Aircraft Structures Beams – Shearing (Closed Section) Torsion & Section Idealization

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Elasticity

- Balance of body B
 - Momenta balance _
 - Linear •
 - Angular
 - Boundary conditions _
 - Neumann
 - Dirichlet

Small deformations with linear elastic, homogeneous & isotropic material

$$- \text{ (Small) Strain tensor } \boldsymbol{\varepsilon} = \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right), \text{ or } \begin{cases} \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial \boldsymbol{x}_i} \boldsymbol{u}_j + \frac{\partial}{\partial \boldsymbol{x}_j} \boldsymbol{u}_i \right) \\ \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\boldsymbol{u}_{j,i} + \boldsymbol{u}_{i,j} \right) \end{cases}$$

– Hooke's law
$$oldsymbol{\sigma}=\mathcal{H}:oldsymbol{arepsilon}$$
 , or $oldsymbol{\sigma}_{ij}=\mathcal{H}_{ijkl}oldsymbol{arepsilon}_{kl}$

with
$$\mathcal{H}_{ijkl} = \underbrace{\frac{E\nu}{(1+\nu)(1-2\nu)}}_{\lambda=K-2\mu/3} \delta_{ij}\delta_{kl} + \underbrace{\frac{E}{1+\nu}}_{2\mu} \left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$$

 $\lambda = K - 2\mu/3$ Inverse law $oldsymbol{arepsilon} = \mathcal{G}:oldsymbol{\sigma}$

with

2024-2025

 $\mathcal{G}_{ijkl} = \frac{1+\nu}{E} \left(\frac{1}{2} \delta_{ik} \delta_{jl} + \frac{1}{2} \delta_{il} \delta_{jk} \right) - \frac{\nu}{E} \delta_{ij} \delta_{kl}$

 θ

General expression for unsymmetrical beams

Stress
$$\sigma_{xx} = \kappa E z \cos \alpha - \kappa E y \sin \alpha$$

With $\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{\|M_{xx}\|}{\kappa E} \begin{pmatrix} I_{yy} & -I_{yz} \\ -I_{yz} & I_{zz} \end{pmatrix}^{-1} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$

- Curvature

$$\begin{pmatrix} -\boldsymbol{u}_{z,xx} \\ \boldsymbol{u}_{y,xx} \end{pmatrix} = \frac{\|\boldsymbol{M}_{xx}\|}{E\left(I_{yy}I_{zz} - I_{yz}I_{yz}\right)} \begin{pmatrix} I_{zz} & I_{yz} \\ I_{yz} & I_{yy} \end{pmatrix} \begin{pmatrix} \sin\theta \\ -\cos\theta \end{pmatrix}$$

- In the principal axes $I_{yz} = 0$

• Euler-Bernoulli equation in the principal axis

$$- \frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 u_z}{\partial x^2} \right) = f(x) \quad \text{for } x \text{ in } [0 L]$$

$$- \text{BCs} \begin{cases} -\frac{\partial}{\partial x} \left(EI \frac{\partial^2 u_z}{\partial x^2} \right) \Big|_{0, L} = \bar{T}_z \Big|_{0, L} \\ - EI \frac{\partial^2 u_z}{\partial x^2} \Big|_{0, L} = \bar{M}_{xx} \Big|_{0, L} \end{cases} \qquad u_z = 0$$

$$\frac{u_z = 0}{du_z / dx} = 0$$

- Similar equations for u_y

2024-2025

• General relationships

 $-\begin{cases} f_z(x) = -\partial_x T_z = -\partial_{xx} M_y \\ f_y(x) = -\partial_x T_y = \partial_{xx} M_z \end{cases}$

 $u_z = 0$ $du_z/dx = 0$ L $\frac{du_z}{dx} = 0$

L

h

- Two problems considered
 - Thick symmetrical section
 - Shear stresses are small compared to bending stresses if $h/L \ll 1$
 - Thin-walled (unsymmetrical) sections
 - Shear stresses are not small compared to bending stresses
 - Deflection mainly results from bending stresses
 - 2 cases

- Open thin-walled sections
 - » Shear = shearing through the shear center + torque
- Closed thin-walled sections
 - » Twist due to shear has the same expression as torsion

Beam shearing: linear elasticity summary

y_

h

 $T_z + \partial_x T_z \, \delta x$

5

Ζ 1 Shearing of symmetrical thick-section beams - Stress $\sigma_{zx} = -\frac{T_z S_n(z)}{I_{uu} b(z)}$ b(z)• With $S_n(z) = \int_{A^*} z dA$ • Accurate only if h > b A^* Energetically consistent averaged shear strain z • $\bar{\gamma} = \frac{T_z}{A'\mu}$ with $A' = \frac{1}{\int_A \frac{S_n^2}{T^2 - h^2} dA}$ γ_{max} Shear center on symmetry axes T_{z} Timoshenko equations δx • $\bar{\gamma} = 2\bar{\varepsilon}_{xz} = \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} = \theta_y + \partial_x u_z \& \kappa = \frac{\partial \theta_y}{\partial x} \quad z$ • On [0 L]: $\begin{cases} \frac{\partial}{\partial_x} \left(EI \frac{\partial \theta_y}{\partial x} \right) - \mu A' \left(\theta_y + \partial_x \boldsymbol{u}_z \right) = 0\\ \frac{\partial}{\partial x} \left(\mu A' \left(\theta_y + \partial_x \boldsymbol{u}_z \right) \right) = -f \end{cases}$

2024-2025

Aircraft Structures - Beam - Shearing, Torsion & Idealization

Beam shearing: linear elasticity summary

- Shearing of open thin-walled section beams
 - Shear flow $q = t\tau$ • $q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s tz ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s ty ds'$
 - In the principal axes

$$q\left(s\right) = -\frac{T_z}{I_{yy}} \int_0^s tz ds' - \frac{T_y}{I_{zz}} \int_0^s ty ds'$$

- Shear center S
 - On symmetry axes
 - At walls intersection
 - Determined by momentum balance
- Shear loads correspond to
 - Shear loads passing through the shear center &
 - Torque

- Shear flow for a closed section beam
 - Equation

•
$$q(s)-q(0) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') z(s') ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') y(s') ds'$$

still holds

- But q(s=0) is now $\neq 0$
- Method
 - The cross section is virtually cut at $s=0 \implies q\left(s\right) = q_{o}\left(s\right) + q\left(0\right)$
 - With the open section contribution

$$q_{o}\left(s\right) = -\frac{I_{zz}T_{z} - I_{yz}T_{y}}{I_{yy}I_{zz} - I_{yz}^{2}} \int_{0}^{s} t\left(s'\right) z\left(s'\right) ds' - \frac{I_{yy}T_{y} - I_{yz}T_{z}}{I_{yy}I_{zz} - I_{yz}^{2}} \int_{0}^{s} t\left(s'\right) y\left(s'\right) ds'$$

- *q*(*s*=0) is computed to balance the momentum
 - Shear loads pass through a given point T (not necessarily shear center S)
 - We will see that, for closed sections, shear and torsion stresses have the same form, so we do not really have to pass through the shear center *S* as it becomes useless to decompose shearing and torque

- Shear flow for a closed section beam (2)
 - Evaluation of q(s=0)
 - Momentum balance (if *q* & *s* anticlockwise)

$$y_T T_z - z_T T_y = \oint p(s) q(s) ds$$
$$= \oint p(s) q_o(s) ds + q(s = 0) \oint p(s) ds$$

with p the distance from the wall tangent to C

• If A_h is the area enclosed by the section mid-line

$$- dA_{h} = \frac{p \, ds}{2}$$
$$\implies y_{T}T_{z} - z_{T}T_{y} = \oint p(s) \, q_{o}(s) \, ds + 2A_{h}q(s=0)$$

• At the end of the day

$$q\left(s=0\right) = \frac{y_T T_z - z_T T_y - \oint p\left(s\right) q_o\left(s\right) ds}{2A_h}$$

- Shear flow for a closed section beam (2)
 - Final expression
 - $q(s) = q_o(s) + q(0)$
 - $q_o(s)$ is computed as for an open section

•
$$q(s=0) = \frac{y_T T_z - z_T T_y - \oint p(s) q_o(s) ds}{2A_h}$$

Remarks

• The q(0) is related to the closed part of the section, but there is a $q_o(s)$ in the open part which should be considered for the shear torque $\oint p(s) q_o(s) ds$

- This last expression assumes q, s anticlockwise
- If momentum and distance *p* are related to the lines of action of the shear load *T*, this simplifies into $q(s = 0) = \frac{-\oint p(s) q_o(s) ds}{2A_I}$
- By cutting the section we are actually substituting the shearing by
 - A shear load passing through the shear center of the cut section
 - » Which depends on the cut location
 - A torque leading to constant shear flow q(s=0)
 - » Which depends on the cut location

• Shear center

- As we have already used the momentum balance,
 how to determine the shear center *S* ?
- As loads passing through this point do not lead to section twisting, we have to evaluate this twist

Shear deformations

As loads passing through shear center do not lead to section twisting, we have to evaluate the twist in the

general case

Shear strain in the local axes •

$$\gamma = 2\boldsymbol{\varepsilon}_{xs} = \frac{\partial \boldsymbol{u}_s}{\partial x} + \frac{\partial \boldsymbol{u}_x}{\partial s}$$

Remark

$$\boldsymbol{arepsilon}_{ss} = rac{\partial \boldsymbol{u}_s}{\partial s} + rac{\boldsymbol{u}_n}{r}$$

Aircraft Structures - Beam - Shearing, Torsion & Idealization

- Twisting and warping
 - Closely Spaced Rigid Diaphragm (CSRD) assumption
 - The cross section can deform along Cx
 - The shape of the cross-section in its own plane remains constant
 - These 2 motions correspond to warping & twisting
 - So in the Cyz plane only a rigid rotation is seen
 - Aeronautical structures
 - You do not want to change the airfoil shape
 - So structures are rigid enough for this assumption to hold
 - Let us call *R* the center of twist
 - When warping is constrained the center of twist is different from the shear center (see lectures on structural discontinuities)

• Center of twist

- Equations
 - p_R is the distance from the wall tangent to R

 $\implies \delta \boldsymbol{u}_s = p_R \delta \boldsymbol{\theta}$

• *p* is the distance from the wall tangent to *C* $p_R = p - y_R \sin \Psi + z_R \cos \Psi$ $\implies \delta u_s = (p - y_R \sin \Psi + z_R \cos \Psi) \,\delta\theta$

- Center of twist (2)
 - Twist

•
$$\begin{cases} \delta \boldsymbol{u}_s = p_R \delta \boldsymbol{\theta} \\ \delta \boldsymbol{u}_s = (p - y_R \sin \Psi + z_R \cos \Psi) \, \delta \boldsymbol{\theta} \end{cases}$$

• Let $\delta u_y^C \& \delta u_z^C$ be respectively the components along Cy and Cz of the displacement of C due to the twist $\delta \theta$

$$- \delta \boldsymbol{u}_y^C = z_R \delta \theta$$
$$- \delta \boldsymbol{u}_z^C = -y_R \delta \theta$$

• As
$$\delta \boldsymbol{u}_s = (p - y_R \sin \Psi + z_R \cos \Psi) \, \delta \theta$$

$$\implies \delta \boldsymbol{u}_s = p\delta\theta + \delta \boldsymbol{u}_y^C \cos \Psi + \delta \boldsymbol{u}_z^C \sin \Psi$$

- Remarks
 - Valid for closed and open sections
 - u_z^C , u_y^C & θ depend on x
 - **u**_s depends on x & s

Z,

- Center of twist (3)
 - Location

• Eventually
$$\begin{cases} y_R = -\frac{\partial_x \boldsymbol{u}_z^C}{\partial_x \theta} \\ 2 & C \end{cases}$$

$$z_R = \frac{\partial_x \boldsymbol{u}_y^C}{\partial_x \theta}$$

- .
- Remarks
 - Remains valid for a point other than the centroid C
 - Equations valid for open thin-walled sections but what about CSRD assumptions for such sections ?

