Aircraft Structures
Beams – Torsion & Section Idealization

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3
http://www.ltas-cm3.ulg.ac.be/
Chemin des Chevreuils 1, B4000 Liège
L.Noels@ulg.ac.be
Elasticity

- **Balance of body** B
 - Momenta balance
 - Linear
 - Angular
 - Boundary conditions
 - Neumann
 - Dirichlet

\[\rho \ddot{\mathbf{x}} = \mathbf{b} + \nabla \cdot \mathbf{\sigma}^T \]
\[\rho \ddot{x}_i = b_i + \frac{\partial}{\partial x_j} \sigma_{ij} \]
\[\mathbf{\sigma}^T = \mathbf{\sigma} \]

- **Small deformations with linear elastic, homogeneous & isotropic material**

 - (Small) Strain tensor
 \[\varepsilon = \frac{1}{2} \left(\nabla \otimes \mathbf{u} + \mathbf{u} \otimes \nabla \right), \]
 or
 \[\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial x_i} u_j + \frac{\partial}{\partial x_j} u_i \right) \]

 - Hooke’s law
 \[\mathbf{\sigma} = \mathcal{H} : \varepsilon \]
 , or
 \[\sigma_{ij} = \mathcal{H}_{ijkl} \varepsilon_{kl} \]

 with
 \[\mathcal{H}_{ijkl} = \frac{E \nu}{(1 + \nu) (1 - 2\nu)} \delta_{ij} \delta_{kl} + \frac{E}{1 + \nu} \left(\frac{1}{2} \delta_{ik} \delta_{jl} + \frac{1}{2} \delta_{il} \delta_{jk} \right) \]

 - Inverse law
 \[\varepsilon = \mathcal{G} : \mathbf{\sigma} \]
 \[\lambda = K - 2\mu/3 \]
 \[2\mu \]

 with
 \[\mathcal{G}_{ijkl} = \frac{1 + \nu}{E} \left(\frac{1}{2} \delta_{ik} \delta_{jl} + \frac{1}{2} \delta_{il} \delta_{jk} \right) - \frac{\nu}{E} \delta_{ij} \delta_{kl} \]
Pure bending: linear elasticity summary

- **General expression for unsymmetrical beams**
 - Stress \(\sigma_{xx} = \kappa E \varepsilon \cos \alpha - \kappa E \gamma \sin \alpha \)

 With \(\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{\| M_{xx} \|}{\kappa E} \begin{pmatrix} I_{yy} & -I_{yz} \\ -I_{yz} & I_{zz} \end{pmatrix}^{-1} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix} \)
 - Curvature
 \(\begin{pmatrix} -u_{zz,xx} \\ u_{yy,xx} \end{pmatrix} = \frac{\| M_{xx} \|}{E \left(I_{yy} I_{zz} - I_{yz} I_{yz} \right)} \begin{pmatrix} I_{zz} & I_{yz} \\ I_{yz} & I_{yy} \end{pmatrix} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix} \)
 - In the principal axes \(I_{yz} = 0 \)

- **Euler-Bernoulli equation in the principal axis**

 \[- \frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 u_z}{\partial x^2} \right) = f(x) \text{ for } x \text{ in } [0, L] \]

 \[- \frac{\partial}{\partial x} \left(EI \frac{\partial^2 u_z}{\partial x^2} \right) \bigg|_{0, L} = T_z \bigg|_{0, L} \]

 \[- EI \frac{\partial^2 u_z}{\partial x^2} \bigg|_{0, L} = M_{xx} \bigg|_{0, L} \]

 Similar equations for \(u_y \)
Beam shearing: linear elasticity summary

- **General relationships**
 \[
 f_z(x) = -\partial_x T_z = -\partial_{xx} M_y \\
 f_y(x) = -\partial_x T_y = \partial_{xx} M_z
 \]

- **Two problems considered**
 - Thick symmetrical section
 - Shear stresses are small compared to bending stresses if \(h/L << 1 \)
 - Thin-walled (unsymmetrical) sections
 - Shear stresses are not small compared to bending stresses
 - Deflection mainly results from bending stresses
 - 2 cases
 - Open thin-walled sections
 » Shear = shearing through the shear center + torque
 - Closed thin-walled sections
 » Twist due to shear has the same expression as torsion
Beam shearing: linear elasticity summary

- **Shearing of symmetrical thick-section beams**
 - Stress \(\sigma_{xz} = -\frac{T_z S_n(z)}{I_{yy} b(z)} \)
 - With \(S_n(z) = \int_{A^*} z dA \)
 - Accurate only if \(h > b \)
 - Energetically consistent averaged shear strain \(z \)
 - \(\bar{\gamma} = \frac{T_z}{A' \mu} \) with \(A' = \frac{1}{\int A \frac{S_n^2}{T_{yy} b^2} dA} \)
 - Shear center on symmetry axes
 - Timoshenko equations
 - \(\bar{\gamma} = 2 \bar{\varepsilon}_{xz} = \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} = \theta_y + \partial_x u_z \) & \(\kappa = \frac{\partial \theta_y}{\partial x} \)
 - On \([0 L]:\)
 \[
 \left\{ \begin{array}{l}
 \frac{\partial}{\partial x} \left(EI \frac{\partial \theta_y}{\partial x} \right) - \mu A' \left(\theta_y + \partial_x u_z \right) = 0 \\
 \frac{\partial}{\partial x} \left(\mu A' \left(\theta_y + \partial_x u_z \right) \right) = -f
 \end{array} \right.
 \]
Beam shearing: linear elasticity summary

- **Shearing of open thin-walled section beams**
 - Shear flow \(q = \frac{T}{t} \)

 \[
 q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s tzs' ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s tyds'
 \]
 - In the principal axes

 \[
 q(s) = -\frac{T_z}{I_{yy}} \int_0^s tzs' ds' - \frac{T_y}{I_{zz}} \int_0^s tyds'
 \]
 - Shear center \(S \)
 - On symmetry axes
 - At walls intersection
 - Determined by momentum balance
 - Shear loads correspond to
 - Shear loads passing through the shear center &
 - Torque
Beam shearing: linear elasticity summary

- Shearing of closed thin-walled section beams
 - Shear flow \(q = t\tau \)
 - \(q(s) = q_o(s) + q(0) \)
 - Open part (for anticlockwise of \(q, s \))
 \[
 q_o(s) = -\frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') z(s') ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') y(s') ds'
 \]
 - Constant twist part
 \[
 q(s = 0) = \frac{y_T T_z - z_T T_y - \int p(s) q_o(s) ds}{2A_h}
 \]
 - The \(q(0) \) is related to the closed part of the section, but there is a \(q_o(s) \) in the open part which should be considered for the shear torque \(\int p(s) q_o(s) ds \)
Beam shearing: linear elasticity summary

- Shearing of closed thin-walled section beams

 - Warping around twist center R

 $\mathbf{u}_x (s) = \mathbf{u}_x (0) + \int_0^s \frac{q}{\mu t} ds - \frac{1}{A_h} \oint \frac{q}{\mu t} ds \left\{ A_{CP} (s) + \frac{z_R [y(s) - y(0)] - y_R [z(s) - z(0)]}{2} \right\}$

 - With $\mathbf{u}_x (0) = 0$ for symmetrical section if origin on the symmetry axis

 - Shear center S

 - Compute q for shear passing through S

 - Use

 $q(s = 0) = \frac{y_T T_z - z_T T_y - \oint p(s) q_o (s) ds}{2 A_h}$

 With point $S=T$
Torsion of closed thin-walled section beams

- **General relationships**
 - We have seen
 - \((\sigma_{xx} + \partial_x \sigma_{xx} \delta x) t \delta s - \sigma_{xx} t \delta s + (q + \partial_s q \delta s) \delta_x - q \delta x = 0\)
 \[\implies t \partial_x \sigma_{xx} + \partial_s q = 0\]
 - \((\sigma_s + \partial_s \sigma_s \delta s) t \delta x - \sigma_{xx} t \delta x + (q + \partial_x q \delta x) \delta_s - q \delta s = 0\)
 \[\implies t \partial_s \sigma_s + \partial_x q = 0\]
 - If the section is closed
 - **Bredt assumption for closed sections:** Stresses are constant on \(t\), and if there is only a constant torque applied then \(\sigma_s = \sigma_{xx} = 0\)
 \[\begin{cases}
 \partial_x q = 0 \\
 \partial_s q = 0
 \end{cases}\]
 \[\implies \text{Constant shear flow (not shear stress)}\]
Torsion of closed thin-walled section beams

• Torque
 – As q due to torsion is constant
 • $M_x = \int p q d s = q \int p d s \quad \Rightarrow \quad M_x = 2 A_h q$

• Displacements
 – It has been established that
 • $\gamma = 2 \epsilon_{x s} = \frac{\partial u_s}{\partial x} + \frac{\partial u_x}{\partial s}$
 • So in linear elasticity

 $q = \mu t (u_{s,x} + u_{x,s})$

 – But for pure torsion q is constant

 $0 = q_{,x} = \mu t (u_{x,sx} + u_{s,xx})$

 • Remark μt is not constant along s but it is assumed constant along x

 $\epsilon_{x x,s} + u_{s,xx} = 0$

 • As $\sigma_{xx} = \sigma_s = 0 \quad \Rightarrow \quad u_{s,xx} = 0$
Displacements (2)

- It has been established that for a twist around the twist center R

$$\frac{\partial u_s}{\partial x} = p \frac{\partial \theta}{\partial x} + \frac{\partial u_y^C}{\partial x} \cos \Psi + \frac{\partial u_z^C}{\partial x} \sin \Psi$$

- As $u_{s,xx} = 0$

$$0 = p \frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 u_y^C}{\partial x^2} \cos \Psi + \frac{\partial^2 u_z^C}{\partial x^2} \sin \Psi$$

for all values of s (so all value of Ψ)

- The only possible solution is

$$\frac{\partial^2 \theta}{\partial x^2} = 0 \ , \ \frac{\partial^2 u_y^C}{\partial x^2} = 0 \ \& \ \frac{\partial^2 u_z^C}{\partial x^2} = 0$$

- So displacement fields related to torsion are linear with x

$$\begin{align*}
\theta &= C_1 x + C_2 \\
u_y^C &= C_3 x + C_4 \\
u_z^C &= C_5 x + C_6
\end{align*}$$
• Rate of twist
 - Use
 • Relation \(\int \frac{q}{\mu t} ds = 2A_h \frac{\partial \theta}{\partial x} \)
devolved for shearing, but with \(q \) due
to torsion constant on \(s \)
 • Torque expression \(M_x = 2A_h q \)
 - Twist
 • \(\theta_s = \frac{M_x}{4A_h^2} \int \frac{1}{\mu t} ds \) constant with \(x \)
 \[\theta = \frac{M_x}{4A_h^2} \int \frac{1}{\mu t} ds x + C_2 \]
 - Torsion rigidity
 • \(C = \frac{M_x}{\theta_s} = \frac{4A_h^2}{\int \frac{1}{\mu t} ds} \)
 • Torsion second moment of area for constant \(\mu \):
 \[I_T = \frac{4A_h^2}{\int \frac{1}{t} ds} \leq I_p = \int_A r^2 dA \]
Warping

