One unloaded edge free 

one simply supported 

(? Assumption)

0.43

b

a=3b
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• Primary buckling of thin plates

– We found

•

• With k ~ constant for a/b >3

– In order to increase the buckling stress

• Increase h0/b ratio, or

• Use stiffeners to reduce effective b of skin 

Buckling of stiffened panels
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• Buckling modes of stiffened panels

– Consider the section

– Different buckling possibilities

• High slenderness

– Euler column (primary) buckling with cross-section depicted

• Low slenderness and stiffeners with high degree of strength compared to skin

– Structure can be assumed to be flat plates

» Of width bsk

» Simply supported by the (rigid) stringers

– Structure too heavy

• More efficient structure if buckling occurs in stiffeners and skin at the same time

– Closely spaced stiffeners of comparable thickness to the skin

– Warning: both buckling modes could interact and reduces critical load

– Section should be considered as a whole unit

– Prediction of critical load relies on assumptions and semi-empirical methods

– Skin can also buckled between the rivets

Buckling of stiffened panels
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• A simple method to determine buckling

– First check Euler primary buckling:

– Buckling of a skin panel

• Simply supported on 4 edges

• Assumed to remain elastic

– Buckling of a stiffener

• Simply supported on 3 edges &

1 edge free

• Assumed to remain elastic

– Take lowest one (in absolute value)

Buckling of stiffened panels
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• Shearing instability 

– Shearing 

• Produces compression in the skin 

• Leads to wrinkles

– The structure keeps some stiffness 

– Picture: Wing of a Boeing stratocruiser

Buckling of stiffener/web constructions
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• Example

– Uniform transverse load fz

– Pinned-pinned BCs

– Maximum deflection?

– Maximum momentum?

Annex 1: Transversely loaded columns
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• Equation

– Euler-Bernouilli

• This assumes deformed configuration ~ initial configuration

• But near buckling, due to the deflection, P is exerting a moment

• So we cannot apply superposition principle as the axial loading also produces a 

deflection

– Going back to bending equation

•

Annex 1: Transversely loaded columns
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• Solution

– Going back to bending equation

•

– General solution

• with 

• BC at x = 0: 

• BC at x = L: 

– Deflection

• Deflection and momentum are maximum at x = L/2

Annex 1: Transversely loaded columns
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• Maximum deflection

– Deflection is maximum at x = L/2

Annex 1: Transversely loaded columns
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• Maximum deflection (2)

– Deflection is maximum at x = L/2 (2)

• From Euler-Bernoulli theory

• As for plates, compression induces bending

due to the deflection (second order theory)

Annex 1: Transversely loaded columns

P

x

z

fz

2013-2014 Aircraft Structures - Instabilities 81

10
-2

10
-1

10
0

10
0

10
1

10
2

P/P
CR

u
z/u

z(P
=

0
)

𝑃/𝑃𝐶𝑅

𝑢𝑧/𝑢𝑧(𝑃 = 0)



• Maximum moment

– Maximum moment at x = L/2 

•

• With

Annex 1: Transversely loaded columns
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• Maximum moment (3)

– Maximum moment at x = L/2 (2)

• Remark: for large deflections the bending equation which assumes linearity is no 

longer correct as curvature becomes

Annex 1: Transversely loaded columns
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• Spar of wings 

– Usually not a simple beam

– Assumptions before buckling:

• Flanges resist direct stress only

• Uniform shear stress in each web

– The shearing produces compression

in the web leading to a-inclined wrinkles

– Assumptions during buckling

• Due to the buckles the web can only 

carry a tensile stress st in the wrinkle 

direction

• This leads to a new distribution of 

stress in the web

– sxx & szz

– Shearing t

Annex 2: Buckling of stiffener/web constructions
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• New stress distribution

– Use rotation tensor to compute in terms of st

Annex 2: Buckling of stiffener/web constructions
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• New stress distribution (2)

– From

– Shearing by vertical equilibrium

– Loading in flanges

• Moment balance around bottom flange

• Horizontal equilibrium

Annex 2: Buckling of stiffener/web constructions
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• New stress distribution (3)

– From

– Loading in stiffeners

• Assumption: each stiffener carries the loading

of half of the adjacent panels

• Stiffeners can be subject to Euler buckling if this load is too high

– Tests show that for these particular BCs, the equivalent length reads

Annex 2: Buckling of stiffener/web constructions
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• New stress distribution (4)

– From

– Bending in flanges

• In addition to the flanges loading PB & PT

• Stress szz produces bending

– Stiffeners constraint rotation

– Maximum moment at stiffeners

• Using table for double cantilever beams

Annex 2: Buckling of stiffener/web constructions
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• Wrinkles angle

– The angle is the one which minimizes

the deformation energy of

• Webs

• Flanges

• Stiffeners

– If flanges and stiffeners are rigid

• We should get back to a = 45°

– Because of the deformation of

flanges and stiffeners a < 45°

• Empirical formula for uniform material

– As                                                          non constant, a non constant 

• Another empirical formula

Annex 2: Buckling of stiffener/web constructions
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• Example

– Web/stiffener construction

• 2 similar flanges

• 5 similar stiffeners

• 4 similar webs

• Same material

– E = 70 GPa

– Stress state?

Annex 2: Buckling of stiffener/web constructions
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• Wrinkles orientation

–

Annex 2: Buckling of stiffener/web constructions
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• Stress in top flange (> than in bottom one)

– 1st contribution: uniform compression

• Maximum at x = 0 

– 2nd contribution: bending

• Maximum at stiffener            at x=0 

– Maximum compressive stress

Annex 2: Buckling of stiffener/web constructions
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• Stiffeners

– Loading

– Buckling?

• As b < 3/2 d:

• Assuming centroid of stiffener lies in web’s plane

– We can use Euler critical load

• No buckling

Annex 2: Buckling of stiffener/web constructions
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