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Elasticity

• Balance of body B
– Momenta balance 

• Linear 

• Angular

– Boundary conditions
• Neumann

• Dirichlet

• Small deformations with linear elastic, homogeneous & isotropic material

– (Small) Strain tensor                                        , or

– Hooke’s law                     , or

with

– Inverse law

with

b

T

n

 =  − 
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• General expression for unsymmetrical beams

– Stress 

With

– Curvature

– In the principal axes Iyz = 0 

• Euler-Bernoulli equation in the principal axis

–                                            for x in [0 L] 

– BCs 

– Similar equations for uy 

Pure bending: linear elasticity summary
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• General relationships

–   

• Two problems considered

– Thick symmetrical section

• Shear stresses are small compared to bending stresses if h/L << 1

– Thin-walled (unsymmetrical) sections

• Shear stresses are not small compared to bending stresses

• Deflection mainly results from bending stresses

• 2 cases

– Open thin-walled sections 

» Shear = shearing through the shear center + torque

– Closed thin-walled sections

» Twist due to shear has the same expression as torsion

Beam shearing: linear elasticity summary

x

z f(x) Tz
Mxx

uz =0

duz /dx =0 M>0

L

h

L

L

h t

2024-2025 Aircraft Structures - Beam - Shearing, Torsion & Idealization 4



• Shearing of symmetrical thick-section beams

– Stress                             

• With

• Accurate only if h > b

– Energetically consistent averaged shear strain

•                     with

• Shear center on symmetry axes

– Timoshenko equations

•                                                                  &

• On [0 L]: 

Beam shearing: linear elasticity summary
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• Shearing of open thin-walled section beams

– Shear flow

•  

• In the principal axes

– Shear center S 

• On symmetry axes

• At walls intersection

• Determined by momentum balance

– Shear loads correspond to

• Shear loads passing through the shear center &

• Torque

Beam shearing: linear elasticity summary
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• Shear flow for a closed section beam 

– Equation

•  

 still holds

• But q(s=0) is now ≠ 0

– Method

• The cross section is virtually cut at s=0 

• With the open section contribution

• q(s=0) is computed to balance the momentum

– Shear loads pass through a given point T (not necessarily shear center S)

– We will see that, for closed sections, shear and torsion stresses have the 

same form, so we do not really have to pass through the shear center S as it 

becomes useless to decompose shearing and torque

Shearing of thin-walled closed section beams
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• Shear flow for a closed section beam (2)

– Evaluation of q(s=0) 

• Momentum balance (if q & s anticlockwise)

 with p the distance from the wall tangent to C 

• If Ah is the area enclosed by the section mid-line

–  

• At the end of the day

Shearing of thin-walled closed section beams
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• Shear flow for a closed section beam (2)

– Final expression 

•  

• qo(s) is computed as for an open section

•  

– Remarks 

• The q(0) is related to the closed part of the section, 

    but there is a qo(s) in the open part which should be

 considered for the shear torque

• This last expression assumes q, s anticlockwise

• If momentum and distance p are related to the lines of action 

 of the shear load T, this simplifies into

• By cutting the section we are actually substituting the shearing by

– A shear load passing through the shear center of the cut section 

» Which depends on the cut location

– A torque leading to constant shear flow q(s=0) 

» Which depends on the cut location

Shearing of thin-walled closed section beams
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• Shear center

– As we have already used the momentum balance, 

 how to determine the shear center S ?

– As loads passing through this point do not lead to

 section twisting, we have to evaluate this twist

Shearing of thin-walled closed section beams
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Shearing of thin-walled closed section beams

• Shear deformations 

– As loads passing through shear center do not lead to 

 section twisting, we have to evaluate the twist in the 

 general case

• Shear strain in the local axes

• Remark 
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• Twisting and warping

– Closely Spaced Rigid Diaphragm (CSRD) 

 assumption 

• The cross section can deform along Cx 

• The shape of the cross-section in its own

 plane remains constant

• These 2 motions correspond to 

 warping & twisting

– So in the Cyz plane only a rigid rotation is seen

• Aeronautical structures

– You do not want to change the airfoil shape

– So structures are rigid enough for this 

 assumption to hold

– Let us call R the center of twist

• When warping is constrained the center of

 twist is different from the shear center 

 (see lectures on structural discontinuities)

Shearing of thin-walled closed section beams
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• Center of twist

– Equations

• pR is the distance from the wall tangent to R 

• p is the distance from the wall tangent to C

Shearing of thin-walled closed section beams
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• Center of twist (2)

– Twist

•  

• Let          &           be respectively the components

 along Cy and Cz of the displacement of C due

 to the twist   

–  

–  

• As

– Remarks

• Valid for closed and open sections

• uz
C, uy

C &  depend on x 

• us depends on x & s 

Shearing of thin-walled closed section beams
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• Center of twist (3)

– Location

• As 

• Eventually 

• Remarks

– Remains valid for a point other than the centroid C 

– Equations valid for open thin-walled sections but what about CSRD 

assumptions for such sections ?