- Use

 • Relation

 \[u_x(s) = u_x(0) + \int_0^s \frac{q}{\mu t} \, ds - \frac{A_{R_p}(s)}{A_h} \int_0^s \frac{q}{\mu t} \, ds \]

 developed for shearing, but with \(q \) due to torsion constant on \(s \)

 • Swept from twist center \(R \)

 \[A_{R_p}(s) = \frac{1}{2} \int_0^s p_{R} \, ds \]

 • Torque expression

 \[M_x = 2A_h q \]

- Warp displacement

 • \(u_x(s) = u_x(0) + \frac{M_x}{2A_h} \int_0^s \frac{1}{\mu t} \, ds - \frac{M_x A_{R_p}(s)}{2A_h^2} \int \frac{1}{\mu t} \, ds \]

 \[\Longrightarrow u_x(s) = u_x(0) + \frac{M_x}{2A_h} \left[\int_0^s \frac{1}{\mu t} \, ds - \frac{A_{R_p}(s)}{A_h} \int \frac{1}{\mu t} \, ds \right] \]
Torsion of closed thin-walled section beams

- **Twist & Warping under pure torsion**
 - **Twist** \(\theta_x = \frac{M_x}{4A_h^2} \int \frac{1}{\mu t} ds \)
 - **Warp** \(u_x(s) = u_x(0) + \frac{M_x}{2A_h} \left[\int_0^s \frac{1}{\mu t} ds - \frac{A_{R_p}(s)}{A_h} \int_0^s \frac{1}{\mu t} ds \right] \)
 - **Deformation**
 - Plane surfaces are no longer plane
 - It has been assumed they keep the same projected shape + linear rotation
 - Longitudinal strains are equal to zero
 - All sections possess identical warping
 - Longitudinal generators keep the same length although subjected to axial displacement
• Zero warping under pure torsion

 - Warp $u_x(s) = u_x(0) + \frac{M_x}{2A_h} \left[\int_0^s \frac{1}{\mu t} ds - \frac{A_{R_\psi}}{A_h} \int_0^s \frac{1}{\mu t} ds \right]

 - Zero warping condition requires

 \[\int_0^s \frac{1}{\mu t} ds = \frac{1}{2} \int_0^s p_R ds \]

 for all values of s

 \[\frac{1}{\mu t} \int_0^s \frac{1}{\mu t} ds = \frac{p_R}{2A_h} \quad \Rightarrow \quad p_R \mu t = \frac{2A_h}{\int_0^s \frac{1}{\mu t} ds} \]

 - As right member is constant the condition of zero warping is $p_R \mu t$ constant with respect to s

 - Solutions at constant shear modulus

 - Circular pipe of constant thickness
 - Triangular section of constant t

 (p_R is the radius of the inscribed circle which origin coincides with the twist center)

 - Rectangular section with $t_h b = t_b h$
Example

- Doubly symmetrical rectangular closed section
- Constant shear modulus
- Twist rate?
- Warping distribution?
Torsion of closed thin-walled section beams

- **Twist rate**
 - As the section is doubly symmetrical, the twist center is also the section centroid C
 - Twist rate $\theta_x = \frac{M_x}{4A_h^2} \int \frac{1}{\mu t} \, ds$
 - $A_h = h b$
 - $\int \frac{1}{t} \, ds = \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{1}{t_h} \, dz + \int_{-\frac{b}{2}}^{\frac{b}{2}} \frac{1}{t_b} \, (-dy) + \int_{-\frac{h}{2}}^{\frac{h}{2}} \frac{1}{t_h} \, (-dz) + \int_{-\frac{b}{2}}^{\frac{b}{2}} \frac{1}{t_b} \, dy = \frac{2h}{t_h} + \frac{2b}{t_b}$
 - $\theta_x = \frac{M_x}{2\mu h^2 b^2} \left(\frac{h}{t_h} + \frac{b}{t_b} \right)$
 - For a beam of length L and constant section $\frac{\theta}{LM_x} = \frac{\frac{h}{t_h} + \frac{b}{t_b}}{2\mu h^2 b^2}$
 - Torsion rigidity $C = \left(\frac{\frac{h}{t_h} + \frac{b}{t_b}}{2\mu h^2 b^2} \right)^{-1} = \mu I_T \leq \mu I_P$
Torsion of closed thin-walled section beams

- **Warping**
 - As the section is doubly symmetrical, the twist center is also the section centroid \(C \)
 - **Warping**
 - It can be set up to 0 at point \(E \)
 - By symmetry it will be equal to zero wherever a symmetry axis intercept the wall

- \(\mathbf{u}_x (s) = \mathbf{u}_x (0) + \frac{M_x}{2A_h} \left[\int_0^s \frac{1}{\mu t} \, ds - \frac{A_{R_p} (s)}{A_h} \int_0^s \frac{1}{\mu t} \, ds \right] \)

- \(A_h = h b \) & \(\int \frac{1}{t} \, ds = \frac{2h}{t_h} + \frac{2b}{t_b} \)

- On part \(EA \)

\[-\int_0^s \frac{1}{t} \, ds = \int_0^z \frac{1}{t_h} \, dz = \frac{z}{t_h} \quad \& \quad A_{R_p} = \int_0^s \frac{p R}{2} \, ds = \int_0^z \frac{b}{4} \, dz = \frac{bz}{4} \]

\[\mathbf{u}_x (z)_{EA} = \frac{M_x}{2 \mu h b} \left[\frac{z}{t_h} - \frac{bz}{4bh} \left(\frac{2h}{t_h} + \frac{2b}{t_b} \right) \right] \]
Torsion of closed thin-walled section beams

• Warping (2)

 – On part EA

 \[
 \mathbf{u}_x(z)^{EA} = \frac{M_x}{2\mu hb} \left[\frac{z}{t_h} - \frac{bz}{4bh} \left(\frac{2h}{t_h} + \frac{2b}{t_b} \right) \right]
 \]

 \[
 \mathbf{u}_x(z)^{EA} = \frac{M_x z}{2\mu hb} \left[\frac{1}{t_h} - \frac{1}{2h} \frac{ht_b + bt_h}{t_h t_b} \right]
 \]

 \[
 \mathbf{u}_x(z)^{EA} = \frac{M_x z}{2\mu hb} \frac{ht_b - bt_h}{2ht_h t_b}
 \]

 \[
 \mathbf{u}_x(z)^{EA} = \frac{M_x z}{4\mu h^2 b} \left(\frac{h}{t_h} - \frac{b}{t_b} \right)
 \]

 – So using symmetry and as distribution is linear

\[
\begin{align*}
\mathbf{u}_x^A &= \mathbf{u}_x^C = \frac{M_x}{8\mu hb} \left(\frac{h}{t_h} - \frac{b}{t_b} \right) \\
\mathbf{u}_x^B &= \mathbf{u}_x^D = \frac{M_x}{8\mu hb} \left(\frac{b}{t_b} - \frac{h}{t_h} \right)
\end{align*}
\]

• Zero warping if $b t_h = h t_b$
• Torsion of a thick section
 – The problem can be solved explicitly by recourse to a stress function
 – Hydrodynamic analogy
 • Shear stresses have the same expression than the velocity in a rotational flow in a box of same section
Torsion of thick section

- Torsion of a thick circular section
 - Exact solution of the problem
 - By symmetry there is no warping
 - Sections remain plane
 - $\gamma = r\theta, x$
 - In linear elasticity
 - Shear stresses $\tau = \mu \gamma = r\mu \theta, x$
 - Torque $M_x = \int_A r\tau dA = \int_A \mu r^2 dA \theta, x$
 - Torsion rigidity $C = \frac{M_x}{\theta, x} = \int_A \mu r^2 dA$
 - At constant shear modulus (required for symmetry): $C = \mu I_p$
 - For circular cross sections (only) $I_p = I_T$
 - Maximum shear stress $\tau_{\text{max}} = \frac{M_x r_{\text{max}}}{I_p}$
Torsion of thick section

- **Torsion of a rectangular section**
 - Exact solution of the problem with stress function
 - **Assumptions**
 - Linear elasticity
 - Constant shear modulus
 - Maximum stress at mid position of larger edge
 - \(\tau_{\text{max}} = \frac{M_x}{\alpha h b^2} \)
 - Torsion rigidity (constant \(\mu \))
 - \(C = \frac{M_x}{\theta_{,x}} = \beta h b^3 \mu \)
 - \(IT = \beta h b^3 \)
 - Approximation for \(h \gg b \)
 - \(C = \frac{M_x}{\theta_{,x}} = \frac{h b^3 \mu}{3} \)
 - \(IT = \frac{h b^3}{3} \)
 - \(\tau_{xy} = 0 \) & \(\tau_{xz} = 2 \mu y \theta_{,x} \)
 - \(\tau_{\text{max}} = \frac{3M_x}{hb^2} \)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
h/b & 1 & 1.5 & 2 & 4 & \infty \\
\hline
\alpha & 0.208 & 0.231 & 0.246 & 0.282 & 1/3 \\
\beta & 0.141 & 0.196 & 0.229 & 0.281 & 1/3 \\
\hline
\end{array}
\]
Torsion of thick section

- Torsion of a rectangular section (2)
 - Warping
 \[
 \begin{align*}
 \gamma_{xz} &= u_{x,z} + u_{z,x} = \frac{\tau_{xz}}{\mu} \\
 \gamma_{xy} &= u_{y,x} + u_{x,y} = \frac{\tau_{xy}}{\mu}
 \end{align*}
 \]
 - As
 \[
 u_{x,z} = \frac{\tau_{xz}}{\mu} - u_{z,x} = \frac{\tau_{xz}}{\mu} - \frac{\partial}{\partial x} (\theta y)
 \]
 \[
 u_{x,z} = \frac{\tau_{xz}}{\mu} - y \theta_x
 \]
 - For a rigid rotation (first order approximation)
 \[
 u_{x,y} = \frac{\tau_{xy}}{\mu} - u_{y,x} = \frac{\tau_{xy}}{\mu} - \frac{\partial}{\partial x} (-\theta z)
 \]
 \[
 u_{x,y} = \frac{\tau_{xy}}{\mu} + z \theta_x
 \]
 - For a thin rectangular section
 \[
 \tau_{xy} = 0 \quad \text{&} \quad \tau_{xz} = 2\mu y \theta_x
 \]
 \[
 u_{x,y} = \frac{\tau_{xy}}{\mu} + z \theta_x \quad \implies \quad u_x = z y \theta_x + C_1 z + C_2
 \]
 \[
 u_x = z y \theta_x
 \]
 \[
 \text{Doubly symmetrical section} \quad \implies \quad u_x = z y \theta_x
 \]
Torsion of open thin-walled section beams

