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• Balance of body B
– Momenta balance 

• Linear 

• Angular

– Boundary conditions
• Neumann

• Dirichlet

• Small deformations with linear elastic, homogeneous & isotropic material

– (Small) Strain tensor                                        , or

– Hooke’s law                     , or

with

– Inverse law

with
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• Assumptions

– Symmetrical beams

– Cross-section remains plane and 

 perpendicular to fibers 

• Bernoulli or Kirchhoff-Love theory

• Only for thin structures (h/L << 1)

• Limited bending: L << 1

– Linear elasticity

• Small deformations

• Homogeneous material

• Hooke ‘s law

– For pure bending

• Vertical axis of symmetry

• Constant curvature of the 

 neutral plane
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• Kinematics

•  

• Linear elasticity

– Hooke’s law & stress-free edges

•  
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• Resultant forces

– Tension

• Should be equal to zero 

 (pure bending)      

• So the neutral axis is defined 

 such that the first moment of

 area

– The neutral axis passes through

 the centroid of area of the cross-

 section

– As, here, Oz is a symmetry axis

 the neutral axis passes through

 the centroid of the cross-section
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• Resultant forces (2)

– Bending moment

• With                                the 

 second moment of area

• As  
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• Example

– I-beam subjected to a bending moment

• 100 kN.m 

• Applied in a 30°- inclined plane

– Distribution of stress?

– Neutral axis?
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• Second moments of area

– Doubly symmetrical cross-section

         origin of the axes is the centroid

–  

–  
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• Bending moment components

–  

–  

• Stress distribution

– Linear elasticity          superposition

–  
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• Stress distribution (2)

–  

– For z =  ± 0.15 m 

– For y = 0 

• Neutral axis

– Such that xx = 0 
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• Assumptions

– Same as for symmetrical bending 

• Bernoulli or Kirchhoff-Love theory

• Only for thin structures (h/L << 1)

• Limited bending: L << 1

• Linear elasticity

• Bending moment in a

 plane being -inclined

– Let us assume

• The existence of a neutral axis 

– Being -inclined

– Including the axes origin
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• Bending moment components

–   

–  

• Pure bending

– Signed distance from neutral axis

– Plane section remains plane

– Pure bending

• As                            the neutral axis still passes through the cross-section centroid
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• Neutral axis

– As

– It yields

•   

•  

• In tensorial form

– So position of the neutral axis depends on

• The geometry

• The loading
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y

z



Mxx

• Principal axes

– As

– The referential can be changed such that

• We are in the principal axes of the section

– This referential is load-independent

• The neutral axis is then obtained by

• And the stresses                                                      are rewritten as

– So in the principal axes, everything happens as for symmetrical loading
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• Example

– Beam subjected to a bending moment

• 1.5 kN.m 

• In the vertical plane

– Neutral axis?

– Maximum stress due to bending ?
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• Position of centroid

– New frame Cyz linked to centroid C  

•  

•   
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• Second moments of area

–  

–   
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Pure bending of unsymmetrical beams

• Second moments of area (2)

–  

– As each part is symmetrical, Iyz with respect to C is equal to the sum of

• Area part times

• y-distance from C of section part to global section C times 

• z-distance from C of section part to global section C
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• Neutral axis

– As

 with  = /2, so 

– Neutral axis in inclined by 14.7° as

• Stresses

–  

– By inspection the maximum stress is reached   
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• Bending deflection

– Let us consider 

• Unsymmetrical beam

• Frame origin at the 

 cross-section centroid

• A bending moment in

 a planed being -inclined

• A resulting neutral-axis

 being -inclined
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• Bending deflection (2)

– Due to the bending moments

• There is a deflection normal

 to the neutral-axis

• The centroid is deflected by  

• The neutral surface has

 a curvature  with

– Deflection components

•   

•  
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• Bending deflection (3)

– As  

•  

•  

– The neutral-axis is obtained by 

•  

             &

• An unsymmetrical beam 

– Deflects both vertically & horizontally even for a loading in the vertical plane  

– Excepted in the principal axes (Iyz=0) 
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• Shearing-bending relationship

– Linear balance equation

– Momentum balance equation

    

                                    as second order terms vanish

– Eventually

•  

•  
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• Bending approximation: deflection equations

– As                                            &

– Deflection equations read 

• Euler-Bernoulli equations for x in [0; L]

• Low order boundary conditions

– Either on displacements                                 & 

– Or on shearing 

• High order boundary conditions

– Either on rotations                                     &

– Or on couple
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• Bending approximation: deflection equations with energy method

– Same results can be obtained with an energy method

– Let us assume we are in the principal axes and Mz = 0 

• As

• Internal energy variation

• Work variation of external forces

Aircraft Structures - Beams - Bending & Shearing               

Bending of unsymmetrical beams

x

z f(x) Tz
Mxx

uz =0

duz /dx =0 M>0

L

2024-2025 25



• Bending approximation: deflection equations with energy method (2)

– Energy conservation

• Integration by parts of the internal energy variation

• Work variation of external forces 
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• Bending approximation: deflection equations with energy method (3)

– Energy conservation (2)

• As uz is arbitrary: 

  Euler-Bernoulli equations

•         on [0, L] &   

•                                 

• Remark: if displacement or rotation constrained at x=0 or x=L 

–  uz =0 is no longer arbitrary at this point

– The boundary condition 

» Becomes uz = value or/and uz,x = value 

» Instead of being on shear or/and couple
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• Bending approximation: shearing

– As

•  

•  

– There are no shearing loads only if the bending moment is constant 

• Cross section remains plane only if constant bending moments

• Beam with cross-section dimensions << L 

– If bending variation is reduced (Saint-Venant)

– Shear stress O(T/bh) ~ bending stress x h/L  

– Shear stress can be neglected

• For thin-walled cross sections (as plates/shells)