Shearing of thin-walled closed section beams
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• Warping

–  In linear elasticity

• Shear flow

• Shear strain

– Shear flow 

• As

Shearing of thin-walled closed section beams
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• Warping (2)

–  Shear flow integral 

• As                                          is the area 

 swept by p with                                  the 

 area enclosed by the section mid-line

Shearing of thin-walled closed section beams
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• Warping (3)

–  As  

• Performing the integral all around the section

 

• The wrapping displacement reads

• If axes origin corresponds to twist center R 

– With 

Shearing of thin-walled closed section beams
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• Warping (4)

– If axes origin corresponds to twist center R 

•  

– ux(s=0) ? 

• Symmetrical sections

– If origin of s lies on a symmetry axis        ux(0)=0   

• Unsymmetrical sections

– Linear response         xx(s) ÷ ux(s)-ux(0)

– Axial load due to shear or torsion is equal to zero

Shearing of thin-walled closed section beams
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• Shear center

– To compute yS 

• Assume a shear load Tz passing through yS 

• So there is no twist

• As

• Eventually

– With 

• Shear center (Point T = S here) position using     

   

Shearing of thin-walled closed section beams
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• Example

– Simply symmetrical thin-walled closed section

• Constant t and  on all walls

– Shear center ?

Shearing of thin-walled closed section beams
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• Second moments of area

– Simply symmetrical

• Centroid lies on Dy’  

• Iyz = 0

• Shear center lies on Dy’  

– So we have only to consider 

• A vertical shear load

• Iyy = Iy’y’ 

 

Shearing of thin-walled closed section beams
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• Shear flow

– Origin of s on D 

•   

• With

– Open shear flow on line DA 

•  

•  

Shearing of thin-walled closed section beams
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• Shear flow (2)

– Open shear flow on line AB 

•  

•  

– Open shear on BC & CD by symmetry

•  

•  

Shearing of thin-walled closed section beams
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• Shear flow (3)

– Open shear flow 

– Constant shear flow for zero twist

•  

• Using symmetry properties & as t is constant

–  

–    

Shearing of thin-walled closed section beams
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• Shear flow (4)

– Constant shear flow for zero twist (2)

•  As                                                       

 &

• Eventually

Shearing of thin-walled closed section beams
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• Shear center

– General expression

• Shear flow balances the applied torque (Point T = S here)

• With

•   

• & 

•  But one has also

Shearing of thin-walled closed section beams
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Shearing of thin-walled closed section beams

• Shear center (2)

– Torque due to open shear flow

– Shear center location
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• Shearing of closed thin-walled section beams

– Shear flow

•  

• Open part (for anticlockwise of q, s)

• Constant twist part 

• The q(0) is related to the closed part of the section, 

    but there is a qo(s) in the open part which should be

    considered for the shear torque

Beam shearing: linear elasticity summary
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• Shearing of closed thin-walled section beams

– Warping around twist center R 

•  

• With

– ux(0)=0 for symmetrical section if origin on 

 the symmetry axis

– Shear center S 

• Compute q for shear passing thought S  

• Use 

With point S=T 

Beam shearing: linear elasticity summary

y

z

T

Tz

Ty

C

q s

p
ds

dAh

y

z

S

Tz

C

q s

p ds

2024-2025 Aircraft Structures - Beam - Shearing, Torsion & Idealization 30



• General relationships

– We have seen

•  

•  

– If the section is closed

• Bredt assumption for closed sections:

 Stresses are constant on t, and if there is

 only a constant torque applied then s = xx = 0

    Constant shear flow (not shear stress)

Torsion of closed thin-walled section beams
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• Torque

–  As q due to torsion is constant 

•  

• Displacements

– It has been established that

•  

• So in linear elasticity 

– But for pure torsion q is constant

• Remark t is not constant along s 

 but it is assumed constant along x 

• As xx= s =0

Torsion of closed thin-walled section beams
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• Displacements (2) 

– It has been established that for a twist around

 the twist center R 

– As 

 for all values of s (so all value of  )