- **Rectangle approximation of open thin-walled section beams**
 - Thin rectangle
 - \(\tau_{xy} = 0 \quad \& \quad \tau_{xz} = 2\mu y\theta_{,x} \)
 - For constant shear modulus
 - \(C = \frac{M_x}{\theta_{,x}} = \frac{ht^3\mu}{3} \quad \Rightarrow \quad I_T = \frac{ht^3}{3} \)
 - Warping \(u_x = zy\theta_{,x} \)
 - Thin curved section
 - If \(t << \) curvature an approximate solution is
 - \(\tau_{xs} = 2\mu n\theta_{,x} \)
 - \(C = \frac{M_x}{\theta_{,x}} = \frac{1}{3} \int \mu t^3 ds \)
 - Open section composed of thin rectangles
 - Same approximation
 - \(\tau_{\text{max}_i} = \mu t_i \theta_{,x} \)
 - \(M_x = \theta_{,x} = \sum_i \frac{l_i t_i^3 \mu}{3} \)
Warping

- Warping around s-axis
 - Thin rectangle $u_x = z y \theta_{,x} + C_1 z + C_2$
 - Here C_i are not equal to 0
 - Part around s-axis $u^t_x = n s \theta_{,x}$
- Warping of the s-line ($n=0$)
 - We found $\gamma = 2 \varepsilon_{xs} = \frac{\partial u_s}{\partial x} + \frac{\partial u_x}{\partial s}$
 - If R is the twist center
 - $\frac{\partial u_s}{\partial x} = p_R \theta_{,x}$
 - $\tau_{xs} = \mu \gamma = \mu \frac{\partial u_x}{\partial s} + \mu p_R \theta_{,x}$
 - As $\tau_{xs} = 2 \mu n \theta_{,x}$ $\tau_{xs}(n=0) = 0$
 - $\frac{\partial u_x}{\partial s} = -p_R \theta_{,x}$
 - Eventually s-axis warp (usually the larger)

$$u^s_x(s) = u^s_x(0) - \theta_{,x} \int_0^s p_R ds' = u^s_x(0) - 2 A_{R_p}(s) \theta_{,x}$$
• Example
 - U open section
 - Constant shear modulus (25 GPa)
 - Torque of 10 N·m
 - Maximum shear stress?
 - Warping distribution?
• Maximum shear stress
 - Torsion second moment of area

 \[I_T = \sum \frac{l_i t_i^3}{3} = \frac{2}{3} bt_f^3 + \frac{ht_w^3}{3} = \frac{2 \times 0.025 \times 0.0015^3 + 0.05 \times 0.0025^3}{3} = 0.317 \times 10^{-9} \text{m}^4 \]
 - Twist rate

 \[\theta_{,x} = \frac{M_x}{\mu I_T} = \frac{10}{25 \times 0.317} = 1.26 \text{ rad} \cdot \text{m}^{-1} \]
 - Maximum shear stress reached in web

 \[\tau_{\text{max}} = \pm 2\mu \frac{t_w}{2} \theta_{,x} = \pm 25 \times 10^9 \times 0.00251.26 = \pm 78.9 \text{ MPa} \]
Torsion of open thin-walled section beams

- **Twist center**
 - Zero-warping point
 - Free ends so the shear center S corresponds to twist center R
 - See lecture on structural discontinuities
 - By symmetry, lies on Oy axis
 - Apply Shear T_z to obtained y'
 - Shear flow for symmetrical section

- \[q(s) = -\frac{T_z}{I_{yy}} \int_0^s tzs'ds' \]

- With \[I_{yy} = \frac{twh^3}{12} + \frac{2h^2}{4}tfb \]
 \[= \frac{0.0025}{12} \frac{0.05^3}{2} + \frac{0.05^2}{2} 0.0015 0.025 = 72.9 \times 10^{-9} m^4 \]
Torsion of open thin-walled section beams

- **Twist center (2)**
 - Shear flow for symmetrical section (2)

 \[q(s) = -\frac{T_z}{I_{yy}} \int_0^s t \ z \ ds' \]

 - **On lower flange**

 \[q_f(y') = -\frac{T_z}{I_{yy}} \int_b^{y'} t_f \left(-\frac{h}{2} \right) (-dy') \]

 \[= \frac{T_z t_f h}{2I_{yy}} (b - y') \]

 - **Momentum due to shear flow**

 - Zero web contribution around \(O' \)

 - Top and lower flanges have the same contribution

 \[M_{O'} = h \frac{-b q_f(y' = 0)}{2} = -\frac{T_z t_f h^2 b^2}{4I_{yy}} \]

 \[= -T_z \frac{0.0015 \ 0.05^2 \ 0.025^2}{4 \ 72.9 \ 10^{-9}} = -8.04 \text{ mm } T_z \]

 - **Moment balance**

 \[M_{O'} = -8.04 \text{ mm } T_z = y'ST_z \quad y'_S = -8.04 \text{ mm} \]

 - **Be careful:** clockwise orientation of \(q, s \)
Warping of s-axis

- $u^s_x(s) = u^s_x(0) - 2A_{R_p}(s)\theta_x$
- Origin in O' as by symmetry $u_x(O')=0$
 - On $O'A$ branch
 - Area swept is positive
 \[
 u^s_{x,O'A}(z') = -\int_{O'}^s p_Rds\theta_x = -|y'_S|z'\theta_x
 \]
 \[
 = -0.00804 \times 1.26z' = -0.0101z'
 \]
 - At point A
 \[
 u^s_{x,A} = -0.0101 \frac{h}{2} = -0.0101 \times 0.025 = -0.25 \text{ mm}
 \]
 - On AB branch
 - Area swept is negative
 \[
 u^s_{x,AB}(y') = u^s_{x,A} - \int_{A}^{s} p_Rds\theta_x
 \]
 \[
 = -0.25 \text{ mm} + \int_{0}^{y'} \frac{h}{2}dy''\theta_x
 \]
• Warping of s-axis (2)

 - $u^s_x(s) = u^s_x(0) - 2AR_p(s)\theta_{,x}$
 - Origin in O’ as by symmetry $u_x(O’)=0$ (2)

 • On AB branch

 - Area swept is negative

 $$u^{s,AB}_x(y') = u^{s,A}_x - \int_A^s p_R ds\theta_{,x}$$

 $$= -0.25 \text{ mm} + \int_0^{y'} \frac{h}{2} dy''\theta_{,x}$$

 $$u^{s,AB}_x(y') = -0.25 \text{ mm} + \frac{h\theta_{,x}}{2} y'$$

 $$= -0.25 \text{ mm} + 0.25 \times 1.26 \times y' = -0.25 \text{ mm} + 0.315 \times y'$$

 - At point B

 $$u^{s,B}_x = -0.25 \text{ mm} + 0.0315 \times 0.25 = 0.54 \text{ mm}$$

 • Branches for $z’<0$ obtained by symmetry
Torsion of open thin-walled section beams

- Warping of s-axis (3)
 - On $O'A$ branch
 \[u_{x}^{s,O'A}(z') = -0.0101z' \]
 - On AB branch
 \[u_{x}^{s,AB}(y') = -0.25 \text{ mm} + 0.0315y' \]
 - Branches for $z'<0$ obtained by symmetry
Combined open and closed section beams

- **Wing section near an undercarriage bay**
 - **Bending**
 - There was no assumption on section shape
 - Use same formula
 - **Shearing**
 - Shear center has to be evaluated for the complete section
 - Shearing results into a shear load passing through this center & a torque
 - Shear flow has different expression in open & closed parts of the section
 - **Torsion**
 - Rigidity of open section can be neglected most of the time
 - But stress in open section can be high
Combined open and closed section beams

• Example
 – Simply symmetrical section
 – Constant thickness
 – Shear stress?

![Diagram showing a section with dimensions and forces](image)

- $b_f = 0.1 \text{ m}$
- $h_f = 0.1 \text{ m}$
- $b_b = 0.2 \text{ m}$
- $h_b = 0.2 \text{ m}$
- $T_z = 100 \text{ kN}$
- $t = 2 \text{ mm}$
Combined open and closed section beams

- **Centroid**
 - By symmetry, on $O'_{z'}$ axis
 - z'_C?

 \[z'_C t (2h_f + 2b_f + 2b_b + 2h_b) = 2h_f t \left(-\frac{h_f}{2} \right) + b_b t (-h_b) + 2h_b t \left(-\frac{h_b}{2} \right) \]

 \[z'_C = - \frac{2h_f \frac{h_f}{2} + b_b h_b + 2h_b \frac{h_b}{2}}{2h_f + 2b_f + 2b_b + 2h_b} = - \frac{0.01 + 0.04 + 0.04}{0.2 + 0.2 + 0.4 + 0.4} = -0.075 \text{ m} \]
Combined open and closed section beams

- **Second moment of area**

 - As \(z'_C = -0.075 \text{ m} \)

 \[
 I_{yy} = 2 \frac{th_f^3}{12} + 2 \left(-\frac{h_f}{2} - z'_C \right)^2 th_f + \left(-z'_C \right)^2 t (2b_f + b_b) + (-h_b - z'_C)^2 tb_b + 2 \frac{th_b^3}{12} + 2 \left(-\frac{h_b}{2} - z'_C \right)^2 h_b t
 \]

 \[
 I_{yy} = 2 \frac{0.002 \times 0.1^3}{12} + 2 \times 0.025^2 \times 0.002 \times 0.1 + 0.075^2 \times 0.002 \times 0.4 + (-0.125^2 \times 0.002 \times 0.2 + 2 \times 0.002 \times 0.2^3) + 2 \times 0.025^2 \times 0.2 \times 0.002 = 14.5 \times 10^{-6} \text{ m}^4
 \]

\[
\begin{align*}
 h_f &= 0.1 \text{ m} \\
 h_b &= 0.2 \text{ m} \\
 b_f &= 0.1 \text{ m} \\
 b_b &= 0.2 \text{ m} \\
 t &= 2 \text{ mm} \\
 T_z &= 100 \text{ kN}
\end{align*}
\]
• **Shear flow**