Warping

- In linear elasticity

 - Shear flow $q = \tau t = \mu t \gamma$ Shear strain $\gamma = 2\varepsilon_{xs} = \frac{\partial u_s}{\partial x} + \frac{\partial u_x}{\partial s}$

$$q = \mu t \left(\boldsymbol{u}_{s,x} + \boldsymbol{u}_{x,s} \right)$$

– Shear flow

• As
$$\frac{\partial \boldsymbol{u}_s}{\partial x} = (p - y_R \sin \Psi + z_R \cos \Psi) \frac{\partial \theta}{\partial x}$$

 $\implies \frac{q}{\mu t} = \frac{\partial \boldsymbol{u}_x}{\partial s} + [p - y_R \sin \Psi + z_R \cos \Psi] \frac{\partial \theta}{\partial x}$

$$\implies \int_0^s \frac{q}{\mu t} ds = \boldsymbol{u}_x(s) - \boldsymbol{u}_x(s = 0) + \frac{\partial \theta}{\partial x} \left[\int_0^s p ds + z_R \int_0^s \cos \Psi ds - y_R \int_0^s \sin \Psi ds \right]$$

Z

С

Z,

C

q

• Warping (2)
- Shear flow integral

$$\int_{0}^{s} \frac{q}{\mu t} ds = u_{x} (s) - u_{x} (s = 0) + \frac{\partial \theta}{\partial x} \left[\int_{0}^{s} p ds + z_{R} \int_{0}^{s} \cos \Psi ds - y_{R} \int_{0}^{s} \sin \Psi ds \right]$$

$$\implies \int_{0}^{s} \frac{q}{\mu t} ds = u_{x} (s) - u_{x} (0) + \frac{\partial \theta}{\partial x} \left[\int_{0}^{s} p ds + z_{R} \int_{0}^{s} dy - y_{R} \int_{0}^{s} dz \right]$$
• As $A_{Cp} (s) = \frac{1}{2} \int_{0}^{s} p ds$ is the area
swept by p with $A_{h} (s) = \frac{1}{2} \oint p ds$ the
area enclosed by the section mid-line

$$\implies \int_{0}^{s} \frac{q}{\mu t} ds = u_{x} (s) - u_{x} (0) + \frac{\partial \theta}{\partial x} \left\{ 2A_{Cp} (s) + z_{R} \left[y (s) - y (0) \right] - y_{R} \left[z (s) - z (0) \right] \right\}$$

y

 u_{s}

y

 p_R

p

 T_{z}

dA

- Warping (3) - As $\int_{0}^{s} \frac{q}{\mu t} ds = \boldsymbol{u}_{x} (s) - \boldsymbol{u}_{x} (0) + \frac{\partial \theta}{\partial x} \left\{ 2A_{Cp} (s) + z_{R} \left[y (s) - y (0) \right] - y_{R} \left[z (s) - z (0) \right] \right\}$
 - Performing the integral all around the section

$$\oint \frac{q}{\mu t} ds = 2A_h \frac{\partial \theta}{\partial x}$$

• The wrapping displacement reads

$$u_{x}(s) = u_{x}(0) + \int_{0}^{s} \frac{q}{\mu t} ds - \frac{1}{A_{h}} \oint \frac{q}{\mu t} ds \left\{ A_{Cp}(s) - \frac{z_{R}[y(s) - y(0)] - y_{R}[z(s) - z(0)]}{2} \right\}$$

• If axes origin corresponds to twist center R

$$\boldsymbol{u}_{x}\left(s\right) = \boldsymbol{u}_{x}\left(0\right) + \int_{0}^{s} \frac{q}{\mu t} ds - \frac{A_{Rp}\left(s\right)}{A_{h}} \oint \frac{q}{\mu t} ds$$
$$- \text{ With } A_{Rp}\left(s\right) = \frac{1}{2} \int_{0}^{s} p_{R} ds$$

2024-2025

18

Ζ.

+

- Warping (4)
 - If axes origin corresponds to twist center R

•
$$\boldsymbol{u}_{x}(s) = \boldsymbol{u}_{x}(0) + \int_{0}^{s} \frac{q}{\mu t} ds - \frac{A_{Rp}(s)}{A_{h}} \oint \frac{q}{\mu t} ds$$

- $u_{x}(s=0)$?
 - Symmetrical sections
 - If origin of *s* lies on a symmetry axis $\implies u_x(0)=0$
 - Unsymmetrical sections
 - Linear response $\sigma_{xx}(s) \div u_x(s) u_x(0)$
 - Axial load due to shear or torsion is equal to zero

$$\oint t\boldsymbol{\sigma}_{xx}ds = 0 \Longrightarrow \oint t\left(\boldsymbol{u}_{x}\left(s\right) - \boldsymbol{u}_{x}\left(0\right)\right)ds = 0$$
$$\implies \boldsymbol{u}_{x}\left(0\right) = \frac{\oint t\boldsymbol{u}_{x}\left(s\right)ds}{\oint t\left(s\right)ds}$$

• Shear center

- To compute y_S
 - Assume a shear load T_z passing through y_s
 - So there is no twist $\frac{\partial \theta}{\partial x} = 0$

• As
$$\oint \frac{q}{\mu t} ds = 2A_h \frac{\partial \theta}{\partial x}$$

$$\Longrightarrow \oint \frac{q}{\mu t} ds = \oint \frac{q_o(s) + q(0)}{\mu t} ds = 0$$

• Eventually $q(s=0) = -\frac{\oint \frac{q_0(s)}{\mu t} ds}{\oint \frac{1}{\mu t} ds}$

- With
$$q_o(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') z(s') ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') y(s') ds'$$

• Shear center (Point T = S here) position using

$$q\left(s=0\right) = \frac{y_T T_z - z_T T_y - \oint p\left(s\right) q_o\left(s\right) ds}{2A_h}$$

2024-2025

Aircraft Structures - Beam - Shearing, Torsion & Idealization

Example

- Simply symmetrical thin-walled closed section
 - Constant t and μ on all walls
- Shear center ?

- Second moments of area
 - Simply symmetrical
 - Centroid lies on *Dy*'
 - $I_{yz} = 0$
 - Shear
 - So we have
 - A vertion

• Shear center lies on
$$Dy'$$

• we have only to consider
• A vertical shear load
• $I_{yy} = I_{y'y'}$
 $\implies I_{yy} = 2 \int_{D}^{A} z'^{2} t dl + 2 \int_{B}^{A} z'^{2} t dl$
 $\implies I_{yy} = 2t \int_{0}^{8a} z'^{2} \sqrt{1 + (\frac{6}{8})^{2}} dz' + 2t \int_{0}^{8a} z'^{2} \sqrt{1 + (\frac{15}{8})^{2}} dz'$
 $\implies I_{yy} = 2t (\frac{10}{8} + \frac{17}{8}) \int_{0}^{8a} z'^{2} dz' = \frac{9t}{4} (8a)^{3} = 1152ta^{3}$

2024-2025

8*a*

• Shear flow

- Origin of s on D

•
$$q(s) = q_o(s) + q(0)$$

• With $q_o(s) = -\frac{T_z}{I_{yy}} \int_0^s t(s') \, z'(s') \, ds'$

- Open shear flow on line DA

$$\begin{array}{l} \bullet \ q_o^{DA}\left(z'\right) = -\frac{T_z}{1152a^3} \int_0^s z'\left(s'\right) ds' \\ = -\frac{T_z}{1152a^3} \int_0^{z'} z'' \frac{10}{8} dz'' = -\frac{5T_z}{8 \ 1152a^3} {z'}^2 \\ \bullet \ q_o^A = -\frac{40T_z}{1152a} \end{array}$$

2024-2025

🐛 un

Shear flow (2) Open shear flow on line AB • $q_o^{AB}(z') = q_o^A - \frac{T_z}{1152a^3} \int_{z}^{F(s)} z'(s') \, ds'$ $= -\frac{40T_z}{1152a} - \frac{T_z}{1152a^3} \int_{8a}^{z'} z'' \left(-\frac{17}{8}\right) dz''$ $\implies q_o^{AB}\left(z'\right) = -\frac{40T_z}{1152a} + \frac{17T_z}{16\ 1152a^3}\left(z'^2 - 64a^2\right)$ $= -\frac{\frac{1152a}{108T_z}}{\frac{108T_z}{1152a}} + \frac{\frac{1152a^3}{161152a^3}}{\frac{17T_z}{161152a^3}} z'^2$ • $q_o^B = -\frac{108T_z}{1152a}$ Open shear on *BC* & *CD* by symmetry • $q_o^{BC}(z') = -\frac{108T_z}{1152z} + \frac{17T_z}{16,1152z^3} z'^2$ • $q_o^{CD}(z') = -\frac{5T_z}{8.1152z^3} z'^2$

- Shear flow (3)
 - Open shear flow

$$\begin{cases} q_o^{DA}(z') = q_o^{CD}(z') = -\frac{5T_z}{8 \ 1152a^3} {z'}^2 \\ q_o^{AB}(z') = q_o^{BC}(z') = -\frac{108T_z}{1152a} + \frac{17T_z}{16 \ 1152a^3} {z'}^2 \end{cases}$$

Constant shear flow for zero twist

•
$$q(s=0) = -\frac{\oint \frac{q_o(s)}{\mu t} ds}{\oint \frac{1}{\mu t} ds}$$

• Using symmetry properties & as *µt* is constant

$$-\oint ds = 2(17a + 10a) = 54a$$

$$-\oint q_o ds = 2\int_D^A q_o^{DA} ds + 2\int_A^B q_o^{AB} ds$$

2024-2025

25

 T_{z}

- Shear flow (4)
 - Constant shear flow for zero twist (2)

$$\begin{split} \oint q_o ds &= 2 \int_0^{8a} -\frac{5T_z}{8\,1152a^3} z'^2 \frac{10}{8} dz' + 2 \int_{8a}^0 \left(-\frac{108T_z}{1152a} + \frac{17T_z}{16\,1152a^3} z'^2 \right) \left(-\frac{17}{8} dz' \right) \\ & \Longrightarrow \oint q_o ds = -\frac{100T_z}{3\,64\,1152a^3} \, (8a)^3 - \frac{3672T_z}{1152} + \frac{289T_z}{3\,64\,1152a^3} \, (8a)^3 \\ & \Longrightarrow \oint q_o ds = -\frac{800T_z}{3\,1152} - \frac{11016T_z}{3\,1152} + \frac{2312T_z}{3\,1152} = -\frac{3168}{1152} T_Z \\ & \cdot \text{ As } q(s=0) = -\frac{\oint \frac{q_o(s)}{\mu t} ds}{\oint \frac{1}{\mu t} ds} \\ & \& \oint ds = 2\,(17a+10a) = 54a \\ & \Longrightarrow q\,(s=0) = \frac{3168}{54\,1152a} T_Z = \frac{58.7}{1152a} T_z \\ & \cdot \text{ Eventually} \\ q(s) = q_o\,(s) + q\,(0) \end{split}$$