• The only possible solution is

                     ,                      &

– So displacement fields related to torsion are linear with x 

Torsion of closed thin-walled section beams
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• Rate of twist

– Use 

• Relation                 

 developed for shearing, but with q due 

 to torsion constant on s 

• Torque expression 

– Twist

•                                     constant with x 

– Torsion rigidity

•  

• Torsion second moment of area for constant  :  

Torsion of closed thin-walled section beams
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• Warping

– Use 

• Relation                 

 

 developed for shearing, but with q due 

 to torsion constant on s 

• Swept from twist center R 

• Torque expression

– Warp displacement

•  

Torsion of closed thin-walled section beams
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• Twist & Warping under pure torsion

– Twist 

– Warp

– Deformation

• Plane surfaces are no longer plane

• It has been assumed they keep the same 

 projected shape + linear rotation

• Longitudinal strains are equal to zero

– All sections possess identical warping

– Longitudinal generators keep the same

 length although subjected to axial 

 displacement 

Torsion of closed thin-walled section beams
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• Zero warping under pure torsion

– Warp

– Zero warping condition requires

•                                                 for all values of s 

• As right member is constant the condition of zero warping

 is           constant with respect to s 

• Solutions at constant shear modulus

– Circular pipe of constant thickness

– Triangular section of constant t 

 (pR is the radius of the inscribed circle which 

 origin coincides with the twist center)

– Rectangular section with th b = tb h  

Torsion of closed thin-walled section beams
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• Example

– Doubly symmetrical rectangular closed section

– Constant shear modulus

– Twist rate?

– Warping distribution?

Torsion of closed thin-walled section beams
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• Twist rate

– As the section is doubly symmetrical, the twist

 center is also the section centroid C 

– Twist rate

•  

•  

•  

– For a beam of length L and constant section 

• Torsion rigidity  

Torsion of closed thin-walled section beams
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• Warping

– As the section is doubly symmetrical, the twist

 center is also the section centroid C 

– Warping

• It can be set up to 0 at point E

– By symmetry it will be equal to zero wherever

 a symmetry axis intercept the wall 

•  

•                      &

• On part EA  

–                                               &  

 

Torsion of closed thin-walled section beams
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• Warping (2)

– On part EA         

– So using symmetry and as distribution is linear  

•  

• Zero warping if b th = h tb

Torsion of closed thin-walled section beams
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• Torsion of a thick section

– The problem can be solved explicitly by 

 recourse to a stress function 

– Hydrodynamic analogy

• Shear stresses have the same expression

 than the velocity in a rotational flow in a box

 of same section

Torsion of thick section
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• Torsion of a thick circular section 

– Exact solution of the problem

• By symmetry there is no warping     

  sections remain plane

– In linear elasticity

• Shear stresses

• Torque

• Torsion rigidity

– At constant shear modulus (required for symmetry):

– For circular cross sections (only) Ip=IT 

• Maximum shear stress

Torsion of thick section
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• Torsion of a rectangular section 

– Exact solution of the problem with stress function

• Assumptions

– Linear elasticity

– Constant shear modulus

• Maximum stress at mid position of larger edge

–  

• Torsion rigidity (constant )

–  

• Approximation for h>>b 

–                         

–                        & 

–   

Torsion of thick section
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Torsion of thick section

z

y

C 





b

h

• Torsion of a rectangular section (2) 

– Warping

• As

• For a rigid rotation (first order approximation)

–  

–  

• For a thin rectangular section 

–                   &

–  

– Doubly symmetrical section 
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• Rectangle approximation of open thin-walled section beams

– Thin rectangle

•                    &

• For constant shear modulus

• Warping 

– Thin curved section

• If t << curvature an approximate solution is

–   

–   

– Open section composed of thin rectangles

• Same approximation

–  

–  

Torsion of open thin-walled section beams
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• Warping

– Warping around s-axis 

• Thin rectangle

• Here Ci are not equal to 0

• Part around s-axis

– Warping of the s-line (n=0)

• We found

• If R is the twist center

–  

– As                                   xs(n=0) = 0   

• Eventually s-axis warp (usually the larger)

Torsion of open thin-walled section beams
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• Example

– U open section

– Constant shear modulus (25 GPa)

– Torque of  10 N.m 

– Maximum shear stress?

– Warping distribution?