 – As $I_{xy} = 0$ & as shear center on C_z

 $q(s) = q_o(s) + q(0)$

 with $q_o(s) = -\frac{T_z}{I_{yy}} \int_0^s tz ds$

• At A & H shear stress has to be zero

 – If origin on A, $q(0) = 0$

 – Corresponds to an open section

• Branch AB

\[
q^{AB}(s) = -\frac{T_z}{I_{yy}} \int^{z'}_{-h_f-z'_C} tz'' dz'' = -\frac{T_z t}{2I_{yy}} \left[z^2 - (-h_f - z'_C)^2\right]
\]

\[
q^{AB}(z) = -\frac{100 \times 10^3}{2 \times 14.5 \times 10^{-6}} \left[z^2 - 0.025^2\right] = 4310 \text{ N} \cdot \text{m}^{-1} - 6.9 \times 10^6 \text{ N} \cdot \text{m}^{-3} z^2
\]

\[
q^B = q^{AB}(0.075) = 4310 - 6.9 \times 10^6 \times 0.075^2 = -34.5 \times 10^3 \text{ N} \cdot \text{m}^{-1}
\]
Shear flow (2)

- **Branch \(BC'\)**

 \[
 q^{BC'}(s) = q^B - \frac{T_z}{I_{yy}} \int_{-b_f - \frac{b_b}{2}}^{y} t (-z_C') \, dy'' = q^B + \frac{T_z t z_C'}{I_{yy}} \left[y + b_f + \frac{b_b}{2} \right]
 \]

 \[
 q^{BC'}(y) = -34.5 \times 10^3 \text{ N} \cdot \text{m}^{-1} - \frac{100 \times 10^3 \times 0.002 \times 0.075}{14.5 \times 10^{-6}} [y + 0.2]
 \]

 \[
 = -241.4 \times 10^3 \text{ N} \cdot \text{m}^{-1} - 1.034 \times 10^6 \text{ N} \cdot \text{m}^{-2} y
 \]

- **\(q^{C'}: BC'\)**

 \[
 q^{C'} = q^{BC'}(-0.1) = -241.4 \times 10^3 + 103.4 \times 10^3 = -138 \times 10^3 \text{ N} \cdot \text{m}^{-1}
 \]

- **Branches \(FG \& GH\)**

 - By symmetry

Aircraft Structures - Beam - Torsion & Section Idealization

\(2013-2104\)
Shear flow (3)

- Closed part: \(q(s) = q_o(s) + q(0) \)
 - With \(q_o(s) = -\frac{T_z}{I_{yy}} \int_0^s tzds \) & \(q(s = 0) = \frac{y_T T_z - z_T T_y - \int p(s) q_o(s) ds}{2A_h} \)

- Let us fix the origin at \(O' \)
 - By symmetry \(q(0) = 0 \) (if not the formula would have required anticlockwise \(s, q \))

\[q = q_o(s) \]

- Branch \(O'F \)

\[q^{O'F} = -\frac{T_z}{I_{yy}} \int_0^y t (-z'_{C}) dy = \frac{T_z t y z'_{C}}{I_{yy}} y \]

\[q^{O'F}(y) = -\frac{100 \times 10^3 \times 0.002 \times 0.075}{14.5 \times 10^{-6}} y = -1.03 \times 10^6 \text{ } y \text{ } \text{N} \cdot \text{m}^{-2} \]

\[q^{F; \ O'F} = q^{O'F}(0.1) = -103 \times 10^3 \text{ } \text{N} \cdot \text{m}^{-1} \]
Combined open and closed section beams

- **Shear flow (4)**

 - **Branch FE**

 - Shear flux should be conserved at point F

 $$q^{F; FE} = q^{F; O'F} + q^{F; GF}$$

 $$= -241 \times 10^3 \text{ N} \cdot \text{m}^{-1}$$

 - Shear flux on branch

 $$q^{FE} = q^{F; FE} - \frac{T_z}{I_{yy}} \int_{-z_C'}^{z} tZ'' (-dz)$$

 $$= q^{F; FE} + \frac{T_z}{2I_{yy}} (z^2 - z_C'^2)$$

 $$q^{FE} (z) = -241 \times 10^3 + \frac{100 \times 10^3 \times 0.002}{2 \times 145 \times 10^{-6}} (z^2 - 0.075^2)$$

 $$= 6.9 \times 10^6 z^2 \text{ N} \cdot \text{m}^{-3} - 279.8 \times 10^3 \text{ N} \cdot \text{m}^{-1}$$

 $$q^E = q^{FE} (-0.125) = -6.9 \times 10^6 \times 0.125^2 - 279.8 \times 10^3 = -172 \times 10^3 \text{ N} \cdot \text{m}^{-1}$$

 $$\max_{z} q^{FE} (z) = q^{FE} (0) = -279.8 \times 10^3 \text{ N} \cdot \text{m}^{-1}$$
Combined open and closed section beams

- Shear flow (5)
 - Branch EI
 - $q^{EI}(s) = q^E - \frac{T_z}{I_{yy}} \int_{\frac{b_b}{2}}^{y} t \left(-h_b - z'_C\right) (-dy) = q^E + \frac{T_z t (h_b + z'_C)}{I_{yy}} \left(\frac{b_b}{2} - y\right)$
 - $q^{EI}(y) = -172 \times 10^3 + \frac{100 \times 10^3 \times 0.002 \times 0.125}{14.5 \times 10^{-6}} (0.1 - y) = -1.72 \times 10^6 \ y \ N \cdot m^{-2}$
 - Other branches by symmetry
• Shear flow (6)

- Remark, if symmetry had not been used, shear stress at O' should be computed (but require anticlockwise s and q for these signs of y_T & z_T)

\[
q(s = 0) = \frac{y_T T_z - z_T T_y}{2A_h} \cdot p(s) q_o(s) ds
\]

\[
q(O') = -\frac{1}{2A_h} \int p q_o(s) ds
\]

- With

\[
p^{OF} = p^{CO'} \quad \text{&} \quad q^{OF} = -q^{CO'} \quad \&
\]

\[
ds^{OF} = ds^{CO'}
\]

\[
\int_F^{O'} p q_o^{FO'} ds + \int_{O'}^{C'} p q_o^{O'C'} ds = 0
\]

- etc
Example

- Closed nose cell
 - 0.02 m² – area
 - 0.9 m – outer length
- Open bay
- Constant shear modulus
 \(\mu = 25 \text{ GPa} \)
- Torque 10 kN·m
- Twist rate?
- Shear stress?
Combined open and closed section beams

- **Twist rate**
 - As an approximation the 2 torsion rigidities are added
 - **Cell**
 - Closed section with constant μ
 - $I_{T,\text{closed}} = \frac{4A_c h^2}{\int \frac{1}{t} ds}$
 - $\mu I_{Tc} = \frac{4\mu A_c^2 t_c}{l + h}$
 - $\mu I_{Tc} = \frac{4 \mu A_c^2 t_c}{l + h} = \frac{4 \cdot 0.02^2 \cdot 0.0015 \cdot 25 \cdot 10^9}{1.2} = 50 \cdot 10^3 \text{ N} \cdot \text{m}^2$
 - **Bay**
 - Open section with constant μ
 - $I_{T,\text{open}} = \sum \frac{l_i t_i^3}{3}$
 - $\mu I_{Tb} = \frac{\mu t_b^3}{3} (b_b + h) = \frac{25 \cdot 10^9 \cdot 0.002^3 \cdot 0.9}{3} = 60 \text{ N} \cdot \text{m}^2$
 - **Twist rate**
 - $\mu I_T = 50060 \text{ N} \cdot \text{m}^2$
 - $\theta_{x} = \frac{M_x}{\mu I_T} = \frac{10^4}{50060} = 0.1998 \text{ rad} \cdot \text{m}^{-1}$
Combined open and closed section beams

- **Shear stress**
 - **Cell**
 - Closed section \(M_x = 2 A_l q\)
 - \[q_c = \frac{M_x}{2A_c} = \frac{10^4}{2 \times 0.02} = 250 \times 10^3 \text{ N} \cdot \text{m}^{-1}\]
 - \[\tau_c = \frac{q_c}{t_c} = \frac{250 \times 10^3}{0.0015} = 166.7 \text{ MPa}\]
 - **Bay**
 - Open section \(\tau_{\text{max}} = \mu t_i \theta_{ix}\)
 - \[\tau_{b,\text{max}} = \mu t_b \theta_{ix} = 25 \times 10^9 \times 0.002 \times 0.1998 = 9.99 \text{ MPa}\]
• Example 2-spar wing (one cell)
 – Stringers to stiffen thin skins
 – Angle section form spar flanges

• Design stages
 – Conceptual
 • Define the plane configuration
 – Span, airfoil profile, weights, …
 • Analyses should be fast and simple
 – Formula, statistics, …
 – Preliminary design
 • Starting point: conceptual design
 • Define more variables
 – Number of stringers, stringer area, …
 • Analyses should remain fast and simple
 – Use beam idealization
 » See today
 – FE model of thin structures
 » See next lectures
 – Detailed design
 • All details should be considered (rivets, …)
 • Most accurate analyses (3D, non-linear, FE)
Wing section idealization

- Principle of idealization
 - Booms
 - Stringers, spar flanges, …
 - Have small sections compared to airfoil
 - Direct stress due to wing bending is almost constant in each of these
 - They are replaced by concentrated area called booms
 - Booms
 - Have their centroid on the skin
 - Are carrying most direct stress due to beam bending
 - Skin
 - Skin is essentially carrying shear stress
 - It can be assumed
 - That skin is carrying only shear stress
 - If direct stress carrying capacity of skin is reported to booms by appropriate modification of their area
Wing section idealization

Panel idealization

- **Skin panel**
 - Thickness t_D, width b
 - Carrying direct stress *linearly distributed*
- **Replaced by**
 - Skin without thickness
 - 2 booms of area A_1 and A_2
- **Booms’ area depending on loading**
 - Moment around boom 2
 \[
 \sigma_{xx}^2 t_D b \frac{b}{2} + \left(\frac{\sigma_{xx}^1 - \sigma_{xx}^2}{2} \right) t_D b \frac{2b}{3} = \sigma_{xx}^1 A_1 b
 \]
 \[\Rightarrow A_1 = \frac{t_D b}{6} \left(2 + \frac{\sigma_{xx}^2}{\sigma_{xx}^1} \right)\]
 - Total axial loading
 \[
 \sigma_{xx}^2 t_D b + \left(\frac{\sigma_{xx}^1 - \sigma_{xx}^2}{2} \right) t_D b = A_1 \sigma_{xx}^1 + A_2 \sigma_{xx}^2
 \]
 \[\Rightarrow A_2 = t_D b + \left(\frac{\sigma_{xx}^1}{\sigma_{xx}^2} - 1 \right) \frac{t_D b}{2} - A_1 \frac{\sigma_{xx}^1}{\sigma_{xx}^2}
 \]
 \[\Rightarrow A_2 = \frac{t_D b}{6} \left(2 + \frac{\sigma_{xx}^1}{\sigma_{xx}^2} \right)\]
Wing section idealization