• Shear center

- General expression
 - Shear flow balances the applied torque (Point T = S here)

$$q(s = 0) = \frac{y_T T_z - z_T T_y - \oint p(s) q_o(s) ds}{2A_h}$$

$$\implies y'_S = 2A_h \frac{q(s = 0)}{T_z} + \oint p \frac{q_o}{T_z} ds$$

$$\cdot \text{ With } A_h = (15 - 6) \ 8 \ a^2 = 72a^2$$

$$\cdot q(s = 0) = \frac{3168}{54 \ 1152a} T_Z = \frac{58.7}{1152a} T_z$$

$$\cdot \$ \begin{cases} q_o^{DA}(z') = q_o^{CD}(z') = -\frac{5T_z}{8 \ 1152a^3} z'^2 \\ q_o^{AB}(z') = q_o^{BC}(z') = -\frac{108T_z}{1152a} + \frac{17T_z}{16 \ 1152a^3} z'^2 \end{cases}$$

• But one has also
$$\frac{A_h}{2} = \frac{p17a}{2}$$
 $\implies p = \frac{72}{17}a$

Aircraft Structures - Beam - Shearing, Torsion & Idealization

27

6*a*

9a D

B

 T_z

S

8a

LIEGE

Shear center (2) Torque due to open shear flow 17a8a $\oint pq_o ds = 2 \int_{A}^{B} pq_o^{AB} ds$ **B**[▲] 9a D $\implies \oint pq_o ds = 2 \int_{s_o}^0 \frac{72}{17} a \left(-\frac{108T_z}{1152a} + \frac{17T_z}{16\ 1152a^3} z'^2 \right) \left(-\frac{17}{8} dz' \right)$ **6***a* $\implies \oint pq_o ds = -\frac{3672\ 72aT_z}{17\ 1152} + \frac{289\ 72aT_z}{3\ 64\ 17\ 1152a^3} \left(8a\right)^3$ $\implies \oint pq_o ds = -\frac{11016\ 72aT_z}{3\ 17\ 1152} + \frac{2312\ 72aT_z}{3\ 17\ 1152} = -\frac{12288}{1152}aT_Z$

Shear center location

2024-2025

$$y'_{S} = 2A_{h} \frac{q (s=0)}{T_{z}} + \oint p \frac{q_{o}}{T_{z}} ds = 144a^{2} \frac{58.7}{1152a} - \frac{12288}{1152}a$$
$$\implies y'_{S} = -\frac{3835.2}{1152}a = -3.3a$$

Aircraft Structures - Beam - Shearing, Torsion & Idealization

Beam shearing: linear elasticity summary

- Shearing of closed thin-walled section beams
 - Shear flow $q = t\tau$
 - $q(s) = q_o(s) + q(0)$
 - Open part (for anticlockwise of q, s)

$$q_{o}(s) = -\frac{I_{zz}T_{z} - I_{yz}T_{y}}{I_{yy}I_{zz} - I_{yz}^{2}} \int_{0}^{s} t(s') z(s') ds' - \frac{I_{yy}T_{y} - I_{yz}T_{z}}{I_{yy}I_{zz} - I_{yz}^{2}} \int_{0}^{s} t(s') y(s') ds'$$

Constant twist part

$$q\left(s=0\right) = \frac{y_T T_z - z_T T_y - \oint p\left(s\right) q_o\left(s\right) ds}{2A_h}$$

• The q(0) is related to the closed part of the section, but there is a $q_o(s)$ in the open part which should be considered for the shear torque $\oint p(s) q_o(s) ds$

Beam shearing: linear elasticity summary

- Shearing of closed thin-walled section beams
 - Warping around twist center R

•
$$\boldsymbol{u}_{x}(s) = \boldsymbol{u}_{x}(0) + \int_{0}^{s} \frac{q}{\mu t} ds - \frac{1}{A_{h}} \oint \frac{q}{\mu t} ds \left\{ A_{Cp}(s) + \frac{z_{R} \left[y(s) - y(0) \right] - y_{R} \left[z(s) - z(0) \right]}{2} \right\}$$

• With $\boldsymbol{u}_{x}(0) = \frac{\oint t \boldsymbol{u}_{x}(s) ds}{\oint t(s) ds} - \frac{\boldsymbol{u}_{x}(0) = 0$ for symmetrical section if origin on

the symmetry axis

- Shear center S
 - Compute q for shear passing thought S

• Use

2024-2025

$$q\left(s=0\right) = \frac{y_T T_z - z_T T_y - \oint p\left(s\right) q_o\left(s\right) ds}{2A_h}$$

With point S=T

Z.

C

Z.

C

v

• General relationships

- We have seen
•
$$(\sigma_{xx} + \partial_x \sigma_{xx} \delta x) t \delta s - \sigma_{xx} t \delta s + (q + \partial_s q \delta s) \delta_x - q \delta x = 0$$

 $\implies t \partial_x \sigma_{xx} + \partial_s q = 0$
• $(\sigma_s + \partial_s \sigma_s \delta s) t \delta x - \sigma_{xx} t \delta x + (q + \partial_x q \delta x) \delta_s - q \delta s = 0$
 $\implies t \partial_s \sigma_s + \partial_x q = 0$

- If the section is closed
 - Bredt assumption for closed sections: Stresses are constant on *t*, and if there is only a constant torque applied then $\sigma_s = \sigma_{xx} = 0$ $\Rightarrow \begin{cases} \partial_x q = 0 \\ \partial_s q = 0 \end{cases}$ \Rightarrow Constant shear flow (not shear stress)

Torque

As q due to torsion is constant

•
$$M_x = \oint pqds = q \oint pds \implies M_x = 2A_h q$$

Displacements

- It has been established that

•
$$\gamma = 2\boldsymbol{\varepsilon}_{xs} = \frac{\partial \boldsymbol{u}_s}{\partial x} + \frac{\partial \boldsymbol{u}_x}{\partial s}$$

So in linear elasticity

 $q = \mu t \left(\boldsymbol{u}_{s,x} + \boldsymbol{u}_{x,s} \right)$

But for pure torsion *q* is constant _

$$\implies 0 = q_{,x} = \mu t \left(\boldsymbol{u}_{x,sx} + \boldsymbol{u}_{s,xx} \right)$$

Remark μt is not constant along s • but it is assumed constant along x

$$\Longrightarrow \boldsymbol{\varepsilon}_{xx,s} + \boldsymbol{u}_{s,xx} = 0$$

• As
$$\sigma_{\!xx}\!=\sigma_{\!s}\!=\!\!0$$
 \implies $u_{s,xx}=0$

S

- Displacements (2)
 - It has been established that for a twist around the twist center *R*

$$\frac{\partial \boldsymbol{u}_s}{\partial x} = p \frac{\partial \theta}{\partial x} + \frac{\partial \boldsymbol{u}_y^C}{\partial x} \cos \Psi + \frac{\partial \boldsymbol{u}_z^C}{\partial x} \sin \Psi$$

- As
$$\boldsymbol{u}_{s,xx} = 0$$

 $0 = p \frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \boldsymbol{u}_y^C}{\partial x^2} \cos \Psi + \frac{\partial^2 \boldsymbol{u}_z^C}{\partial x^2} \sin \Psi$

for all values of s (so all value of Ψ)

• The only possible solution is

$$\frac{\partial^2 \theta}{\partial x^2} = 0$$
, $\frac{\partial^2 \boldsymbol{u}_y^C}{\partial x^2} = 0$ & $\frac{\partial^2 \boldsymbol{u}_z^C}{\partial x^2} = 0$

So displacement fields related to torsion are linear with x

$$\implies \begin{cases} \theta = C_1 x + C_2 \\ \boldsymbol{u}_y^C = C_3 x + C_4 \\ \boldsymbol{u}_z^C = C_5 x + C_6 \end{cases}$$

- Rate of twist
 - Use
 - Relation $\oint \frac{q}{\mu t} ds = 2A_h \frac{\partial \theta}{\partial x}$ developed for shearing, but with q due to torsion constant on s • Torque expression $M_x = 2A_h q$
 - Twist

•
$$\theta_{,x} = \frac{M_x}{4A_h^2} \oint \frac{1}{\mu t} ds$$
 constant with x
 $\implies \theta = \frac{M_x}{4A_h^2} \oint \frac{1}{\mu t} ds x + C_2$

Torsion rigidity

•
$$C = \frac{M_x}{\theta_{,x}} = \frac{4A_h^2}{\oint \frac{1}{\mu t}ds}$$

• Torsion second moment of area for constant μ : $I_T = \frac{4A_h^2}{\oint \frac{1}{4}ds} \le I_p = \int_A r^2 dA$

• Warping

- Use
 - Relation

$$\boldsymbol{u}_{x}\left(s\right) = \boldsymbol{u}_{x}\left(0\right) + \int_{0}^{s} \frac{q}{\mu t} ds - \frac{A_{Rp}\left(s\right)}{A_{h}} \oint \frac{q}{\mu t} ds$$

developed for shearing, but with q due to torsion constant on s

• Swept from twist center R $A_{Rp}(s) = \frac{1}{2} \int_{0}^{s} p_{R} ds$

• Torque expression
$$M_x = 2A_h q$$

Warp displacement

2024-2025

$$\boldsymbol{u}_{x}\left(s\right) = \boldsymbol{u}_{x}\left(0\right) + \frac{M_{x}}{2A_{h}} \int_{0}^{s} \frac{1}{\mu t} ds - \frac{M_{x}A_{R_{p}}\left(s\right)}{2A_{h}^{2}} \oint \frac{1}{\mu t} ds$$
$$\implies \boldsymbol{u}_{x}\left(s\right) = \boldsymbol{u}_{x}\left(0\right) + \frac{M_{x}}{2A_{h}} \left[\int_{0}^{s} \frac{1}{\mu t} ds - \frac{A_{R_{p}}\left(s\right)}{A_{h}} \oint \frac{1}{\mu t} ds\right]$$

• Twist & Warping under pure torsion

- Twist
$$\theta_{,x} = \frac{M_x}{4A_h^2} \oint \frac{1}{\mu t} ds$$

- Warp
$$\boldsymbol{u}_{x}\left(s\right) = \boldsymbol{u}_{x}\left(0\right) + \frac{M_{x}}{2A_{h}}\left[\int_{0}^{s}\frac{1}{\mu t}ds - \frac{A_{R_{p}}\left(s\right)}{A_{h}}\oint\frac{1}{\mu t}ds\right]$$