Torsion of open thin-walled section beams
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• Maximum shear stress

– Torsion second moment of area 

– Twist rate

– Maximum shear stress reached in web

Torsion of open thin-walled section beams
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• Twist center

– Zero-warping point

– Free ends so the shear center S corresponds

 to twist center R 

• See lecture on structural discontinuities

– By symmetry, lies on Oy axis

– Apply Shear Tz to obtained y’S 

– Shear flow for symmetrical section

•  

• With  

Torsion of open thin-walled section beams
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• Twist center (2)

– Shear flow for symmetrical section (2)

•  

• On lower flange

–  

• Momentum due to shear flow

– Zero web contribution around O’ 

– Top and lower flanges have the same contribution

• Moment balance

• Be carefull: clockwise orientation of q, s 

Torsion of open thin-walled section beams
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• Warping of s-axis

–  

– Origin in O’ as by symmetry ux(O’)=0

• On O’A branch

– Area swept is positive

– At point A 

• On AB branch

– Area swept is negative

Torsion of open thin-walled section beams

Mx

S

y

h = 50 mm 

b = 25 mm 

z

y’

z’

CO’

s

A

B

ARp

Mx

S

y
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b = 25 mm 

z
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s

A

B

ARp
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Mx

S

y

h = 50 mm 

b = 25 mm 

z

y’

z’

CO’

s

A

B

ARp

• Warping of s-axis (2)

–  

– Origin in O’ as by symmetry ux(O’)=0 (2)

• On AB branch

– Area swept is negative

– At point B 

• Branches for z’<0 obtained by symmetry

Torsion of open thin-walled section beams
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• Warping of s-axis (3)

–  On O’A branch

– On AB branch

– Branches for z’<0 obtained by symmetry

Torsion of open thin-walled section beams

z

y
C 

Mx
x

S 
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• Wing section near an undercarriage bay

– Bending

• There was no assumption on section shape

• Use same formula 

– Shearing

• Shear center has to be evaluated for 

 the complete section

• Shearing results into a shear load passing 

 through this center & a torque

• Shear flow has different expression in open 

 & closed parts of the section

– Torsion

• Rigidity of open section can be neglected most of the time

• But stress in open section can be high

Combined open and closed section beams

z

y

C 
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• Example

– Simply symmetrical section

– Constant thickness

– Shear stress? 

Combined open and closed section beams

z

y

C 

z’

y’

O’ 

bb = 0.2 m

h
b

=
 0

.2
 m

t = 2 mm

bf = 0.1 m

h
f
=

 0
.1

 m

Tz = 100 kN
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• Centroid

– By symmetry, on O’z’ axis

– z’C ?

•  

Combined open and closed section beams

z

y

C 

z’

y’

O’ 

bb = 0.2 m

h
b

=
 0

.2
 m

t = 2 mm

bf = 0.1 m

h
f
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.1

 m

Tz = 100 kN
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• Second moment of area

– As z’C = -0.075 m 

–   

Combined open and closed section beams

z

y

C 

z’

y’

O’ 

bb = 0.2 m

h
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=
 0
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 m

t = 2 mm

bf = 0.1 m

h
f
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Tz = 100 kN
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• Shear flow

– As Ixy = 0 & as shear center on Cz   

•                                          

 with

• At A & H  shear stress has to be zero

– If origin on A, q(0) = 0

– Corresponds to an open section

– Branch AB  

Combined open and closed section beams

z

y

C 

bb = 0.2 m

h
b

=
 0

.2
 m

t = 2 mm

bf = 0.1 m

h
f
=
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.1

 m

Tz = 100 kN

A

B C’

D
E

F G

H

I

sq

O’
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• Shear flow (2)

– Branch BC’  

•  

•  

– Branches FG & GH 

• By symmetry

Combined open and closed section beams

z

y

C 

bb = 0.2 m

h
b
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• Shear flow (3)

– Closed part:  

•  With                                           & 

– Let us fix the origin at O’ 

• By symmetry q(0) = 0 (if not the formula would have required anticlockwise s, q)

                 q = qo(s) 

– Branch O’F 

Combined open and closed section beams

z

y

C 

bb = 0.2 m

h
b

=
 0

.2
 m

t = 2 mmTz = 100 kN

A

B C’

D
E

F G

H

I

s

q

O’
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• Shear flow (4)

– Branch FE  

• Shear flux should be conserved 

 at point F 

• Shear flux on branch

Combined open and closed section beams

z

y

C 

bb = 0.2 m

h
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• Shear flow (5)

– Branch EI  

•   

– Other branches by symmetry

Combined open and closed section beams
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• Shear flow (6)