- Example
 - 2-cell box wing section
 - Simply symmetrical
 - Angle section of 300 mm2

- Idealization of this section to resist to bending moment?
 - Bending moment along y-axis
 - 6 direct-stress carrying booms
 - Shear-stress-only carrying skin panels
Wing section idealization

- **Booms’ area**
 - **Bending moment**
 - Along y-axis
 - Stress proportional to z
 - stress distribution is linear on each section edge
 - **Contributions**
 - Flange(s)’ area
 - Reported skin parts
 - Use formula for linear distribution
 - $A_1 = 300 \times 10^{-6} + \frac{0.003 \times 0.4}{6} \left(2 + \frac{-0.2}{0.2} \right) + \frac{0.002 \times 0.6}{6} \left(2 + \frac{0.15}{0.2} \right)$
 - $A_6 = A_1 = 1.05 \times 10^{-3}$ m2
 - $A_2 = 2 \times 300 \times 10^{-6} + \frac{0.002 \times 0.6}{6} \left(2 + \frac{0.2}{0.15} \right) + \frac{0.0015 \times 0.6}{6} \left(2 + \frac{0.1}{0.15} \right) + \frac{0.0025 \times 0.3}{6} \left(2 + \frac{-0.15}{0.15} \right)$
 - $A_2 = A_4 = 1.79 \times 10^{-3}$ m2
 - $A_3 = 300 \times 10^{-6} + \frac{0.0015 \times 0.6}{6} \left(2 + \frac{0.15}{0.1} \right) + \frac{0.002 \times 0.2}{6} \left(2 + \frac{-0.1}{0.1} \right)$
 - $A_4 = A_3 = 0.892 \times 10^{-3}$ m2
Section idealization consequences

• Consequence on bending
 – Idealization depends on the loading case
 • Booms area are dependent on the loading case
 – Direct stress due to bending is carried by booms only
 • For bending the axial load is equal to zero
 \[N_x = \int_A \sigma_{xx} \, dA = \sum_i \sigma_{xx}^i A_i = 0 \]
 • But direct stress depends on the distance \(z \) from neutral axis
 \[\sigma_{xx}^i = \kappa E z_i \sum_i z_i A_i = 0 \]
 – It can be concluded that for open or closed sections, the position of the neutral axis, and thus the second moments of area
 • Refer to the direct stress carrying area only
 • Depend on the loading case only
Section idealization consequences

• Example
 – Idealized fuselage section
 • Simply symmetrical
 • Direct stress carrying booms
 • Shear stress carrying skin panels
 – Subjected to a bending moment
 • $M_y = 100 \text{ kN}\cdot\text{m}$
 – Stress in each boom?
Section idealization consequences

- **Centroid**
 - Of idealized section

\[
 z'_c \left(A_1 + 2 \sum_{i=2}^{8} A_i + A_9 \right) = A_1 z'_1 + 2 \sum_{i=2}^{8} A_i z'_i
\]

\[
 z'_c = \frac{1}{6 \ 0.00064 + 6 \ 0.0006 + 2 \ 0.00062 + 2 \ 0.00085
[1.2 \ 0.00064 + 2 \ (1.14 + 0.96 + 0.768) \ 0.0006 + 2 \ 0.565 \ 0.00062 + 2 \ (0.336 + 0.144) \ 0.00064 + 2 \ 0.038 \ 0.00085]}
\]

\[
 z'_c = \frac{0.0055892}{0.01038} = 0.54 \text{ m}
\]
Section idealization consequences

- Second moment of area
 - Of idealized section

\[
I_{yy} = A_1 (z'_1 - z'_C)^2 + 2 \sum_{i=2}^{8} A_i (z'_i - z'_C)^2 + A_9 (z'_9 - z'_C)\]

\[
I_{yy} = 0.00064 \times 0.66^2 + 2 \times 0.0006 \times (0.6^2 + 0.42^2 + 0.228^2) + \\
2 \times 0.00062 \times 0.025^2 + 2 \times 0.00064 \times ((-0.204)^2 + (-0.396)^2) + \\
2 \times 0.00085 \times (-0.502)^2 + 0.00064 \times (-0.54)^2\]

\[
I_{yy} = 1.855 \times 10^{-3} \text{ m}^4
\]
Section idealization consequences

• Stress distribution
 – Stress assumed constant in each boom
 – As we are in the principal axes

\[\sigma_{xx}^i = \frac{M_y z_i}{I_{yy}} = \frac{M_y}{I_{yy}} (z'_i - z'_C) \]

\[
\begin{align*}
\sigma_{xx}^1 &= \frac{100 \times 10^3}{1.855 \times 10^{-3}} 0.66 = 35.6 \text{ MPa} \\
\sigma_{xx}^2 &= \frac{100 \times 10^3}{1.855 \times 10^{-3}} 0.6 = 32.3 \text{ MPa} \\
\sigma_{xx}^3 &= \frac{100 \times 10^3}{1.855 \times 10^{-3}} 0.42 = 22.6 \text{ MPa} \\
\sigma_{xx}^4 &= \frac{100 \times 10^3}{1.855 \times 10^{-3}} 0.228 = 12.3 \text{ MPa} \\
\sigma_{xx}^5 &= \frac{100 \times 10^3}{1.855 \times 10^{-3}} 0.025 = 1.35 \text{ MPa} \\
\sigma_{xx}^6 &= -\frac{100 \times 10^3}{1.855 \times 10^{-3}} 0.204 = -11.0 \text{ MPa} \\
\sigma_{xx}^7 &= -\frac{100 \times 10^3}{1.855 \times 10^{-3}} 0.396 = -21.3 \text{ MPa} \\
\sigma_{xx}^8 &= -\frac{100 \times 10^3}{1.855 \times 10^{-3}} 0.502 = -27.1 \text{ MPa} \\
\sigma_{xx}^9 &= -\frac{100 \times 10^3}{1.855 \times 10^{-3}} 0.54 = -29.1 \text{ MPa}
\end{align*}
\]

\[A_1 = 640 \text{ mm}^2 \quad z'_1 = 1.2 \text{ m} \]
\[A_2 = 600 \text{ mm}^2 \quad z'_2 = 1.14 \text{ m} \]
\[A_3 = 600 \text{ mm}^2 \quad z'_3 = 0.960 \text{ m} \]
\[A_4 = 600 \text{ mm}^2 \quad z'_4 = 0.768 \text{ m} \]
\[A_5 = 620 \text{ mm}^2 \quad z'_5 = 0.565 \text{ m} \]
\[A_6 = 640 \text{ mm}^2 \quad z'_6 = 0.336 \text{ m} \]
\[A_7 = 640 \text{ mm}^2 \quad z'_7 = 0.144 \text{ m} \]
\[A_8 = 850 \text{ mm}^2 \quad z'_8 = 0.038 \text{ m} \]
\[A_9 = 640 \text{ mm}^2 \]
Section idealization consequences

• Consequence on open-thin-walled section shearing
 – Classical formula
 \[q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t_z ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t_y ds' \]
 – Results from integration of balance equation
 \[t\partial_x \sigma_{xx} + \partial_s q = 0 \]
 – With \(\sigma_{xx} = \frac{(I_{zz}M_y + I_{yz}M_z)\,z - (I_{yz}M_y + I_{yy}M_z)\,y}{I_{yy}I_{zz} - I_{yz}^2} \)
 – So consequences are
 • Terms \(\int_0^s t\,(s')\,z\,(s')\,ds' \) & \(\int_0^s t\,(s')\,y\,(s')\,ds' \) should account for the direct stress-carrying parts only (which is not the case of shear-carrying-only skin panels)
 • Expression of the shear flux should be modified to account for discontinuities encountered between booms and shear-carrying-only skin panels
Section idealization consequences

- Consequence on open-thin-walled section shearing (2)
 - Equilibrium of a boom of an idealized section
 \[
 (\sigma_{xx} + \partial_x \sigma_{xx} \delta x) A_i - \sigma_{xx} A_i + q_{i+1} \delta x - q_i \delta x = 0
 \]
 \[q_{i+1} - q_i = -\partial_x \sigma_{xx} A_i\]
 - Lecture on beam shearing
 - Direct stress reads
 \[
 \sigma_{xx} = \frac{(I_{zz} M_y + I_{yz} M_z) z - (I_{yz} M_y + I_{yy} M_z) y}{I_{yy} I_{zz} - I_{yz}^2}
 \]
 - With \(T_z = \partial_x M_y \) & \(T_y = -\partial_x M_z \)
 - Eventually
 \[
 q_{i+1} - q_i = -\frac{I_{zz} T_z - I_{yz} T_y}{I_{yy} I_{zz} - I_{yz}^2} z_i A_i - \frac{I_{yy} T_y - I_{yz} T_z}{I_{yy} I_{zz} - I_{yz}^2} y_i A_i
 \]
 (no sum on \(i\))
Section idealization consequences

- Consequence on open-thin-walled section shearing (3)

\[q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct}} \sigma z ds + \sum_{i: s_i \leq s} z_i A_i \right] - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct}} \sigma y ds + \sum_{i: s_i \leq s} y_i A_i \right] \]
Section idealization consequences

- **Example**
 - Idealized U shape
 - Booms of 300 mm2 area each
 - Booms are carrying all the direct stress
 - Skin panels are carrying all the shear flow
 - Shear load passes through the shear center
 - Shear flow?

\[
T_z = 4.8 \text{ kN}
\]

\[
h = 0.4 \text{ m}
\]

\[
b = 0.2 \text{ m}
\]
Section idealization consequences

- **Shear flow**
 - Simple symmetry \rightarrow principal axes

 $$ q(s) = -\frac{T_z}{I_{yy}} \left[\int_{0}^{s} t_{\text{direct}} \sigma z ds + \sum_{i: s_i \leq s} z_i A_i \right] $$
 - Only booms are carrying direct stress

 $$ q(s) = -\frac{T_z}{I_{yy}} \sum_{i: s_i \leq s} z_i A_i $$
 - Second moment of area

 $$ I_{yy} = \sum_{i} A_i z_i^2 = 4 \times 300 \times 10^{-6} \times 0.2^2 = 48 \times 10^{-6} \, \text{m}^4 $$
 - Shear flow

 $$ q^{12}(s) = -\frac{T_z}{I_{yy}} A_1 z_1 = -\frac{4.8 \times 10^3}{48 \times 10^{-6}} 300 \times 10^{-6} (-0.2) = 6 \times 10^3 \, \text{N} \cdot \text{m}^{-1} $$
 $$ q^{23}(s) = -\frac{T_z}{I_{yy}} (A_1 z_1 + A_2 z_2) = -\frac{4.8 \times 10^3}{48 \times 10^{-6}} 300 \times 10^{-6} (-0.4) = 12 \times 10^3 \, \text{N} \cdot \text{m}^{-1} $$
 $$ q^{34}(s) = -\frac{T_z}{I_{yy}} (A_1 z_1 + A_2 z_2 + A_3 z_3) = -\frac{4.8 \times 10^3}{48 \times 10^{-6}} 300 \times 10^{-6} (-0.2) = 6 \times 10^3 \, \text{N} \cdot \text{m}^{-1} $$
Section idealization consequences