- Deformation
 - Plane surfaces are no longer plane
 - It has been assumed they keep the same projected shape + linear rotation
 - Longitudinal strains are equal to zero
 - All sections possess identical warping
 - Longitudinal generators keep the same
 length although subjected to axial
 displacement

Rectangular section with $t_h b = t_h h$

2024-2025

Example

- Doubly symmetrical rectangular closed section ____
- Constant shear modulus _
- Twist rate? _
- Warping distribution? —

• Twist rate

- As the section is doubly symmetrical, the twist

center is also the section centroid C

- Twist rate
$$\theta_{,x} = \frac{M_x}{4A_h^2} \oint \frac{1}{\mu t} ds$$

•
$$A_h = hb$$

$$\bullet \oint \frac{1}{t} ds = \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{1}{t_h} dz + \int_{\frac{b}{2}}^{-\frac{b}{2}} \frac{1}{t_b} \left(-dy \right) + \int_{\frac{h}{2}}^{-\frac{h}{2}} \frac{1}{t_h} \left(-dz \right) + \int_{-\frac{b}{2}}^{\frac{b}{2}} \frac{1}{t_b} dy = \frac{2h}{t_h} + \frac{2b}{t_b}$$

$$\bullet \theta_{,x} = \frac{M_x}{2\mu h^2 b^2} \left(\frac{h}{t_h} + \frac{b}{t_b} \right)$$

- For a beam of length L and constant section $\frac{\theta}{TM}$

on
$$\frac{\theta}{LM_x} = \frac{\frac{h}{t_h} + \frac{b}{t_b}}{2\mu h^2 b^2}$$

• Torsion rigidity
$$C = \left(\frac{\frac{h}{t_h} + \frac{b}{t_b}}{2\mu h^2 b^2}\right)^{-1} = \mu I_T \le \mu I_p$$

Warping

- As the section is doubly symmetrical, the twist center is also the section centroid C
- Warping
 - It can be set up to 0 at point *E*
 - By symmetry it will be equal to zero wherever

a symmetry axis intercept the wall

• On part EA

2024-2025

$$-\int_0^s \frac{1}{t} ds = \int_0^z \frac{1}{t_h} dz = \frac{z}{t_h} \quad \& A_{R_p} = \int_0^s \frac{p_R}{2} ds = \int_0^z \frac{b}{4} dz = \frac{bz}{4}$$

$$\implies \boldsymbol{u}_x(z)^{EA} = \frac{M_x}{2\mu hb} \left[\frac{z}{t_h} - \frac{bz}{4bh} \left(\frac{2h}{t_h} + \frac{2b}{t_b} \right) \right]$$

Aircraft Structures - Beam - Shearing, Torsion & Idealization

- Warping (2)
 - On part EA $\boldsymbol{u}_{x}(z)^{EA} = \frac{M_{x}}{2\mu hb} \left[\frac{z}{t_{h}} - \frac{bz}{4bh} \left(\frac{2h}{t_{h}} + \frac{2b}{t_{b}} \right) \right]$ $\implies \boldsymbol{u}_{x}(z)^{EA} = \frac{M_{x}z}{2\mu hb} \left[\frac{1}{t_{h}} - \frac{1}{2h} \frac{ht_{b} + bt_{h}}{t_{h}t_{b}} \right]$ $\implies \boldsymbol{u}_{x}(z)^{EA} = \frac{M_{x}z}{2\mu hb} \frac{ht_{b} - bt_{h}}{2ht_{h}t_{b}}$ $\implies \boldsymbol{u}_{x}(z)^{EA} = \frac{M_{x}z}{4\mu h^{2}b} \left(\frac{h}{t_{h}} - \frac{b}{t_{b}} \right)$

- So using symmetry and as distribution is linear

$$\begin{cases} \boldsymbol{u}_x^A = \boldsymbol{u}_x^C = \frac{M_x}{8\mu hb} \left(\frac{h}{t_h} - \frac{b}{t_b}\right) \\ \boldsymbol{u}_x^B = \boldsymbol{u}_x^D = \frac{M_x}{8\mu hb} \left(\frac{b}{t_b} - \frac{h}{t_h}\right) \end{cases}$$

• Zero warping if $b t_h = h t_b$

- Torsion of a thick section
 - The problem can be solved explicitly by _ recourse to a stress function
 - Hydrodynamic analogy
 - Shear stresses have the same expression • than the velocity in a rotational flow in a box of same section

2024-2025

- Torsion of a thick circular section
 - Exact solution of the problem
 - By symmetry there is no warping

sections remain plane

$$\implies \gamma = r\theta_{,x}$$

- In linear elasticity

- Shear stresses $\tau = \mu \gamma = r \mu \theta_{,x}$

• Torque
$$M_x = \int_A r \tau dA = \int_A \mu r^2 dA \theta_{,x}$$

- Torsion rigidity $C = \frac{M_x}{\theta_{,x}} = \int_A \mu r^2 dA$
 - At constant shear modulus (required for symmetry): $C = \mu I_p$
 - For circular cross sections (only) $I_p = I_T$
- Maximum shear stress $\tau_{\mathrm{max}} = \frac{M_x r_{\mathrm{max}}}{I_p}$

2024-2025

- Torsion of a rectangular section
 - Exact solution of the problem with stress function
 - Assumptions
 - Linear elasticity
 - Constant shear modulus
 - Maximum stress at mid position of larger edge

$$- \tau_{\max} = \frac{M_x}{\alpha h b^2}$$

• Torsion rigidity (constant μ)

$$- C = \frac{M_x}{\theta_{,x}} = \beta h b^3 \mu$$
$$\implies I_T = \beta h b^3$$

• Approximation for *h*>>*b*

$$- C = \frac{M_x}{\theta_{,x}} = \frac{hb^3\mu}{3} \implies I_T = \frac{hb^3}{3}$$

$$- \tau_{xy} = 0 \qquad \& \quad \tau_{xz} = 2\mu y \theta_{,x}$$

$$- \tau_{\max} = \frac{3M_x}{hb^2}$$

2024-2025

Aircraft Structures - Beam - Shearing, Torsion & Idealization

τ_{max} h

Z,

v

h/b	1	1.5	2	4	∞
α	0.208	0.231	0.246	0.282	1/3
β	0.141	0.196	0.229	0.281	1/3

- Torsion of a rectangular section (2)
 - Warping

• As
$$\begin{cases} \gamma_{xz} = \boldsymbol{u}_{x,z} + \boldsymbol{u}_{z,x} = \frac{\tau_{xz}}{\mu} \\ \gamma_{xy} = \boldsymbol{u}_{y,x} + \boldsymbol{u}_{x,y} = \frac{\tau_{xy}}{\mu} \end{cases}$$

• For a rigid rotation (first order approximation)

• For a thin rectangular section

-
$$\tau_{xy} = 0$$
 & $\tau_{xz} = 2\mu y \theta_{,x}$
- $u_{x,y} = \frac{\tau_{xy}}{\mu} + z \theta_{,x} \implies u_x = zy \theta_{,x} + C_1 z + C_2$
- Doubly symmetrical section $\implies u_x = zy \theta_{,x}$

Rectangle approximation of open thin-walled section beams

 δu_x

• Warping

- Warping around s-axis
 - Thin rectangle $oldsymbol{u}_x = zy heta_{,x} + C_1z + C_2$
 - Here C_i are not equal to 0
 - Part around s-axis $\boldsymbol{u}_x^t = ns \theta_{,x}$
- Warping of the s-line (n=0)
 - We found $\gamma = 2\boldsymbol{\varepsilon}_{xs} = \frac{\partial \boldsymbol{u}_s}{\partial x} + \frac{\partial \boldsymbol{u}_x}{\partial s}$
 - If *R* is the twist center

$$-\frac{\partial \boldsymbol{u}_s}{\partial x} = p_R \boldsymbol{\theta}_{,x}$$
$$\implies \tau_{xs} = \mu \gamma = \mu \frac{\partial \boldsymbol{u}_x}{\partial s} + \mu p_R \boldsymbol{\theta}_{,x}$$

- As
$$\tau_{xs} = 2\mu n \theta_{,x} \implies \tau_{xs}(n=0) = 0$$

 $\implies \frac{\partial u_x}{\partial s} = -p_R \theta_{,x}$

• Eventually s-axis warp (usually the larger)

$$\boldsymbol{u}_{x}^{s}\left(s\right) = \boldsymbol{u}_{x}^{s}\left(0\right) - \theta_{,x}\int_{0}^{s} p_{R}ds' = \boldsymbol{u}_{x}^{s}\left(0\right) - 2A_{R_{p}}\left(s\right)\theta_{,x}$$

2024-2025

п

Юx

 δu_s

X

n

Example

- U open section
- Constant shear modulus (25 GPa)
- Torque of 10 N·m
- Maximum shear stress?
- Warping distribution?

Maximum shear stress Torsion second moment of area $I_T = \sum \frac{l_i t_i^3}{3} = \frac{2}{3} b t_f^3 + \frac{h t_w^3}{3}$ $\frac{2\ 0.025\ 0.0015^3 + 0.05\ 0.0025^3}{3} = 0.317\ 10^{-9} \mathrm{m}^4$ h = 50 mmTwist rate $\theta_{,x} = \frac{M_x}{\mu I_T} = \frac{10}{25\ 0.317} = 1.26\ \mathrm{rad}\cdot\mathrm{m}^{-1}$

Maximum shear stress reached in web _

$$\tau_{\max} = \pm 2\mu \frac{t_w}{2} \theta_{,x}$$

= \pm 25 \, 10⁹ \, 0.00251.26 = \pm 78.9 \, MPa

• Twist center

- Zero-warping point
- Free ends so the shear center *S* corresponds to twist center *R*
 - See lecture on structural discontinuities
- By symmetry, lies on *Oy* axis
- Apply Shear T_z to obtained y'_s
- Shear flow for symmetrical section

•
$$q(s) = -\frac{T_z}{I_{yy}} \int_0^s tz ds'$$

• With
$$I_{yy} = \frac{t_w h^3}{12} + 2\frac{h^2}{4}t_f b$$

= $\frac{0.0025\ 0.05^3}{12} + \frac{0.05^2}{2}\ 0.0015\ 0.025 = 72.9\ 10^{-9}\ m^4$

2024-2025

- Twist center (2)
 - Shear flow for symmetrical section (2)

•
$$q(s) = -\frac{T_z}{I_{yy}} \int_0^s tz ds'$$

• On lower flange

$$- q_f(y') = -\frac{T_z}{I_{yy}} \int_b^{y'} t_f\left(-\frac{h}{2}\right) \left(-dy''\right)$$
$$= \frac{T_z t_f h}{2I_{yy}} \left(b - y'\right)$$

- Momentum due to shear flow
 - Zero web contribution around O'
 - Top and lower flanges have the same contribution

$$\begin{split} M_{O'} &= h \frac{-bq_f \left(y'=0\right)}{2} = -\frac{T_z t_f h^2 b^2}{4I_{yy}} \\ &= -T_z \frac{0.0015 \ 0.05^2 \ 0.025^2}{4 \ 72.9 \ 10^{-9}} = -8.04 \ \mathrm{mm} \ T_z \end{split}$$