– Remark, if symmetry had not been used, shear stress at O’ should be 

computed (but require anticlockwise s and q for these signs of yT & zT)

•   

– With

• pO’F = pC’O’ & qO’F = -qC’O’  &

 dsO’F = dsC’O’    

• etc

Combined open and closed section beams

z

y

C 

h
b

=
 0
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Tz = 100 kN

A

B C’

D

I

s

q

O’

E

F G

Hs

2024-2025 Aircraft Structures - Beam - Shearing, Torsion & Idealization 64



• Example

– Closed nose cell 

• 0.02 m2 – area

• 0.9 m – outer length

– Open bay

– Constant shear modulus 

  = 25 GPa 

– Torque 10 kN.m 

– Twist rate?

– Shear stress? 

Combined open and closed section beams

z

y

C 

bb = 0.6 m

h
=

 0
.3

 m

tb = 2 mm

Ac = 0.02 m2

tb = 2 mm

tc = 1.5 

mm

tc = 1.5 

mm

l = 0.9 m
Mx
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• Twist rate

– As an approximation the 

 2 torsion rigidities are added

– Cell

• Closed section with constant  

–  

–  

– Bay

• Open section with constant  

–  

–  

– Twist rate  

•  

•  

Combined open and closed section beams

z

y

C 

bb = 0.6 m

h
=

 0
.3

 m

tb = 2 mm

Ac = 0.02 m2

tb = 2 mm

tc = 1.5 

mm

tc = 1.5 

mm

l = 0.9 m
Mx
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• Shear stress

– Cell 

• Closed section (                     )

•  

•  

– Bay

• Open section (                             )

•   

Combined open and closed section beams

z

y

C 

bb = 0.6 m

h
=

 0
.3

 m

tb = 2 mm

Ac = 0.02 m2

tb = 2 mm

tc = 1.5 

mm

tc = 1.5 

mm

l = 0.9 m
Mx




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• Example 2-spar wing (one cell)

– Stringers to stiffen thin skins

– Angle section form spar flanges

• Design stages
– Conceptual

• Define the plane configuration

– Span, airfoil profile, weights, …

• Analyses should be fast and simple

– Formula, statistics, …

– Preliminary design

• Starting point: conceptual design

• Define more variables

– Number of stringers, stringer area, …

• Analyses should remain fast and simple 

– Use beam idealization 

» See today

– FE model of thin structures

» See next lectures

– Detailed design

• All details should be considered (rivets, …)

• Most accurate analyses (3D, non-linear, FE)

Structural idealization
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• Principle of idealization

– Booms

• Stringers, spar flanges, …

– Have small sections compared to airfoil

– Direct stress due to wing bending is 

 almost constant in each of these

– They are replaced by concentrated area 

 called booms

• Booms 

– Have their centroid on the skin

– Are carrying most direct stress due 

 to beam bending

– Skin 

• Skin is essentially carrying shear stress

• It can be assumed

– That skin is carrying only shear stress

– If direct stress carrying capacity of skin is

 reported to booms by appropriate 

 modification of their area

Wing section idealization
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• Panel idealization

– Skin panel

• Thickness tD, width b 

• Carrying direct stress linearly distributed 

– Replaced by 

• Skin without thickness

• 2 booms of area A1 and A2  

– Booms’ area depending on loading 

• Moment around boom 2

• Total axial loading

Wing section idealization

tD

b

y

z

x
xx

1
xx

2

b

xx
1

xx
2

A1 A2

y

z

x
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• Example

– 2-cell box wing section 

– Simply symmetrical

– Angle section of 300 mm2 

– Idealization of this section

 to resist to bending moment?

• Bending moment along y-axis

• 6 direct-stress carrying 

 booms

• Shear-stress-only carrying 

 skin panels

Wing section idealization

h
l
=

 0
.4

 m

h
r

=
 0

.2
 m

la = 0.6 m
lb = 0.6 m

tr = 2 mmtl = 3 mm tm = 2.5 mm
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h
l
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.4
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h
r

=
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 m
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tr = 2 mmtl = 3 mm tm = 2.5 mm

ta = 2 mm
tb = 1.5 mm

A1 A2 A3

A6
A5 A4

y

z

2024-2025 Aircraft Structures - Beam - Shearing, Torsion & Idealization 71



• Booms’ area
– Bending moment 

• Along y-axis  

• Stress proportional to z 

  stress distribution is

 linear on each section edge

– Contributions

• Flange(s)’ area

• Reported skin parts 

– Use formula for linear distribution

•  

•  

•    

Wing section idealization

h
l
=

 0
.4

 m

h
r

=
 0

.2
 m

la = 0.6 m
lb = 0.6 m

tr = 2 mmtl = 3 mm tm = 2.5 mm

ta = 2 mm
tb = 1.5 mm

A1 A2 A3

A6
A5 A4
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z
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• Consequence on bending