- Comparison with uniform U section
 - We are actually capturing the **average** value in each branch
Section idealization consequences

• Consequence on closed-thin-walled section shearing

 – Classical formula

 • \(q(s) = q_o(s) + q(0) \)

 • With \(q_o(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s')z(s') \, ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s')y(s') \, ds' \)

 • And \(q(s = 0) = \frac{y_T T_z - z_T T_y - \int p(s) q_o(s) \, ds}{2A_h} \)

 for anticlockwise \(q \) and \(s \)

 – So consequences are the same as for open section

 • \(q_o(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct}} \sigma z \, ds + \sum_{i: s_i \leq s} z_i A_i \right] - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \left[\int_0^s t_{\text{direct}} \sigma y \, ds + \sum_{i: s_i \leq s} y_i A_i \right] \)
Section idealization consequences

- Example
 - Idealized wing section
 - Simply symmetrical
 - Booms are carrying all the direct stress
 - Skin panels are carrying all the shear flow
 - Shear load passes through booms 3 & 6
 - Shear flow?

\[
\begin{align*}
A_1 &= 200 \text{ mm}^2 \\
A_2 &= 250 \text{ mm}^2 \\
A_3 &= 400 \text{ mm}^2 \\
A_4 &= 100 \text{ mm}^2 \\
A_5 &= A_4 \\
A_6 &= A_3 \\
A_7 &= A_2 \\
A_8 &= A_1 \\
T_z &= 10 \text{ kN} \\
h_i &= 0.1 \text{ m} \\
h_m &= 0.2 \text{ m} \\
h_r &= 0.06 \text{ m} \\
b_l &= 0.12 \text{ m} \\
b_m &= 0.24 \text{ m} \\
b_r &= 0.24 \text{ m}
\end{align*}
\]
Section idealization consequences

- **Open part of shear flow**
 - Symmetrical section
 - Shear center & centroid on C_y axis
 - $I_{xy} = 0$ (we are in the principal axes)
 - Only booms are carrying direct stress

\[
q_o(s) = -\frac{T_z}{I_{yy}} \sum_{i: s_i \leq s} z_i A_i
\]

- Second moment of area

\[
I_{yy} = \sum_{i=1}^{8} A_i z_i^2 = 2 \times 10^{-6} \left(200 \times 0.03^2 + 250 \times 0.1^2 + 400 \times 0.1^2 + 100 \times 0.05^2 \right)
= 13.86 \times 10^{-6} \text{ m}^4
\]
Section idealization consequences

- Open part of shear flow (2)
 - Choose (arbitrarily) the origin between boom 2 and 3

\[q_{o3} = 0 \]
\[q_{o34} = -\frac{T_z}{I_{yy}} A_3 z_3 \]
\[= -\frac{10^4}{13.86 \times 10^{-6}} 0.0004 \times 0.1 \]
\[= -28.9 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]
\[q_{o45} = -\frac{10^4}{13.86 \times 10^{-6}} (0.0004 \times 0.1 + 0.0001 \times 0.05) = -32.5 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]
\[q_{o56} = -\frac{10^4}{13.86 \times 10^{-6}} [0.0004 \times 0.1 + 0.0001 (0.05 - 0.05)] = -28.9 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]
\[q_{o67} = -\frac{10^4}{13.86 \times 10^{-6}} [0.0004 (0.1 - 0.1) + 0.0001 (0.05 - 0.05)] = 0 \]
\[q_{o78} = -\frac{10^4}{13.86 \times 10^{-6}} [... - 0.00025 \times 0.1] = 18 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]
\[q_{o81} = -\frac{10^4}{13.86 \times 10^{-6}} [... - 0.00025 \times 0.1 - 0.0002 \times 0.03] = 22.4 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]
Section idealization consequences

- Open part of shear flow (3)
 - Choose (arbitrarily) the origin between boom 2 and 3 (2)

\[
q_{o}^{12} = -\frac{10^4}{13.86 \times 10^{-6}} \left[... - 0.00025 \times 0.1 + 0.0002 \times (0.03 - 0.03) \right] = 18 \times 10^3 \text{ N} \cdot \text{m}^{-1}
\]

\[
q_{o}^{20} = -\frac{10^4}{13.86 \times 10^{-6}} \left[... + 0.00025 \times (0.1 - 0.1) + 0.0002 \times (0.03 - 0.03) \right] = 0
\]
Section idealization consequences

- **Constant part of shear flow**
 \[q(0) = \frac{yTz - \int p\, q_o\, ds}{2A_h} \]
 (anticlockwise \(s, q \))

- If origin is chosen at point \(O' \)
 \[q(0) = -\frac{\int pO' q_o\, ds}{2A_h} \]

- With
 \[
 A_h = b_l \frac{h_m + h_l}{2} + b_m h_m + b_r \frac{h_m + h_r}{2} = 0.12 \ 0.15 + 0.24 \ 0.2 + 0.24 \ 0.13 = 0.0972 \ \text{m}^2
 \]

- \[
 \int pO' q_o\, ds = q_o^{34} pO' l^{34} + q_o^{45} pO' l^{45} + q_o^{56} pO' l^{56} + q_o^{78} pO' l^{78} + q_o^{81} pO' l^{81} + q_o^{12} pO' l^{12}
 \]

\(\text{b}_l = 0.12 \ \text{m} \quad \text{b}_m = 0.24 \ \text{m} \quad \text{b}_r = 0.24 \ \text{m} \)
Section idealization consequences

- Constant part of shear flow (2)

\[- \int p_O q_o ds = q_0^{34} p_O^{34} l^{34} + q_0^{45} p_O^{45} l^{45} + q_0^{56} p_O^{56} l^{56} + q_0^{78} p_O^{78} l^{78} + q_0^{81} p_O^{81} l^{81} + q_0^{12} p_O^{12} l^{12}\]

\[\int p_O q_o ds = -28900 \cos \left(\tan \frac{0.05}{0.12} \right) 0.1 \sqrt{0.12^2 + 0.05^2} - 32500 \times 0.12 \times 0.1 - \]

\[28900 \cos \left(\tan \frac{0.05}{0.12} \right) 0.1 \sqrt{0.12^2 + 0.05^2} + \]

\[18000 \cos \left(\tan \frac{0.07}{0.24} \right) (0.1 + 0.07) \sqrt{0.24^2 + 0.07^2} + \]

\[22400 \times 0.48 \times 0.06 + 18000 \cos \left(\tan \frac{0.07}{0.24} \right) (0.1 + 0.07) \sqrt{0.24^2 + 0.07^2}\]

\[\int p_O q_o ds = 1030 \text{ N} \cdot \text{m}\]

- \(q_o = 28.9 \text{ kN} \cdot \text{m}^{-1}\)
- \(q_o = 32.5 \text{ kN} \cdot \text{m}^{-1}\)
- \(q_o = 18 \text{ kN} \cdot \text{m}^{-1}\)
- \(q_o = 22.4 \text{ kN} \cdot \text{m}^{-1}\)

\(b_l = 0.12 \text{ m} \quad b_m = 0.24 \text{ m} \quad b_r = 0.24 \text{ m}\)
Section idealization consequences

- Total shear flow

\[q(0) = - \frac{\int P_O q_o ds}{2 A_h} = - \frac{1030}{2 \times 0.0972} = -5.3 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]

- \(q_o = 28.9 \text{ kN} \cdot \text{m}^{-1} \)
- \(h_l = 0.1 \text{ m} \)
- \(b_l = 0.12 \text{ m} \)
- \(b_m = 0.24 \text{ m} \)
- \(b_r = 0.24 \text{ m} \)
- \(h_m = 0.2 \text{ m} \)
- \(h_r = 0.06 \text{ m} \)

- \(q_o = 32.5 \text{ kN} \cdot \text{m}^{-1} \)
- \(q_o = 28.9 \text{ kN} \cdot \text{m}^{-1} \)
- \(q_o = 22.4 \text{ kN} \cdot \text{m}^{-1} \)
- \(q_o = 18 \text{ kN} \cdot \text{m}^{-1} \)

- \(q = 37.8 \text{ kN} \cdot \text{m}^{-1} \)
- \(q = 34.2 \text{ kN} \cdot \text{m}^{-1} \)
- \(q = 5.3 \text{ kN} \cdot \text{m}^{-1} \)
- \(q = 12.7 \text{ kN} \cdot \text{m}^{-1} \)
- \(q = 17.1 \text{ kN} \cdot \text{m}^{-1} \)
- \(q = 12.7 \text{ kN} \cdot \text{m}^{-1} \)
Section idealization consequences

• Consequence on torsion
 – If no axial constraint
 • Torsion analysis does not involve axial stress
 • So torsion is unaffected by the structural idealization
Exercise: Structural idealization

- Box section
 - Arrangement of
 - Direct stress carrying booms positioned at the four corners and
 - Panels which are assumed to carry only shear stresses
 - Constant shear modulus
 - Shear centre?