Moment balance

2024-2025

$$M_{O'} = -8.04 \text{ mm } T_z = y'_S T_z \implies y'_S = -8.04 \text{ mm}$$

• Be carefull: clockwise orientation of q, s

- At point B

 $u_x^{s,B} = -0.25 \text{ mm} + 0.0315 \ 0.025 = 0.54 \text{ mm}$

• Branches for *z*'<0 obtained by symmetry

- Warping of *s*-axis (3)
 - On O'A branch

$$u_{x}^{s,O'A}(z') = -0.0101z'$$

- On AB branch

$$u_x^{s,AB}(y') = -0.25 \text{ mm} + 0.0315 y'$$

Branches for z'<0 obtained by symmetry

- Wing section near an undercarriage bay
 - Bending
 - There was no assumption on section shape
 - Use same formula
 - Shearing
 - Shear center has to be evaluated for the complete section
 - Shearing results into a shear load passing through this center & a torque
 - Shear flow has different expression in open & closed parts of the section
 - Torsion
 - Rigidity of open section can be neglected most of the time
 - But stress in open section can be high

Example

- Simply symmetrical section —
- **Constant thickness** _
- Shear stress? _

• Centroid

• Second moment of area

- As
$$z'_{C} = -0.075 \text{ m}$$

- $I_{yy} = 2\frac{th_{f}^{3}}{12} + 2\left(-\frac{h_{f}}{2} - z'_{C}\right)^{2} th_{f} + (-z'_{C})^{2} t(2b_{f} + b_{b}) + (-h_{b} - z'_{C})^{2} tb_{b} + 2\frac{th_{b}^{3}}{12} + 2\left(-\frac{h_{b}}{2} - z'_{C}\right)^{2} h_{b}t$
 $(-h_{b} - z'_{C})^{2} tb_{b} + 2\frac{th_{b}^{3}}{12} + 2\left(-\frac{h_{b}}{2} - z'_{C}\right)^{2} h_{b}t$
 $I_{yy} = 2\frac{0.002 \ 0.1^{3}}{12} + 2 \ 0.025^{2} \ 0.002 \ 0.1 + 0.075^{2} \ 0.002 \ 0.4 \pm 2$
 $0.125^{2} \ 0.002 \ 0.2 + 2\frac{0.002 \ 0.2^{3}}{12} + 2 \ 0.025^{2} \ 0.2 \ 0.002 = 14.5 \ 10^{-6} \text{ m}^{4}$
 $b_{f} = 0.1 \text{ m}$
 $f_{z} = 100 \text{ kN}$
 $f_{z} = 100 \text{ kN}$
 $f_{z} = 100 \text{ kN}$
 $f_{z} = 2 \text{ mm}$
 $b_{b} = 0.2 \text{ m}$

• Shear flow

- Shear flow (2)
 - Branch BC'

$$\begin{array}{l} \bullet \ q^{BC'}\left(s\right) = q^B - \frac{T_z}{I_{yy}} \int_{-b_f - \frac{b_b}{2}}^{y} t\left(-z_C'\right) dy'' = q^B + \frac{T_z t z_C'}{I_{yy}} \left[y + b_f + \frac{b_b}{2}\right] \\ \Longrightarrow \ q^{BC'}\left(y\right) = -34.5 \ 10^3 \ \mathrm{N} \cdot \mathrm{m}^{-1} - \frac{100 \ 10^3 \ 0.002 \ 0.075}{14.5 \ 10^{-6}} \left[y + 0.2\right] \\ = -241.4 \ 10^3 \ \mathrm{N} \cdot \mathrm{m}^{-1} - 1.034 \ 10^6 \ \mathrm{N} \cdot \mathrm{m}^{-2}y \\ \bullet \ q^{C'; \ BC'} = q^{BC'}\left(-0.1\right) = -241.4 \ 10^3 + 103.4 \ 10^3 = -138 \ 10^3 \ \mathrm{N} \cdot \mathrm{m}^{-1} \end{array}$$

- Branches FG & GH
 - By symmetry

2024-2025

• Shear flow (3)

$$\begin{array}{ll} \text{Closed part:} & q\left(s\right) = q_{o}\left(s\right) + q\left(0\right) \\ \bullet & \text{With } q_{o}\left(s\right) = -\frac{T_{z}}{I_{yy}} \int_{0}^{s} tzds \quad \& \quad q\left(s=0\right) = \frac{y_{T}T_{z} - z_{T}T_{y} - \oint p\left(s\right)q_{o}\left(s\right)ds}{2A_{h}} \end{array}$$

- Let us fix the origin at O'

 $\implies q = q_o(s)$

• By symmetry q(0) = 0 (if not the formula would have required anticlockwise *s*, *q*)

2024-2025

$$q^{O'F} = -\frac{T_z}{I_{yy}} \int_0^y t(-z'_C) dy = \frac{T_z ty z'_C}{I_{yy}} y$$

$$q^{O'F}(y) = -\frac{100 \ 10^3 \ 0.002 \ 0.075}{14.5 \ 10^{-6}} y$$

$$= -1.03 \ 10^6 \ y \ N \cdot m^{-2}$$

$$q^{F; O'F} = q^{O'F}(0.1)$$

$$= -103 \ 10^3 \ N \cdot m^{-1}$$

Shear flow (5)

Branch EI ____

•
$$q^{EI}(s) = q^E - \frac{T_z}{I_{yy}} \int_{\frac{b_b}{2}}^{y} t\left(-h_b - z'_C\right)(-dy) = q^E + \frac{T_z t\left(h_b + z'_C\right)}{I_{yy}} \left(\frac{b_b}{2} - y\right)$$

 $\implies q^{EI}(y) = -172 \ 10^3 + \frac{100 \ 10^3 \ 0.002 \ 0.125}{14.5 \ 10^{-6}} (0.1 - y) = -1.72 \ 10^6 \ y \ \mathrm{N \cdot m^{-2}}$

ther branches by symmetry _

Shear flow (6)

2024-2025

Remark, if symmetry had not been used, shear stress at O' should be _ computed (but require anticlockwise s and q for these signs of $y_T \& z_T$)

•
$$q(s=0) = \frac{y_T T_z - z_T T_y - \oint p(s) q_o(s) ds}{2A_h} \implies q(O') = -\frac{1}{2A_h} \oint pq_o(s) ds$$

 $\implies q(O') = -\frac{1}{2b_bh_b} \left[\int_F^{O'} pq_o^{FO'} ds + \int_E^F pq_o^{EF} ds + \int_I^E pq_o^{IE} ds + \int_D^I pq_o^{DI} ds + \int_{C'}^{D} pq_o^{C'D} ds + \int_{O'}^{C'} pq_o^{O'C'} ds + \int_H^G pq_o^{HG} ds + \int_G^F pq_o^{GF} ds + \int_{C'}^{B} pq_o^{C'B} ds + \int_B^A pq_o^{BA} ds \right]$
• With
• $p^{O'F} = p^{C'O'} \& q^{O'F} = -q^{C'O'} \& ds + \int_{O'}^{C'} pq_o^{O'C'} ds = 0$
• etc
• etc
Aircraft Structures - Beam - Shearing, Torsion & Idealization

64

université

Example

- Closed nose cell
 - 0.02 m² area
 - $0.9 \mathrm{m}$ outer length
- Open bay
- Constant shear modulus $\mu = 25 \text{ GPa}$
- Torque 10 kN·m
- Twist rate?
- Shear stress?

 $t_c = 1.5$

mm

 $A_c = 0.02 \text{ m}^2$

Z,

 $t_c = 1.5$

 $t_b = 2 \text{ mm}$

• Twist rate

As an approximation the
2 torsion rigidities are added

- Cell

- Closed section with constant μ - $I_{T, \text{ closed}} = \frac{4A_h^2}{\oint \frac{1}{t}ds}$ - $\mu I_{Tc} = \frac{4\mu A_c^2 t_c}{l+h} = \frac{4\ 0.02^2\ 0.0015\ 25\ 10^9}{1.2} = 50\ 10^3\ \text{N}\cdot\text{m}^2$ Bay
 - Open section with constant μ

-
$$I_{T, \text{ open}} = \sum_{i} \frac{l_i t_i^3}{3}$$

- $\mu I_{Tb} = \frac{\mu t_b^3}{3} (b_b + h) = \frac{25 \ 10^9 \ 0.002^3 \ 0.9}{3} = 60 \ \text{N} \cdot \text{m}^2$

Twist rate

•
$$\mu I_T = 50060 \text{ N} \cdot \text{m}^2$$

• $\theta_{,x} = \frac{M_x}{\mu I_T} = \frac{10^4}{50060} = 0.1998 \text{ rad} \cdot \text{m}^{-1}$

2024-2025

Aircraft Structures - Beam - Shearing, Torsion & Idealization

• Open section (
$$au_{\max_i} = \mu t_i heta_{,x}$$
)

• $\tau_{b,\max} = \mu t_b \theta_{,x} = 25 \ 10^9 \ 0.002 \ 0.1998 = 9.99 \ \text{MPa}$

Structural idealization

- Example 2-spar wing (one cell)
 - Stringers to stiffen thin skins
 - Angle section form spar flanges
- Design stages
 - Conceptual
 - Define the plane configuration
 - Span, airfoil profile, weights, ...
 - Analyses should be fast and simple
 - Formula, statistics, ...
 - Preliminary design
 - Starting point: conceptual design
 - Define more variables
 - Number of stringers, stringer area, ...
 - Analyses should remain fast and simple
 - Use beam idealization
 - » See today
 - FE model of thin structures
 - » See next lectures
 - Detailed design
 - All details should be considered (rivets, ...)
 - Most accurate analyses (3D, non-linear, FE)

Aircraft Structures - Beam - Shearing, Torsion & Idealization

Principle of idealization

- Booms
 - Stringers, spar flanges, ...
 - Have small sections compared to airfoil
 - Direct stress due to wing bending is almost constant in each of these
 - They are replaced by concentrated area called booms
 - Booms
 - Have their centroid on the skin
 - Are carrying most direct stress due to beam bending
- Skin
 - Skin is essentially carrying shear stress
 - It can be assumed
 - That skin is carrying only shear stress
 - If direct stress carrying capacity of skin is reported to booms by appropriate modification of their area

2024-2025

Aircraft Structures - Beam - Shearing, Torsion & Idealization

• Example

- 2-cell box wing section
- Simply symmetrical
- Angle section of 300 mm²

- Bending moment along y-axis
- 6 direct-stress carrying booms
- Shear-stress-only carrying skin panels