– Idealization depends on the loading case

• Booms area are dependent on the loading case

– Direct stress due to bending is carried by booms only

• For bending the axial load is equal to zero

• But direct stress depends on the distance z from neutral axis

– It can be concluded that for open or closed sections, the position of the 

neutral axis, and thus the second moments of area

• Refer to the direct stress carrying area only

• Depend on the loading case only

Section idealization consequences
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• Example

– Idealized fuselage section

• Simply symmetrical

• Direct stress carrying booms

• Shear stress carrying skin panels

– Subjected to a bending moment

• My = 100 kN.m 

– Stress in each boom?

Section idealization consequences

z’8 = 0.038 m

A1 = 640 mm2

y

z

C

y’

z’

O’

A2 = 600 mm2

A3 = 600 mm2

A4 = 600 mm2

A5 = 620 mm2

A6 = 640 mm2

A7 = 640 mm2

A8 = 850 mm2

A9 = 640 mm2

z’7 = 0.144 m

z’6 = 0.336 m

z’5 = 0.565 m

z’4 = 0.768 m

z’3 = 0.960 m

z’2 = 1.14 m

z’1 = 1.2 m

My
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• Centroid

– Of idealized section

Section idealization consequences

z’8 = 0.038 m

A1 = 640 mm2

y

z

C

y’

z’

O’

A2 = 600 mm2

A3 = 600 mm2

A4 = 600 mm2

A5 = 620 mm2

A6 = 640 mm2

A7 = 640 mm2

A8 = 850 mm2

A9 = 640 mm2

z’7 = 0.144 m

z’6 = 0.336 m

z’5 = 0.565 m

z’4 = 0.768 m

z’3 = 0.960 m

z’2 = 1.14 m

z’1 = 1.2 m
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• Second moment of area

– Of idealized section

Section idealization consequences

z’8 = 0.038 m

A1 = 640 mm2
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z’6 = 0.336 m

z’5 = 0.565 m

z’4 = 0.768 m
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z’1 = 1.2 m
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• Stress distribution

– Stress assumed constant in each boom

– As we are in the principal axes

Section idealization consequences

z’8 = 0.038 m

A1 = 640 mm2
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z
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A2 = 600 mm2

A3 = 600 mm2

A4 = 600 mm2

A5 = 620 mm2

A6 = 640 mm2

A7 = 640 mm2

A8 = 850 mm2
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z’7 = 0.144 m

z’6 = 0.336 m

z’5 = 0.565 m

z’4 = 0.768 m

z’3 = 0.960 m

z’2 = 1.14 m

z’1 = 1.2 m

My
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• Consequence on open-thin-walled section shearing

– Classical formula 

•  

• Results from integration of balance 

 equation

– With

– So consequences are

• Terms                                 &                                 should account for the direct 

stress-carrying parts only (which is not the case of shear-carrying-only skin 

panels)

• Expression of the shear flux should be modified to account for discontinuities 

encountered between booms and shear-carrying-only skin panels

Section idealization consequences

q + ∂sq s

s

x

x

s

q 

q 

q + ∂xq x

s

s + ∂ss s

xx + ∂xxx x

xx 
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• Consequence on open-thin-walled section shearing (2)

– Equilibrium of a boom of an idealized section 

– Lecture on beam shearing

• Direct stress reads

• With                          &

– Eventually

•   

 (no sum on i)

Section idealization consequences

Tz

y

z

x

x

Ty

x

qi

qi+1
qi

qi+1

xx+∂xxx

xx

y

z

x

qi

qi+1

2024-2025 Aircraft Structures - Beam - Shearing, Torsion & Idealization 79



• Consequence on open-thin-walled section shearing (3)

– Shear flow 

Section idealization consequences

Tz

y

z

x

x

Ty
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• Example

– Idealized U shape

• Booms of 300 mm2- area each

• Booms are carrying all the direct stress

• Skin panels are carrying all the shear flow

– Shear load passes through the shear center

– Shear flow?