![Diagram of a box section with dimensions and angles](image-url)
References

• Lecture notes

• Other references
 – Books
Exercise: Structural idealization

- As shear center lies on O_y by symmetry we consider T_Z
 - Section is required to resist bending moments in a vertical plane
 - Direct stress at any point is directly proportional to the distance from the horizontal axis of symmetry, i.e. axis y
 - The distribution of direct stress in all the panels will be linear so that we can use the relation below

$$A_1 = \frac{t_Db}{6} \left(2 + \frac{\sigma_{xx}^2}{\sigma_{xx}^1} \right)$$

$$A_2 = \frac{t_Db}{6} \left(2 + \frac{\sigma_{xx}^1}{\sigma_{xx}^2} \right)$$

- In addition to contributions from adjacent panels, booms areas include the existing spar flanges
Exercise: Structural idealization

- Booms area

\[A_1 = \frac{t_D b}{6} \left(2 + \frac{\sigma_{22}}{\sigma_{11}} \right) \]

\[A_1 = 60 \times 10 + 40 \times 10 + \frac{10 \times 300}{6} \left(2 + \frac{\sigma_{22}^4}{\sigma_{11}^2} \right) + \frac{10 \times 500}{6} \left(2 + \frac{\sigma_{22}^2}{\sigma_{11}^2} \right) \]

\[= 60 \times 10 + 40 \times 10 + \frac{10 \times 300}{6} (2 - 1) + \frac{10 \times 500}{6} (2 + 1) \]

\[= 4000 \text{ mm}^4 \]

\[A_2 = 50 \times 8 + 30 \times 8 + \frac{8 \times 300}{6} \left(2 + \frac{\sigma_{22}^3}{\sigma_{11}^2} \right) + \frac{10 \times 500}{6} \left(2 + \frac{\sigma_{22}^2}{\sigma_{11}^2} \right) \]

\[= 60 \times 10 + 40 \times 10 + \frac{10 \times 300}{6} (2 - 1) + \frac{10 \times 500}{6} (2 + 1) \]

\[= 3540 \text{ mm}^4 \]

- By symmetry
 - \(A_3 = A_2 = 3540 \text{ mm}^2 \)
 - \(A_4 = A_1 = 4000 \text{ mm}^2 \)
Exercise: Structural idealization

- **Shear flow**
 - Booms area
 - \(A_3 = A_2 = 3540 \text{ mm}^2 \)
 - \(A_4 = A_1 = 4000 \text{ mm}^2 \)
 - By symmetry \(I_{yz} = 0 \)

\[
q(s) = -\frac{T_z}{I_{yy}} \sum_{i: s_i \leq s} z_i A_i + q(0)
\]

As only booms resist direct stress

\[
I_{yy} = \sum_{i=1}^{4} A_i z_i^2 = 2 \times 4000 \times 150^2 + 2 \times 3540 \times 150^2 = 339 \times 10^6 \text{ mm}^4
\]
Exercise: Structural idealization

- Open shear flow

\[q_o(s) = -\frac{T_z}{I_{yy}} \sum_{i: s_i \leq s} z_i A_i \]

\[\begin{align*}
q_{01}^{21} &= 0 \\
q_{0}^{14} &= -\frac{T_z}{I_{yy}} \times 4000 \times 150 = -1.77 \times 10^{-3} T_z \\
q_{0}^{43} &= 0 \quad \text{(by symmetry)} \\
q_{0}^{32} &= -\frac{T_z}{I_{yy}} \times 3540 \times -150 = 1.57 \times 10^{-3} T_z
\end{align*} \]
Exercise: Structural idealization

- **Constant shear flow**
 - Load through the shear center
 - no torsion

 \[\int \frac{q}{\mu t} \, ds = 2A_h \frac{\partial \theta}{\partial x} \]

 \[\int \frac{q}{\mu t} \, ds = \int \frac{q_o(s) + q(0)}{\mu t} \, ds = 0 \]

 \[q(0) = -\frac{\int \frac{q_o(s)}{t} \, ds}{\int \frac{1}{t} \, ds} \]

- **With**

 \[\int \frac{q_o(s)}{t} \, ds = q_0^{14} \frac{l_1}{l_1} + q_0^{32} \frac{l_3}{l_3} \]

 \[= -1.77 \times 10^{-3} T_z \times \frac{300}{10} + 1.57 \times 10^{-3} T_z \times \frac{300}{8} = 5.775 \times 10^{-3} T_z \]

 and

 \[\int \frac{1}{t} \, ds = 2 \times \frac{500}{10} + \frac{300}{10} + \frac{300}{8} = 167.5 \]

 \[q(0) = -0.034 \times 10^{-3} T_z \]
Exercise: Structural idealization

- Total shear flow

\[q(0) = -0.034 \times 10^{-3} T_z \]
Exercise: Structural idealization

- **Shear center**
 - Moment around O
 - Due to shear flow
 - Should be balanced by the external loads

\[y_T T_z = 1.536 \times 10^{-3} T_z \times 300 \times 500 - 2 \times 0.034 \times 10^{-3} T_z \times 500 \times 150 \]

\[y_T = 225 \text{ mm} \]
Annex 1: Deflection of open and closed section beams

- **Twist due to torsion**
 - As torsion analysis remains valid for idealized section, one could use the twist rate

 \[
 \theta_{,x} = \frac{M_x}{4A_h^2} \int \frac{1}{\mu t} \, ds
 \]

 \[
 M_x = 2A_h q
 \]

 - **Closed section**
 \[
 C = \frac{M_x}{\theta_{,x}} = \frac{1}{3} \int \mu t^3 \, ds
 \]
 \[
 \tau_{xs} = 2\mu n \theta_{,x}
 \]

 - **Open section**

 - **In general**
 \[
 \Delta \theta = \int_0^L \frac{M_x}{C} \, dx
 \]
 \[
 \tau \propto M_x
 \]
 \[
 \gamma = \frac{\tau}{\mu}
 \]

 - How can we compute deflection for other loading cases?
Symmetrical bending

- For pure bending we found $\sigma_{xx} = \kappa E \xi$
- Therefore the virtual work reads

$$\int_0^L \int_A \sigma_{xx} \delta \varepsilon_{xx} dA dx = \int_0^L \int_A \sigma_{xx} \delta \left(\frac{\sigma_{xx}}{E} \right) dA dx = \int_0^L \int_A \sigma_{xx} \delta \left(\frac{\kappa E \xi}{E} \right) dA dx$$

- Let us assume C_z symmetrical axis, $M_z = 0$ & pure bending (M_y constant)

$$\int_0^L \int_A \sigma_{xx} \delta \varepsilon_{xx} dA dx = \int_0^L \int_A \sigma_{xx} z dA \delta (-u_{z,xx}) dx = M_y \delta \int_0^L (-u_{z,xx}) dx = -M_y \delta \Delta u_{z,x}$$

- Consider a unit applied moment, and $\sigma^{(1)}$ the corresponding stress distribution

$$\int_0^L \int_A \sigma^{(1)}_{xx} \varepsilon_{xx} dA dx = \int_0^L \int_A \sigma^{(1)}_{xx} \frac{\sigma_{xx}}{E} dA dx = -\Delta u_{z,x}$$

- The energetically conjugated displacement (angle for bending) can be found by integrating the strain distribution multiplied by the unit-loading stress distribution
Annex 1: Deflection of open and closed section beams

Virtual displacement

- Expression for pure bending

\[\int_0^L \int_A \sigma_{xx}^{(1)} \frac{\sigma_{xx}}{E} dA dx = -\Delta u_{z,x} \]

- In linear elasticity the general formula of virtual displacements reads

\[\int_0^L \int_A \sigma^{(1)} : \varepsilon dA dx = P^{(1)} \Delta P \]

- \(\sigma^{(1)} \) is the stress distribution corresponding to a (unit) load \(P^{(1)} \)
- \(\Delta P \) is
 - The energetically conjugated displacement to \(P \)
 - In the direction of \(P^{(1)} \)
 - Corresponds to the strain distribution \(\varepsilon \)
Symmetrical bending due to extremity loading

- Example C_z symmetrical axis, $M_z = 0$ & bending due to extremity load

\[\int_0^L \int_A \sigma_{xx} \delta \varepsilon_{xx} dA dx = \int_0^L \int_A \sigma_{xx} z dA \delta (-u_{z,xx}) dx = \int_0^L M_y \delta (-u_{z,xx}) dx \]

Case of a semi-cantilever beam

\[\int_0^L \int_A \sigma_{xx} \delta \varepsilon_{xx} dA dx = \int_0^L T_z (x - L) \delta (-u_{z,xx}) dx \]

\[= T_z [(L - x) \delta u_{z,x}]_0^L + T_z \int_0^L \delta u_{z,x} dx = T_z \delta \Delta u_z \]

Eventually

\[\Delta u_z = \int_0^L \int_A \sigma^{(1)}_{xx} \varepsilon_{xx} dA dx \]

- $\sigma^{(1)}$ is the stress distribution corresponding to a (unit) load $T_z^{(1)}$
- Δu_z is the energetically conjugated displacement to T_z in the direction of $T_z^{(1)}$ that corresponds to the strain distribution ε
Annex 1: Deflection of open and closed section beams

- **General pure bending**
 - If neutral axis is α-inclined
 \[
 \int_0^L \int_A \sigma_{xx} \delta \varepsilon_{xx} \, dA \, dx = \int_0^L \int_A \sigma_{xx} \delta \left(\frac{kE \xi}{E} \right) \, dA \, dx
 \]
 - With $\xi = z \cos \alpha - y \sin \alpha$
 - It has been shown that
 \[
 \begin{align*}
 \frac{\partial^2 u_y}{\partial x^2} &= \frac{\partial^2 \xi}{\partial x^2} \sin \alpha = \kappa \sin \alpha \\
 \frac{\partial^2 u_z}{\partial x^2} &= -\frac{\partial^2 \xi}{\partial x^2} \cos \alpha = -\kappa \cos \alpha
 \end{align*}
 \]
 \[
 \kappa \xi = \kappa z \cos \alpha - \kappa y \sin \alpha = -u_{z,xx}z - u_{y,xx}y
 \]
 - Eventually, as M is constant with x
 \[
 \int_0^L \int_A \sigma_{xx} \delta \left(\frac{\sigma_y}{E} \right) \, dA \, dx = \int_0^L \int_A \sigma_{xx} \delta \left(-u_{z,xx}z - u_{y,xx}y\right) \, dA \, dx =
 \]
 \[
 -M_y \delta \Delta u_{z,x} + M_z \delta \Delta u_{y,x} = M_y \delta \Delta \theta_y + M_z \delta \Delta \theta_z
 \]
Annex 1: Deflection of open and closed section beams

- General bending due to extremity loading

 - Bending moment depends on \(x \)

 \[
 \int_0^L \int_A \sigma_{xx} \delta \left(\frac{\sigma_{xx}}{E} \right) \, dA \, dx = \int_0^L \int_A \sigma_{xx} \delta \left(-u_{z,xx} z - u_{y,xx} y \right) \, dA \, dx = \\
 \int_0^L (- M_y \delta \Delta u_{z,xx} + M_z \delta \Delta u_{y,xx}) \, dx \ \ y
 \]

 - Integration by parts

 \[
 \int_0^L \int_A \sigma_{xx} \delta \left(\frac{\sigma_{xx}}{E} \right) \, dA \, dx = \\
 \int_0^L (L - x) \left[T_z \delta \Delta u_{z,xx} + T_y \delta \Delta u_{y,xx} \right] \, dx = \\
 [(L - x) (T_z \delta \Delta u_{z,x} + T_y \delta \Delta u_{y,x})]_0^L + \\
 \int_0^L [T_z \delta \Delta u_{z,x} + T_y \delta \Delta u_{y,x}] \, dx
 \]