LIEGE

Booms' area A_1 A_2 Bending moment A_3 $t_a = 2 \text{ mm}$ • Along *y*-axis $t_{b} = 1.5 \text{ mm}$ $h_l = 0.4 \text{ m}$ Stress proportional to zstress distribution is $t_m = 2.5 \text{ mm} t_r = 2 \text{ mm}$ $t_l = 3 \text{ mm}$ linear on each section edge Contributions Flange(s)' area $l_{\rm h} = 0.6 {\rm m}$ $l_a = 0.6 \text{ m}$ Reported skin parts Use formula for linear distribution • $A_1 = 300 \ 10^{-6} + \frac{0.003 \ 0.4}{6} \left(2 + \frac{-0.2}{0.2}\right) + \frac{0.002 \ 0.6}{6} \left(2 + \frac{0.15}{0.2}\right)$ $\implies A_6 = A_1 = 1.05 \ 10^{-3} \ \mathrm{m}^2$ • $A_2 = 2\ 300\ 10^{-6} + \frac{0.002\ 0.6}{6}\left(2 + \frac{0.2}{0.15}\right) + \frac{0.0015\ 0.6}{6}\left(2 + \frac{0.1}{0\ 15}\right) + \frac{0.0015\ 0.6}{6}\left(2 + \frac{0.0015\ 0.6}{6}\right) + \frac{0.0015\ 0.6$ $\frac{0.0025\ 0.3}{6}\left(2 + \frac{-0.15}{0.15}\right) \Longrightarrow A_2 = A_4 = 1.79\ 10^{-3}\ \mathrm{m}^2$ • $A_3 = 300 \ 10^{-6} + \frac{0.0015 \ 0.6}{6} \left(2 + \frac{0.15}{0.1}\right) + \frac{0.002 \ 0.2}{6} \left(2 + \frac{-0.1}{0.1}\right)$ $\implies A_4 = A_3 = 0.892 \ 10^{-3} \ \mathrm{m}^2$

2024-2025

- Consequence on bending
 - Idealization depends on the loading case
 - Booms area are dependent on the loading case
 - Direct stress due to bending is carried by booms only
 - For bending the axial load is equal to zero

$$\implies N_x = \int_A \sigma_{xx} dA = \sum_i \sigma^i_{xx} A_i = 0$$

• But direct stress depends on the distance z from neutral axis

$$\boldsymbol{\sigma}_{xx}^i = \kappa E z_i \Longrightarrow \sum_i z_i A_i = 0$$

- It can be concluded that for open or closed sections, the position of the neutral axis, and thus the second moments of area
 - Refer to the direct stress carrying area only
 - Depend on the loading case only

• Example

- Idealized fuselage section
 - Simply symmetrical
 - Direct stress carrying booms
 - Shear stress carrying skin panels
- Subjected to a bending moment
 - $M_y = 100 \text{ kN} \cdot \text{m}$
- Stress in each boom?

2024-2025

Second moment of area Z, Of idealized section $A_1 = 640 \text{ mm}^2$ $z'_1 = 1.2 \text{ m}$ *z*'₂ = 1.14 m $A_2 = 600 \text{ mm}^2$ $A_3 = 600 \text{ mm}^2$ $z'_{3} = 0.960 \text{ m}$ $I_{yy} = A_1 \left(z'_1 - z'_C \right)^2 +$ $A_4 = 600 \text{ mm}^2$ $z'_4 = 0.768 \text{ m}$ $2\sum_{i=1}^{8} A_i \left(z'_i - z'_C\right)^2 + A_9 \left(z'_9 - z'_C\right)$ М $A_5 = 620 \text{ mm}^2$ $z'_{5} = 0.565 \text{ m}$ C $A_6 = 640 \text{ mm}^2$ $z'_{6} = 0.336 \text{ m}$ $A_7 = 640 \text{ mm}^2$ $z'_7 = 0.144 \text{ m}$ $z'_{8} = 0.038 \text{ m}$ $A_8 = 850 \text{ mm}^2$ $\ddot{A}_9 = 640 \text{ mm}^2 O$

$$\implies I_{yy} = 0.00064 \ 0.66^2 + 2 \ 0.0006 \left(0.6^2 + 0.42^2 + 0.228^2 \right) + 2 \ 0.00062 \ 0.025^2 + 2 \ 0.00064 \left(\left(-0.204 \right)^2 + \left(-0.396 \right)^2 \right) + 2 \ 0.00085 \ \left(-0.502 \right)^2 + 0.00064 \ \left(-0.54 \right)^2$$

$$\implies I_{yy} = 1.855 \ 10^{-3} \ \mathrm{m}^4$$

Stress assumed constant in each boom As we are in the principal axes $\boldsymbol{\sigma}_{xx}^{i} = \frac{M_{y}z_{i}}{I_{uu}} = \frac{M_{y}}{I_{uu}}\left(z_{i}' - z_{C}'\right)$ $\sigma_{xx}^1 = \frac{100 \ 10^3}{1 \ 855 \ 10^{-3}} 0.66 = 35.6 \text{ MPa}$ $\sigma_{xx}^2 = \frac{100 \ 10^3}{1 \ 855 \ 10^{-3}} 0.6 = 32.3 \text{ MPa}$ $\sigma_{xx}^{3} = \frac{100 \ 10^{3}}{1.855 \ 10^{-3}} 0.42 = 22.6 \text{ MPa}$ $\sigma_{xx}^{4} = \frac{100 \ 10^{3}}{1.855 \ 10^{-3}} 0.228 = 12.3 \text{ MPa}$ $\sigma_{xx}^5 = \frac{100 \ 10^3}{1.855 \ 10^{-3}} 0.025 = 1.35 \ \mathrm{MPa}$ $\sigma_{xx}^{6} = -\frac{100 \ 10^{3}}{1 \ 855 \ 10^{-3}} 0.204 = -11.0 \ \mathrm{MPa}$

Stress distribution

$$\begin{cases} \boldsymbol{\sigma}_{xx}^{7} = -\frac{100 \ 10^{3}}{1.855 \ 10^{-3}} 0.396 = -21.3 \text{ MPa} \\ \boldsymbol{\sigma}_{xx}^{8} = -\frac{100 \ 10^{3}}{1.855 \ 10^{-3}} 0.502 = -27.1 \text{ MPa} \\ \boldsymbol{\sigma}_{xx}^{9} = -\frac{100 \ 10^{3}}{1.855 \ 10^{-3}} 0.54 = -29.1 \text{ MPa} \end{cases}$$

2024-2025

77 🔰

 $\sigma_s + \partial_s \sigma_s \,\delta s = q + \partial_s q \,\delta s$

S

 σ_{xx}

Consequence on open-thin-walled section shearing

Classical formula
•
$$q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s tz ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s ty ds'$$

Results from integration of balance

equation
$$t\partial_x \sigma_{xx} + \partial_s q = 0$$

- With $\sigma_{xx} = \frac{(I_{zz}M_y + I_{yz}M_z) z - (I_{yz}M_y + I_{yy}M_z) y}{I_{yy}I_{zz} - I_{yz}^2}$

- So consequences are
 - Terms $\int_0^s t(s') z(s') ds' & \int_0^s t(s') y(s') ds'$ should account for the direct stress-carrying parts only (which is not the case of shear-carrying-only skin panels)
 - Expression of the shear flux should be modified to account for discontinuities encountered between booms and shear-carrying-only skin panels

78

 $\leftarrow \partial_x q \, \delta x \quad \sigma_{xx} + \partial_x \sigma_{xx} \, \delta x$

 σ_{s}

 δx

- Consequence on open-thin-walled section shearing (3)
 - Shear flow

$$q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct } \sigma} z ds + \sum_{i: s_i \le s} z_i A_i \right] - \underbrace{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct } \sigma} y ds + \sum_{i: s_i \le s} y_i A_i \right] \xrightarrow{T_z} \underbrace{T_z}_{x} \xrightarrow{T_y}$$

δx

Example

- Idealized U shape _
 - Booms of 300 mm²- area each •
 - Booms are carrying all the direct stress •
 - Skin panels are carrying all the shear flow
- Shear load passes through the shear center _
- Shear flow?

• Shear flow

- Simple symmetry
$$\implies$$
 principal axes
 $\implies q(s) = -\frac{T_z}{I_{yy}} \left[\int_0^s t_{\text{direct } \sigma} z ds + \sum_{i: s_i \leq s} z_i A_i \right] T_z =$

Only booms are carrying direct stress

$$\implies q(s) = -\frac{T_z}{I_{yy}} \sum_{i: s_i \le s} z_i A_i$$

- Second moment of area

$$I_{yy} = \sum_{i} A_i z_i^2 = 4\ 300\ 10^{-6}\ 0.2^2 = 48\ 10^{-6}\ \mathrm{m}^4$$

$$q^{12}(s) = -\frac{T_z}{I_{yy}}A_1z_1 = -\frac{4.8\ 10^3}{48\ 10^{-6}}300\ 10^{-6}(-0.2) = 6\ 10^3\ \text{N}\cdot\text{m}^{-1}$$

$$q^{23}(s) = -\frac{T_z}{I_{yy}}(A_1z_1 + A_2z_2) = -\frac{4.8\ 10^3}{48\ 10^{-6}}300\ 10^{-6}(-0.4) = 12\ 10^3\ \text{N}\cdot\text{m}^{-1}$$

$$q^{34}(s) = -\frac{T_z}{I_{yy}}(A_1z_1 + A_2z_2 + A_3z_3) = -\frac{4.8\ 10^3}{48\ 10^{-6}}300\ 10^{-6}(-0.2) = 6\ 10^3\ \text{N}\cdot\text{m}^{-1}$$

$$2024-2025$$
Aircraft Structures - Beam - Shearing, Torsion & Idealization
$$32$$

- Comparison with uniform U section
 - We are actually capturing the **average** value in each branch

- Consequence on closed-thin-walled section shearing
 - Classical formula
 - $q(s) = q_o(s) + q(0)$

• With
$$q_o(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') z(s') ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') y(s') ds'$$

• And
$$q(s=0) = \frac{y_T T_z - z_T T_y - \oint p(s) q_o(s) ds}{2A_h}$$

for anticlockwise q and s

- So consequences are the same as for open section

•
$$q_o(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct } \sigma} z ds + \sum_{i: s_i \leq s} z_i A_i \right] - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct } \sigma} y ds + \sum_{i: s_i \leq s} y_i A_i \right]$$

2024-2025

• Example

- Idealized wing section
 - Simply symmetrical
 - Booms are carrying all the direct stress
 - Skin panels are carrying all the shear flow
- Shear load passes through booms 3 & 6
- Shear flow?