Section idealization consequences

S

Tz = 4.8 kN

y

h
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• Shear flow 
– Simple symmetry            principal axes

– Only booms are carrying direct stress

– Second moment of area

– Shear flow

Section idealization consequences
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y
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• Comparison with uniform U section 
– We are actually capturing the average value in each branch

Section idealization consequences
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• Consequence on closed-thin-walled section shearing

– Classical formula  

•  

• With 

• And

 for anticlockwise q and s 

– So consequences are the same as for open section

•  

Section idealization consequences
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• Example

– Idealized wing section

• Simply symmetrical

• Booms are carrying all the direct stress

• Skin panels are carrying all the shear flow

– Shear load passes through booms 3 & 6

– Shear flow?

Section idealization consequences

A1 = 200 mm2

y

z

C y’

z’

O’

A2 = 250 mm2

A5 = A4

bm = 0.24 m

Tz = 10 kN

A3 = 400 mm2

A4 = 100 mm2

A6 = A3
A7 = A2

A8 = A1

br = 0.24 mbl = 0.12 m

hl = 0.1 m

h
m

=
 0

.2
m

hr = 0.06 m
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• Open part of shear flow

– Symmetrical section

• Shear center & centroid on Cy axis

• Ixy = 0 (we are in the principal axes)

• Only booms are carrying direct stress

– Second moment of area

Section idealization consequences

A1 = 200 mm2
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C y’
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bm = 0.24 m
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=
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.2
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• Open part of shear flow (2)

– Choose (arbitrarily) the origin 

 between boom 2 and 3

Section idealization consequences

A1 = 200 mm2
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=
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m
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s
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• Open part of shear flow (3)

– Choose (arbitrarily) the origin between boom 2 and 3 (2)

Section idealization consequences
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• Constant part of shear flow 

–                                          (anticlockwise s, q) 

– If origin is chosen at point O’ 

• With

 &

Section idealization consequences
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• Constant part of shear flow (2)

–  

Section idealization consequences
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• Total shear flow

–  

Section idealization consequences
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• Consequence on torsion

– If no axial constraint

• Torsion analysis does not involve axial stress 

• So torsion is unaffected by the structural idealization

Section idealization consequences
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Exercise: Structural idealization

• Box section

– Arrangement of 

• Direct stress carrying booms positioned at the four corners and 

• Panels which are assumed to carry only shear stresses

• Constant shear modulus

– Shear centre?
10 mm

10 mm

8 mm

10 mm

300 mm

500 mm

Angles

50 x 40 x 8 mm
Angles

60 x 50 x 10 mm
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Exercise: Structural idealization

• As shear center lies on Oy by symmetry we consider TZ           

– Section is required to resist bending moments in a vertical plane

– Direct stress at any point is directly proportional to the distance from the 

horizontal axis of symmetry, i.e. axis y

– The distribution of direct stress in all the panels will be linear so that we can 

use the relation below 

– In addition to contributions from adjacent panels, booms areas include the 

existing spar flanges

b

xx
1

xx
2

A1 A2

y

z

x

21

34

300 mm

500 mm

yS

Tz

yT

z

O
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Exercise: Structural idealization

• Booms area

– By symmetry 

• A3 = A2 = 3656 mm2 

• A4 = A1 = 4000 mm2 

10 mm

10 mm

8 mm

10 mm

300 mm

500 mm

Angles

50 x 40 x 8 mm

Angles

60 x 50 x 10 mm

21

34

300 mm

500 mm

yS

Tz

yT

z

O

2024-2025 Aircraft Structures - Beam - Shearing, Torsion & Idealization 96



Exercise: Structural idealization

• Shear flow

– Booms area

• A3 = A2 = 3656 mm2 

• A4 = A1 = 4000 mm2 

– By symmetry Iyz = 0 

As only booms resist direct stress

21

34

300 mm

500 mm

yS

Tz

yT

z

O
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Exercise: Structural idealization

• Open shear flow

–   21

34

300 mm

500 mm

yS

Tz

yT

z

O
>0

s
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Exercise: Structural idealization

• Constant shear flow

– Load through the shear center

              no torsion

• With 

 

 and 

21

34

300 mm

500 mm

yS

Tz

yT

z

O
>0

s

-1.74 x 10-3 Tz 1.59 x 10-3 Tz
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Exercise: Structural idealization

• Total shear flow

21

34

300 mm

500 mm

yS

Tz

yT

z

O
>0

s

-1.74 x 10-3 Tz 1.59 x 10-3 Tz

21

34

300 mm

500 mm

yS

Tz

yT

z

O
>0

-0.044 x 10-3 Tz

-0.044 x 10-3 Tz

1.546 x 10-3 Tz-1.784 x 10-3 Tz
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Exercise: Structural idealization

• Shear center

– Moment around O 

• Due to shear flow 

• Should be balanced by the external loads
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• Twist due to torsion

– As torsion analysis remains valid for idealized section, 

 one could use the twist rate

•  Closed section

• Open section

– In general 

•  

•  

•  

– How can we compute deflection for other loading cases?