 - Semi-cantilever beam

 \[
 \int_0^L \int_A \sigma_{xx} \delta \left(\frac{\sigma_{xx}}{E} \right) \, dA \, dx = T_z \delta \Delta u_z + T_y \delta \Delta u_y = T \cdot \delta \Delta u
 \]
Annex 1: Deflection of open and closed section beams

- General bending due to extremity loading (2)
 - Virtual displacement method
 \[\int_0^L \int_A \sigma_{xx}^{(1)} \varepsilon_{xx} dA dx = \Delta_p u \]
 - With \(\sigma^{(1)} \) due to the (unit) moments \(M^{(1)} \) resulting from the unit extremity loading
 \[\sigma_{xx}^{(1)} = \frac{\left(I_{zz} M_y^{(1)} + I_{yz} M_z^{(1)} \right) z - \left(I_{yz} M_y^{(1)} + I_{yy} M_z^{(1)} \right) y}{I_{yy} I_{zz} - I_{yz}^2} \]
 - With \(\Delta_{plu} \) displacement in the direction of the unit extremity loading and corresponding to the strain distribution
 \[\varepsilon_{xx} = \frac{1}{E} \left(I_{zz} M_y + I_{yz} M_z \right) z - \left(I_{yz} M_y + I_{yy} M_z \right) y \]
Annex 1: Deflection of open and closed section beams

- General bending due to extremity loading (3)
 - Virtual displacement method (2)
 - After developments, and if Δ_{pu} is the displacement in the direction of $T^{(1)} = 1$

$$\Delta_{pu} = \int_0^L \int_A \sigma_{xx}^{(1)} \varepsilon_{xx} \ dA \ dx$$

$$= \frac{1}{E \left(I_{yy} I_{zz} - I_{yz}^2 \right)} \int_0^L \int_A \left[\left(I_{zz} M_y^{(1)} + I_{yz} M_z^{(1)} \right) z - \left(I_{yz} M_y^{(1)} + I_{yy} M_z^{(1)} \right) y \right]$$

$$\left[(I_{zz} M_y + I_{yz} M_z) z - (I_{yz} M_y + I_{yy} M_z) y \right] \ dA \ dx$$

$$\Delta_{pu} = \frac{1}{E \left(I_{yy} I_{zz} - I_{yz}^2 \right)} \int_0^L \left\{ \left(I_{zz} M_y^{(1)} + I_{yz} M_z^{(1)} \right) \left(I_{zz} M_y + I_{yz} M_z \right) I_{yy} + \left(I_{yz} M_y^{(1)} + I_{yy} M_z^{(1)} \right) \left(I_{yz} M_y + I_{yy} M_z \right) I_{zz} - \left(I_{zz} M_y^{(1)} + I_{yz} M_z^{(1)} \right) \left(I_{zz} M_y + I_{yz} M_z \right) I_{yz} \right\} \ dx$$

- In the principal axes $I_{yz} = 0$

$$\Delta_{pu} = \frac{1}{EI_{yy} I_{zz}} \int_0^L \left\{ I_{zz} M_y^{(1)} M_y + I_{yy} M_z^{(1)} M_z \right\} \ dx$$
Annex 1: Deflection of open and closed section beams

• Shearing
 – Internal energy variation
 \[\int_0^L \int_A \tau \delta \gamma dA dx = \int_0^L \int_A \tau \delta \frac{T}{\mu} dA dx = \int_0^L \int_s q \delta \frac{q}{\mu t} ds dx \]
 – Variation of the work of external forces
 \[\int_0^L \int_A \tau \delta \gamma dA dx = \int_0^L t \tau \delta (\partial_x u_s + \partial_x u_x) ds dx \]
 – Defining the average deformation of a section
 – See use of \(A' \) for thick beams
 – Vectorial value
 \[\int_0^L \int_A \tau \delta \gamma dA dx = \int_0^L \int_s t \tau \delta \partial_x \bar{u}_s \cdot ds dx = \int_0^L \left(\int_s t \tau ds \right) \cdot \delta \partial_x \bar{u}_s dx \]
 – Applied shear loading \(T = \int_s t \tau ds \)

 \[\int_0^L \int_A \tau \delta \gamma dA dx = \int_0^L T \cdot \delta \partial_x u dx = T \cdot \delta \Delta u \]
Annex 1: Deflection of open and closed section beams

- **Shearing (2)**
 - Virtual work
 \[
 \int_0^L \int_s q^{(1)} \frac{q}{\mu t} ds dx = T^{(1)} \Delta u = \Delta_T u
 \]
 - With \(\Delta_T u \) the average deflection of the section in the direction of the applied unit shear load
 - With \(q^{(1)} \) the shear flux distribution resulting from this applied unit shear load
 \[
 q^{(1)}(s) = -\left(\frac{I_{zz}T_z^{(1)} - I_{yz}T_y^{(1)}}{I_{yy}I_{zz} - I_{yz}^2} \right) \left[\int_0^s t_{\text{direct}} \sigma z ds + \sum_{i: s_i \leq s} z_i A_i \right] - \left(\frac{I_{yy}T_y^{(1)} - I_{yz}T_z^{(1)}}{I_{yy}I_{zz} - I_{yz}^2} \right) \left[\int_0^s t_{\text{direct}} \sigma y ds + \sum_{i: s_i \leq s} y_i A_i \right] + \{q^{(1)}(0)\}
 \]
 - With \(q \) the shear flux distribution corresponding to the deflection \(\Delta_T u \)
 \[
 q(s) = -\left(\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \right) \left[\int_0^s t_{\text{direct}} \sigma z ds + \sum_{i: s_i \leq s} z_i A_i \right] - \left(\frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \right) \left[\int_0^s t_{\text{direct}} \sigma y ds + \sum_{i: s_i \leq s} y_i A_i \right] + \{q(0)\}
 \]
 - \(\{q(0)\} \) meaning only for closed sections
Annex 1: Deflection of open and closed section beams

- Example
 - Idealized U shape
 - Booms of 300-mm2 area each
 - Booms are carrying all the direct stress
 - Skin panels are carrying all the shear flow
 - Actual skin thickness is 1 mm
 - Beam length of 2 m
 - Shear load passes through the shear center at one beam extremity
 - Other extremity is clamped
 - Material properties
 - $E = 70$ GPa
 - $\mu = 30$ GPa
 - Deflection?

\[T_z = 4.8 \text{ kN} \]

\[h = 0.4 \text{ m} \]

\[b = 0.2 \text{ m} \]
Shear flow (already solved)

- Simple symmetry ↔ principal axes

\[q(s) = -\frac{T_z}{I_{yy}} \left[\int_0^s t_{\text{direct}} \sigma z \, ds + \sum_{i: \ s_i \leq s} z_i A_i \right] \]

- Only booms are carrying direct stress

\[q(s) = -\frac{T_z}{I_{yy}} \sum_{i: \ s_i \leq s} z_i A_i \]

- Second moment of area

\[I_{yy} = \sum_i A_i z_i^2 = 4 \times 300 \times 10^{-6} \times 0.2^2 = 48 \times 10^{-6} \text{ m}^4 \]

- Shear flow

\[q^{12}(s) = -\frac{T_z}{I_{yy}} A_1 z_1 = -\frac{4.8 \times 10^3}{48 \times 10^{-6}} \times 300 \times 10^{-6} (-0.2) = 6 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]

\[q^{23}(s) = -\frac{T_z}{I_{yy}} (A_1 z_1 + A_2 z_2) = -\frac{4.8 \times 10^3}{48 \times 10^{-6}} \times 300 \times 10^{-6} (-0.4) = 12 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]

\[q^{34}(s) = -\frac{T_z}{I_{yy}} (A_1 z_1 + A_2 z_2 + A_3 z_3) = -\frac{4.8 \times 10^3}{48 \times 10^{-6}} \times 300 \times 10^{-6} (-0.2) = 6 \times 10^3 \text{ N} \cdot \text{m}^{-1} \]
Annex 1: Deflection of open and closed section beams

- **Unit shear flow**
 - Same argumentation as before but with $T_z = 1 \text{ N}$

 \[
 q^{(1), 12} (s) = -\frac{1 \text{ N}}{I_{yy}} A_1 z_1 = -\frac{1}{48 \times 10^{-6}} 300 10^{-6} (-0.2) = 1.25 \text{ N} \cdot \text{m}^{-1}
 \]

 \[
 q^{(1), 23} (s) = -\frac{1 \text{ N}}{I_{yy}} (A_1 z_1 + A_2 z_2)
 = -\frac{1}{48 \times 10^{-6}} 300 10^{-6} (-0.4) = 2.5 \text{ N} \cdot \text{m}^{-1}
 \]

 \[
 q^{(1), 34} (s) = -\frac{1 \text{ N}}{I_{yy}} (A_1 z_1 + A_2 z_2 + A_3 z_3)
 = -\frac{1}{48 \times 10^{-6}} 300 10^{-6} (-0.2) = 1.25 \text{ N} \cdot \text{m}^{-1}
 \]

- **Displacement due to shearing**

 \[
 -\Delta_T u = \int_0^L \int_s q^{(1)} \frac{q}{\mu t} ds dx = 2 \int_s q^{(1)} \frac{q}{30 \times 10^9 0.001} ds
 \]

 \[
 \Delta_T u = \frac{2}{30 \times 10^9 0.001} \left[6000 \times 1.25 \times 0.2 + 12000 \times 2.5 \times 0.4 + 6000 \times 1.25 \times 0.2 \right] = 10^{-3} \text{ m}
 \]
Annex 1: Deflection of open and closed section beams

- **Bending**
 - Moment due to extremity load
 \[
 \begin{align*}
 M_y &= (x - L) T_z \\
 M_y^{(1)} &= (x - L)
 \end{align*}
 \]
 - Deflection due to extremity load
 - In the principal axes
 \[
 \Delta P u = \frac{1}{E} \int_0^L \frac{M_y^{(1)} M_y}{I_{yy}} \, dx = \frac{T_z}{I_{yy} E} \int_0^L (x - L)^2 \, dx = \frac{T_z L^3}{3 I_{yy} E}
 \]
 \[
 \Delta P u = \frac{4.8 \times 10^3 \times 2^3}{3 \times 48 \times 10^{-6} \times 70 \times 10^9} = 0.00381 \text{ m}
 \]

- **Total deflection**
 - No torsion as shear load passes through the shear center
 - \[\delta u_z = \Delta_T u + \Delta_P u = 0.00481 \text{ m}\]