• Open part of shear flow

- Symmetrical section
 - Shear center & centroid on Cy axis
 - $I_{xy} = 0$ (we are in the principal axes)
 - Only booms are carrying direct stress

$$q_o(s) = -\frac{T_z}{I_{yy}} \sum_{i: s_i \le s} z_i A_i$$

- Second moment of area

$$I_{yy} = \sum_{i=1}^{8} A_i z_i^2 = 2 \ 10^{-6} \ (200 \ 0.03^2 + 250 \ 0.1^2 + 400 \ 0.1^2 + 100 \ 0.05^2)$$

= 13.86 10⁻⁶ m⁴
$$T_z = 10 \ \text{kN}$$

$$A_3 = 400 \ \text{mm}^2 A_2 = 250 \ \text{mm}^2$$

$$A_1 = 200 \ \text{mm}^2$$

$$A_1 = 200 \ \text{mm}^2$$

$$A_1 = 0.06 \ \text{m}$$

$$A_8 = A_1$$

$$A_6 = A_3$$

$$A_7 = A_2$$

2024-2025

- Open part of shear flow (3)
 - Choose (arbitrarily) the origin between boom 2 and 3 (2) —

$$q_o^{12} = -\frac{10^4}{13.86\ 10^{-6}} \left[\dots - 0.00025\ 0.1 + 0.0002\ (0.03 - 0.03) \right] = 18\ 10^3\ \text{N} \cdot \text{m}^{-1}$$
$$q_o^{20} = -\frac{10^4}{13.86\ 10^{-6}} \left[\dots + 0.00025\ (0.1 - 0.1) + 0.0002\ (0.03 - 0.03) \right] = 0$$

Constant part of shear flow

$$\begin{array}{l} - q\left(0\right) = \frac{y_T T_z - \oint p q_o ds}{2A_h} \quad \text{(anticlockwise } s, q) \\ - \text{ If origin is chosen at point } O' \implies q\left(0\right) = -\frac{\oint p_{O'} q_o ds}{2A_h} \end{array}$$

• With

2024-2025

$$A_{h} = b_{l} \frac{h_{m} + h_{l}}{2} + b_{m} h_{m} + b_{r} \frac{h_{m} + h_{r}}{2} = 0.12\ 0.15 + 0.24\ 0.2 + 0.24\ 0.13 = 0.0972\ \text{m}^{2}$$

$$\begin{pmatrix} & & \\$$

$$\oint p_{O'}q_o ds = q_o^{34} p_{O'}^{34} l^{34} + q_o^{45} p_{O'}^{45} l^{45} + q_o^{56} p_{O'}^{56} l^{56} + q_o^{78} p_{O'}^{78} l^{78} + q_o^{81} p_{O'}^{81} l^{81} + q_o^{12} p_{O'}^{12} l^{12}$$

Aircraft Structures - Beam - Shearing, Torsion & Idealization

2024-2025

Aircraft Structures - Beam - Shearing, Torsion & Idealization

• Total shear flow

Consequence on torsion

- If no axial constraint
 - Torsion analysis does not involve axial stress
 - So torsion is unaffected by the structural idealization

- Box section
 - Arrangement of
 - Direct stress carrying booms positioned at the four corners and •
 - Panels which are assumed to carry only shear stresses ٠
 - Constant shear modulus
 - Shear centre?

References

• Lecture notes

 Aircraft Structures for engineering students, T. H. G. Megson, Butterworth-Heinemann, An imprint of Elsevier Science, 2003, ISBN 0 340 70588 4

• Other references

- Books
 - Mécanique des matériaux, C. Massonet & S. Cescotto, De boek Université, 1994, ISBN 2-8041-2021-X

- As shear center lies on Oy by symmetry we consider T_Z
 - Section is required to resist bending moments in a vertical plane
 - Direct stress at any point is directly proportional to the distance from the horizontal axis of symmetry, i.e. axis y
 - The distribution of direct stress in all the panels will be linear so that we can use the relation below

Exercise: Structural idealization

$$A_1 = 60 \times 10 + 40 \times 10 + \frac{10 \times 300}{6} \left(2 + \frac{\sigma_{xx}^4}{\sigma_{xx}^1}\right) + \frac{10 \times 500}{6} \left(2 + \frac{\sigma_{xx}^2}{\sigma_{xx}^1}\right) = 60 \times 10 + 40 \times 10 + \frac{10 \times 300}{6} \left(2 - 1\right) + \frac{10 \times 500}{6} \left(2 + 1\right) = 4000 \ mm^4$$

$$A_{2} = 50 \times 8 + 32 \times 8 + \frac{8 \times 300}{6} \left(2 + \frac{\sigma_{xx}^{3}}{\sigma_{xx}^{2}} \right) + \frac{10 \times 500}{6} \left(2 + \frac{\sigma_{xx}^{1}}{\sigma_{xx}^{2}} \right) \\ = 50 \times 8 + 32 \times 8 + \frac{10 \times 300}{6} \left(2 - 1 \right) + \frac{10 \times 500}{6} \left(2 + 1 \right) = 3656 \ mm^{4}$$

- By symmetry
 - $A_3 = A_2 = 3656 \text{ mm}^2$
 - $A_4 = A_1 = 4000 \text{ mm}^2$

LIEG

- Shear flow
 - Booms area • $A_3 = A_2 = 3656 \text{ mm}^2$ • $A_4 = A_1 = 4000 \text{ mm}^2$ - By symmetry $I_{yz} = 0$ $\implies q(s) = -\frac{T_z}{I_{yy}} \sum_{i: s_i \leq s} z_i A_i + q(0)$

As only booms resist direct stress

$$I_{yy} = \sum_{i=1}^{4} A_i z_i^2 = 2 \times 4000 \times 150^2 + 2 \times 3656 \times 150^2 = 344.5 \times 10^6 \ mm^4$$

Exercise: Structural idealization

• Constant shear flow

2024-2025

Aircraft Structures - Beam - Shearing, Torsion & Idealization

Total shear flow lacksquare

- Shear center
 - Moment around O
 - Due to shear flow
 - Should be balanced by the external loads

 $y_T T_z = 1.546 \times 10^{-3} T_z \times 300 \times 500 - 2 \times 0.044 \times 10^{-3} T_z \times 500 \times 150$ $\implies y_T = 225 \text{ mm}$

- Twist due to torsion
 - As torsion analysis remains valid for idealized section, one could use the twist rate

• Closed section
$$\begin{cases} \theta_{,x} = \frac{M_x}{4A_h^2} \oint \frac{1}{\mu t} ds \\ M_x = 2A_h q \end{cases}$$
• Open section
$$\begin{cases} C = \frac{M_x}{\theta_{,x}} = \frac{1}{3} \int \mu t^3 ds \\ \tau_{xs} = 2\mu n \theta_{,x} \end{cases}$$

In general _

•
$$\Delta \theta = \int_0^L \frac{M_x}{C} dx$$

•
$$\tau \propto M_x$$

•
$$\gamma = \frac{\tau}{\mu}$$

2024-2025

– How can we compute deflection for other loading cases?

• Symmetrical bending

- For pure bending we found $\sigma_{xx} = \kappa E \xi$
- Therefore the virtual work reads

•
$$\int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta \boldsymbol{\varepsilon}_{xx} dA dx = \int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta \left(\frac{\boldsymbol{\sigma}_{xx}}{E}\right) dA dx$$
$$= \int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta \left(\frac{\kappa E \xi}{E}\right) dA dx$$

- Let us assume C_z symmetrical axis, $M_z = 0$ & pure bending (M_y constant)

•
$$\int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta \boldsymbol{\varepsilon}_{xx} dA dx = \int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} z dA \delta \left(-\boldsymbol{u}_{z,xx}\right) dx$$
$$= M_{y} \delta \int_{0}^{L} \left(-\boldsymbol{u}_{z,xx}\right) dx = -M_{y} \delta \Delta \boldsymbol{u}_{z,x}$$

- Consider a unit applied moment, and $\sigma^{(1)}$ the corresponding stress distribution

$$- \int_0^L \int_A \boldsymbol{\sigma}_{xx}^{(1)} \boldsymbol{\varepsilon}_{xx} dA dx = \int_0^L \int_A \boldsymbol{\sigma}_{xx}^{(1)} \frac{\boldsymbol{\sigma}_{xx}}{E} dA dx = -\Delta \boldsymbol{u}_{z,x}$$

• The energetically conjugated displacement (angle for bending) can be found by integrating the strain distribution multiplied by the unit-loading stress distribution

: 💐

- Virtual displacement
 - Expression for pure bending _

$$\int_0^L \int_A \boldsymbol{\sigma}_{xx}^{(1)} \frac{\boldsymbol{\sigma}_{xx}}{E} dA dx = -\Delta \boldsymbol{u}_{z,x}$$

In linear elasticity the general formula of virtual displacements reads

$$\int_0^L \int_A \boldsymbol{\sigma}^{(1)} : \boldsymbol{\varepsilon} dA dx = P^{(1)} \Delta_P$$

- $\sigma^{(1)}$ is the stress distribution corresponding to a (unit) load $P^{(1)}$ ۲
- Δ_P is •
 - The energetically conjugated displacement to P
 - In the direction of $P^{(1)}$
 - Corresponds to the strain distribution ε

- Symmetrical bending due to extremity loading Example C- symmetrical axis M = 0.8 $u_z = 0$
 - Example C_z symmetrical axis, $M_z = 0$ & bending due to extremity load

$$\int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta \boldsymbol{\varepsilon}_{xx} dA dx = \int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} z dA \delta \left(-\boldsymbol{u}_{z,xx}\right) dx = \int_{0}^{L} M_{y} \delta \left(-\boldsymbol{u}_{z,xx}\right) dx$$

 $d\boldsymbol{u}_{z}/dx = 0$

M

Case of a semi-cantilever beam

$$\int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta \boldsymbol{\varepsilon}_{xx} dA dx = \int_{0}^{L} T_{z} \left(x - L \right) \delta \left(-\boldsymbol{u}_{z,xx} \right) dx$$
$$= T_{z} \left[\left(L - x \right) \delta \boldsymbol{u}_{z,x} \right]_{0}^{L} + T_{z} \int_{0}^{L} \delta \boldsymbol{u}_{z,x} dx = T_{z} \delta \Delta \boldsymbol{u}_{z}$$

• Eventually

$$\Delta \boldsymbol{u}_{z} = \int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx}^{(1)} \boldsymbol{\varepsilon}_{xx} dA dx$$

- $\sigma^{(1)}$ is the stress distribution corresponding to a (unit) load $T_z^{(1)}$
- Δu_z is the energetically conjugated displacement to T_z in the direction of $T_z^{(1)}$ that corresponds to the strain distribution ε

105

х

- General bending due to extremity loading
 - Bending moment depends on x

•
$$\int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta\left(\frac{\boldsymbol{\sigma}_{xx}}{E}\right) dA dx = \int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta\left(-\boldsymbol{u}_{z,xx} z - \boldsymbol{u}_{y,xx} y\right) dA dx = \int_{0}^{L} \left(-M_{y} \delta \Delta \boldsymbol{u}_{z,xx} + M_{z} \delta \Delta \boldsymbol{u}_{y,xx}\right) dx \ \mathbf{y} \mathbf{\uparrow}$$

• Integration by parts

$$\int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta\left(\frac{\boldsymbol{\sigma}_{xx}}{E}\right) dA dx =$$

$$\int_{0}^{L} (L-x) \left[T_{z} \delta \Delta \boldsymbol{u}_{z,xx} + T_{y} \delta \Delta \boldsymbol{u}_{y,xx}\right] dx = z$$

$$\left[(L-x) \left(T_{z} \delta \Delta \boldsymbol{u}_{z,x} + T_{y} \delta \Delta \boldsymbol{u}_{y,x}\right)\right]_{0}^{L} +$$

$$\int_{0}^{L} \left[T_{z} \delta \Delta \boldsymbol{u}_{z,x} + T_{y} \delta \Delta \boldsymbol{u}_{y,x}\right] dx$$