Annex 1: Deflection of open and closed section beams

y

z

C

q s

p
ds

dAh

Mx
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• Symmetrical bending

– For pure bending we found

– Therefore the virtual work reads 

•  

– Let us assume Cz symmetrical axis, Mz= 0 & pure bending (My constant)

•  

• Consider a unit applied moment, and (1) the corresponding stress distribution 

–  

• The energetically conjugated displacement (angle for bending) can be found by 

integrating the strain distribution multiplied by the unit-loading stress distribution

Annex 1: Deflection of open and closed section beams

y

z



My

Mz


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• Virtual displacement

– Expression for pure bending

– In linear elasticity the general formula of virtual

 displacements reads 

•   (1) is the stress distribution corresponding to a (unit) load P(1) 

•  P is 

– The energetically conjugated displacement to P 

– In the direction of P(1) 

– Corresponds to the strain distribution  

Annex 1: Deflection of open and closed section beams

x

z

My

My

y = -uz,x(L)
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• Symmetrical bending due to extremity loading

– Example Cz symmetrical axis, Mz= 0 & 

 bending due to extremity load

•  

• Case of a semi-cantilever beam 

• Eventually

•   (1) is the stress distribution corresponding to a (unit) load Tz
(1) 

•  uz is the energetically conjugated displacement to Tz  in the direction of Tz
(1)  that 

corresponds to the strain distribution  

Annex 1: Deflection of open and closed section beams

x

z Tz

uz =0

duz /dx =0 M>0

L
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• General pure bending

– If neutral axis is -inclined

•   

• With 

• It has been shown that

–  Eventually, as M is constant with x  

•  

Annex 1: Deflection of open and closed section beams

y

z


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Mz



x

z
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
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• General bending due to extremity loading

– Bending moment depends on x 

•   

• Integration by parts

• Semi-cantilever beam 

Annex 1: Deflection of open and closed section beams

x

z
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Tz

x

y

uy

Ty
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• General bending due to extremity loading (2)

– Virtual displacement method

•   

• With (1) due to the (unit) moments M(1) resulting from the unit extremity loading

• With Pu displacement in the direction of the unit extremity loading

 and corresponding to the strain distribution 

Annex 1: Deflection of open and closed section beams

x

z

uz

Tz

x

y
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• General bending due to extremity loading (3)

– Virtual displacement method (2)

• After developments, and if Pu is the displacement in the direction of T(1) = 1

• In the principal axes Iyz = 0   

Annex 1: Deflection of open and closed section beams
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• Shearing

– Internal energy variation

•  

– Variation of the work of external forces

•  

• Defining the average deformation of a section 

– See use of A’ for thick beams

– Vectorial value

–  

– Applied shear loading

Annex 1: Deflection of open and closed section beams
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• Shearing (2)
– Virtual work

•  With Tu the average deflection of the section in the direction of the applied unit 
shear load 

• With q(1) the shear flux distribution resulting from this applied unit shear load

• With q the shear flux distribution corresponding to the deflection Tu 

• {q(0)} meaning only for closed sections

Annex 1: Deflection of open and closed section beams
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• Example

– Idealized U shape

• Booms of 300-mm2- area each

• Booms are carrying all the direct stress

• Skin panels are carrying all the shear flow

• Actual skin thickness is 1 mm 

– Beam length of 2 m 

• Shear load passes through the shear center

 at one beam extremity

• Other extremity is clamped

– Material properties

•  E = 70 GPa 

•   = 30 GPa 

– Deflection ?

Annex 1: Deflection of open and closed section beams
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• Shear flow (already solved)
– Simple symmetry            principal axes

– Only booms are carrying direct stress

– Second moment of area

– Shear flow

Annex 1: Deflection of open and closed section beams
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• Unit shear flow 
– Same argumentation as before but with Tz = 1 N 

• Displacement due to shearing

–   

Annex 1: Deflection of open and closed section beams
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• Bending 

– Moment due to extremity load

•  

– Deflection due to extremity load

• In the principal axes

• Total deflection
– No torsion as shear load passes through the shear center

–  

Annex 1: Deflection of open and closed section beams
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