• Semi-cantilever beam

$$\int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx} \delta\left(\frac{\boldsymbol{\sigma}_{xx}}{E}\right) dA dx = T_{z} \delta \Delta \boldsymbol{u}_{z} + T_{y} \delta \Delta \boldsymbol{u}_{y} = \boldsymbol{T} \cdot \delta \Delta \boldsymbol{u}$$

Aircraft Structures - Beam - Shearing, Torsion & Idealization

107

 T_{y}

 $\Delta u_{\rm y}$

 $\Delta u_{\rm z}$

 T_{z}

- General bending due to extremity loading (2)
 - Virtual displacement method

•
$$\int_0^L \int_A \boldsymbol{\sigma}_{xx}^{(1)} \boldsymbol{\varepsilon}_{xx} dA dx = \Delta_P u$$

• With $\sigma^{(1)}$ due to the (unit) moments $M^{(1)}$ resulting from the unit extremity loading

$$\boldsymbol{\sigma}_{xx}^{(1)} = \frac{\left(I_{zz}M_y^{(1)} + I_{yz}M_z^{(1)}\right)z - \left(I_{yz}M_y^{(1)} + I_{yy}M_z^{(1)}\right)y}{I_{yy}I_{zz} - I_{yz}^2}$$

• With $\Delta_{P^{\mathcal{U}}}$ displacement in the direction of the unit extremity loading and corresponding to the strain distribution

$$\varepsilon_{xx} = \frac{1}{E} \frac{(I_{zz}M_y + I_{yz}M_z) z - (I_{yz}M_y + I_{yy}M_z) y}{I_{yy}I_{zz} - I_{yz}^2}$$

2024-2025

Aircraft Structures - Beam - Shearing, Torsion & Idealization
• General bending due to extremity loading (3)

- Virtual displacement method (2)
 - After developments, and if $\Delta_P u$ is the displacement in the direction of $T^{(1)} = 1$

$$\begin{split} \Delta_{P} u &= \int_{0}^{L} \int_{A} \boldsymbol{\sigma}_{xx}^{(1)} \boldsymbol{\varepsilon}_{xx} dA dx \\ &= \frac{1}{E \left(I_{yy} I_{zz} - I_{yz}^{2} \right)^{2}} \int_{0}^{L} \int_{A} \left[\left(I_{zz} M_{y}^{(1)} + I_{yz} M_{z}^{(1)} \right) z - \left(I_{yz} M_{y}^{(1)} + I_{yy} M_{z}^{(1)} \right) y \right] \\ &\left[(I_{zz} M_{y} + I_{yz} M_{z}) z - (I_{yz} M_{y} + I_{yy} M_{z}) y \right] dA dx \\ \implies \Delta_{P} u &= \frac{1}{E \left(I_{yy} I_{zz} - I_{yz}^{2} \right)^{2}} \int_{0}^{L} \left\{ \left(I_{zz} M_{y}^{(1)} + I_{yz} M_{z}^{(1)} \right) (I_{zz} M_{y} + I_{yz} M_{z}) I_{yy} + \left(I_{yz} M_{y}^{(1)} + I_{yy} M_{z}^{(1)} \right) (I_{yz} M_{y} + I_{yy} M_{z}) I_{zz} - \left(I_{zz} M_{y}^{(1)} + I_{yz} M_{z}^{(1)} \right) \\ &\left(I_{yz} M_{y} + I_{yy} M_{z} \right) I_{yz} - \left(I_{yz} M_{y}^{(1)} + I_{yy} M_{z}^{(1)} \right) (I_{zz} M_{y} + I_{yz} M_{z}) I_{yz} \right\} dx \end{split}$$

• In the principal axes $I_{yz} = 0$

$$\Delta_P u = \frac{1}{E I_{yy} I_{zz}} \int_0^L \left\{ I_{zz} M_y^{(1)} M_y + I_{yy} M_z^{(1)} M_z \right\} dx$$

• Shearing

Internal energy variation

•
$$\int_0^L \int_A \tau \delta \gamma dA dx = \int_0^L \int_A \tau \delta \frac{\tau}{\mu} dA dx = \int_0^L \int_s q \delta \frac{q}{\mu t} ds dx$$

- Variation of the work of external forces

•
$$\int_{0}^{L} \int_{A} \tau \delta \gamma dA dx = \int_{0}^{L} \int_{s} t \tau \delta \left(\partial_{x} \boldsymbol{u}_{s} + \partial_{s} \boldsymbol{u}_{x} \right) ds dx$$

- Defining the average deformation of a section
 - See use of *A*' for thick beams
 - Vectorial value

$$-\int_{0}^{L}\int_{A}\tau\delta\gamma dAdx = \int_{0}^{L}\int_{s}t\tau\delta\bar{\partial_{x}u_{s}}\cdot dsdx = \int_{0}^{L}\left(\int_{s}t\tau ds\right)\cdot\delta\bar{\partial_{x}u_{s}}dx$$

- Applied shear loading $T = \int_{s}t\tau ds$

$$\implies \int_0^L \int_A \tau \delta \gamma dA dx = \int_0^L \mathbf{T} \cdot \delta \partial_x \mathbf{u} dx = \mathbf{T} \cdot \delta \overline{\Delta \mathbf{u}}$$

110

- Shearing (2) – Virtual work $\int_0^L \int_s q^{(1)} \frac{q}{\mu t} ds dx = T^{(1)} \overline{\Delta u} = \Delta_T u$
 - With $\Delta_T u$ the average deflection of the section in the direction of the applied unit shear load
 - With $q^{(1)}$ the shear flux distribution resulting from this applied unit shear load

$$q^{(1)}(s) = -\frac{I_{zz}T_{z}^{(1)} - I_{yz}T_{y}^{(1)}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} z \, ds + \sum_{i: \ s_{i} \leq s} z_{i}A_{i} \right] - \frac{I_{yy}T_{y}^{(1)} - I_{yz}T_{z}^{(1)}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y \, ds + \sum_{i: \ s_{i} \leq s} y_{i}A_{i} \right] + \left\{ q^{(1)}(0) \right\}$$

• With q the shear flux distribution corresponding to the deflection $\Delta_T u$

$$q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct } \boldsymbol{\sigma}} z ds + \sum_{i: s_i \leq s} z_i A_i \right] - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct } \boldsymbol{\sigma}} y ds + \sum_{i: s_i \leq s} y_i A_i \right] + \{q(0)\}$$

{q(0)} meaning only for closed sections

2024-2025

111

Example

- Idealized U shape _
 - Booms of 300-mm²- area each
 - Booms are carrying all the direct stress
 - Skin panels are carrying all the shear flow
 - Actual skin thickness is 1 mm
- Beam length of 2 m
 - Shear load passes through the shear center at one beam extremity
 - Other extremity is clamped
- Material properties _
 - *E* = 70 GPa
 - $\mu = 30 \text{ GPa}$
- **Deflection**?

- Shear flow (already solved)
 - Simple symmetry principal axes

$$\implies q(s) = -\frac{T_z}{I_{yy}} \left[\int_0^s t_{\text{direct } \sigma} z \, ds + \sum_{i: s_i \le s} z_i A_i \right]$$

- Only booms are carrying direct stress

$$\implies q\left(s\right) = -\frac{T_z}{I_{yy}} \sum_{i: s_i \le s} z_i A_i$$

Second moment of area

$$I_{yy} = \sum_{i} A_{i} z_{i}^{2} = 4 \ 300 \ 10^{-6} \ 0.2^{2} = 48 \ 10^{-6} \ \mathrm{m}^{4}$$

- Shear flow

$$q^{12}(s) = -\frac{T_z}{I_{yy}}A_1z_1 = -\frac{4.8\ 10^3}{48\ 10^{-6}}300\ 10^{-6}(-0.2) = 6\ 10^3\ \text{N}\cdot\text{m}^{-1}$$

$$q^{23}(s) = -\frac{T_z}{I_{yy}}(A_1z_1 + A_2z_2) = -\frac{4.8\ 10^3}{48\ 10^{-6}}300\ 10^{-6}(-0.4) = 12\ 10^3\ \text{N}\cdot\text{m}^{-1}$$

$$q^{34}(s) = -\frac{T_z}{I_{yy}}(A_1z_1 + A_2z_2 + A_3z_3) = -\frac{4.8\ 10^3}{48\ 10^{-6}}300\ 10^{-6}(-0.2) = 6\ 10^3\ \text{N}\cdot\text{m}^{-1}$$

$$2024-2025$$
Aircraft Structures - Beam - Shearing, Torsion & Idealization
$$113$$

• Unit shear flow

- Same argumentation as before but with $T_z = 1$ N

$$q^{(1), 12}(s) = -\frac{1}{I_{yy}} A_1 z_1 = -\frac{1}{48 \ 10^{-6}} 300 \ 10^{-6} \ (-0.2)$$
$$= 1.25 \ \mathrm{N} \cdot \mathrm{m}^{-1}$$
$$q^{(1), 23}(s) = -\frac{1}{I} \frac{\mathrm{N}}{\mathrm{I}} (A_1 z_1 + A_2 z_2)$$

$$(s) = -\frac{1}{I_{yy}} (A_1 z_1 + A_2 z_2)$$

= $-\frac{1}{48 \ 10^{-6}} 300 \ 10^{-6} (-0.4) = 2.5 \ \mathrm{N} \cdot \mathrm{m}^{-1}$

$$q^{(1), 34}(s) = -\frac{1 \text{ N}}{I_{yy}} (A_1 z_1 + A_2 z_2 + A_3 z_3)$$

= $-\frac{1}{48 \ 10^{-6}} 300 \ 10^{-6} (-0.2) = 1.25 \text{ N} \cdot \text{m}^{-1}$

≜*Z*

 \overline{Z}

• Displacement due to shearing

$$-\Delta_T u = \int_0^L \int_s q^{(1)} \frac{q}{\mu t} ds dx = 2 \int_s q^{(1)} \frac{q}{30 \ 10^9 0.001} ds$$
$$\implies \Delta_T u = \frac{2}{30 \ 10^9 0.001} \left[6000 \ 1.25 \ 0.2 + 12000 \ 2.5 \ 0.4 + 6000 \ 1.25 \ 0.2 \right] = 10^{-3} \text{ m}$$

2024-2025

114 🛛 🖊

Bending

Moment due to extremity load

$$\begin{cases}
M_y = (x - L) T_z \\
M_y^{(1)} = (x - L)
\end{cases}$$

- Deflection due to extremity load
 - In the principal axes

$$\implies \Delta_P u = \frac{1}{E} \int_0^L \frac{M_y^{(1)} M_y}{I_{yy}} dx = \frac{T_z}{I_{yy}E} \int_0^L (x - L)^2 dx = \frac{T_z L^3}{3I_{yy}E}$$
$$\implies \Delta_P u = \frac{4.8 \ 10^3 \ 2^3}{3 \ 48 \ 10^{-6} \ 70 \ 10^9} = 0.00381 \text{ m}$$

Total deflection

- No torsion as shear load passes through the shear center

$$- \delta \boldsymbol{u}_z = \Delta_T \boldsymbol{u} + \Delta_P \boldsymbol{u} = 0.00481 \text{ m}$$