– Shear stress O(T/th)  cannot be neglected

– If bending variation is reduced (Saint-Venant)

  Deflection is primarily due to bending strain 
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• Second moments of area for thin-walled sections

– Thin walled section 

• Thickness t << cross-section dimensions

• Example Iyy of a U-thin walled cross-section  

• This result is obtained directly if the section is

 represented as a single line 
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Bending for thin-walled sections

• Second moments of area for thin-walled sections (2)

– Centroid                                                & z’C= 0

– Second moments of area

•    &

 

•                              null as Cy is a symmetry axis
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• Shear stress

– A naïve solution is a uniform stress

•  

• By reciprocity this would lead to zx =  

• Impossible as the surface is stress-free

– So the shear stress has to be tangent to the contour 

 For thick cross section                                       For thin-walled section

– How to compute these profiles?
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• Assumptions

– Thick section

– Symmetrical beam

• My = ||Mxx|| 

• Mz = 0

• Shear stress

– From equilibrium (previous slide):

– Let us consider the lower part of the beam (cross section A*)

• Normal force acting on this lower part extremities

• With the reduced moment of area
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• Shear stress (2)

– We found

– But lower part of the beam is at equilibrium

– So the upper part should apply 

• On the lower part

• A force Rx 

• With

– Shear stress

• On the cut surface, assuming uniform shear stress on b(z) 
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• Deformation

– Section shear strain in linear elasticity

•  

• But shear stress is not uniform

–   = 0 on top and bottom surfaces

–                           at neutral axis

• The average shear strain  is defined as 

– The angle of the deformed neutral axis

 with its original direction
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• Deformation (2)

– Average  obtained by energy method

• Work of external forces

–  

–  If the shear stress was uniform

 one would have

– To account for the non-uniformity, a

 corrected area A’ is used

• Internal energy variation

–  

– As 

Aircraft Structures - Beams - Bending & Shearing               

Shearing of symmetrical beams

x

z

Tz

x

Tz+ ∂xTz x

max


 x

2024-2025 35



• Deformation (3)

– Average  obtained by energy method (2)

• Work of external forces = Internal energy variation

–  Eventually

• Average shear strain

• With                                      

• Under the assumption of a constant shear stress on b(z) 
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• Deformation (4)

– Shearing equations

• Shearing is the difference between

– Neutral fiber deflection

– Orientation of the cross section

» Angle y 

• Curvature is then computed from the variation in cross-section direction

• Timoshenko equations on [0, L] 

– As  

–  As 
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• Bernoulli assumption

– Timoshenko beam equations

– Euler-Bernoulli equations

– It has been assumed that 

 the cross-section remains planar 

 and perpendicular to the neutral axis

– uz,x = -y 

– Validity:  (EI)/(L2A’) << 1 

Aircraft Structures - Beams - Bending & Shearing               

Shear effect

z

x



y

y

x

z f(x) Tz
Mxx

uz =0

duz /dx =0 M>0

L

2024-2025 38



• Example: shear stress for a rectangular section

– Using

• Reduced  moment of area

• Shear stress

• Maximum shear stress reached at z=0:

– Exact solution (elasticity theory): 

• Maximum shear stress reached at y=z=0 

• Shear stress is not uniform on b, but this is a correct approximation for h>b 
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• Example: shear strain for a rectangular section

– Reduced moment of area

– Corrected area

– So if shear stress is uniform on b (ok for  h>b)
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• Extending these equations to unsymmetrical beams

– The equations remain valid

• If we are in principal axes as Iyz = 0

 as everything happens as if uncoupled

• In linear elasticity, as superposition 

 principle holds,  the same equations 

 can be derived for uy 

– But if the loads do not pass through a point called the shear center S there 

will be a twist of the beam

• This point is difficult to obtained for unsymmetrical non-thin-walled sections

– This problem is not relevant for light aeronautic structures based on thin-

walled sections

• Only thin-walled sections will be considered
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• General relationships

– Consider thin-walled sections

• Symmetrical or not

• Closed or open

– Assumption

• Shear is uniform on the thickness t 

            Definition of the shear flow

– Balance equations

•  

•  
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• Shear flow

– Assumption

• No twisting of the beam

        Shear loads pass through

 a particular point called 

 shear center S 

• If this is not the case there is 

 a torsion combined to the shearing

– Equation

• Direct bending stress obtained from 

• ! We use pure bending theory: section assumed to remain planar (not true)
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• Shear flow (2)

– Equations (2)

•    

– Assuming the variation of moment is larger than the variation of section

• But                                   ,                           &

• Eventually

Aircraft Structures - Beams - Bending & Shearing               

Shearing of thin-walled cross section beams

y

z

S

Tz

Ty
C

q

s

2024-2025 44



• Shear flow for an open section beam

– For an open section q(s) = 0 as

 on the boundary xz(0) = zx(0) = 0  

• In the principal axes

• To be compared to the thick cross section approximation

–  

– Has been obtained for symmetrical beam 

 and assuming constant stress on b 

– For unsymmetrical beams, the same approximation leads to

– Accurate only for h/b > 1

Aircraft Structures - Beams - Bending & Shearing               

Shearing of thin-walled open section beams

y

z

S

Tz

Ty
C

q

s

y

z

x



b(z)

A*



h

2024-2025 45



• Shear center

– Definition: 

• No twisting of the beam if shear loads pass through

 a particular point called shear center S 

– Practically

• Shear loads are represented by loads passing 

 through S and by a torque 

– Location

• If axis of symmetry: S lies on it

• If cruciform or angle sections, as q is along these section, S is at the intersection

• Generally speaking: obtained by considering the moment equilibrium
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• Example

– U-thin walled cross section

• From previous exercise

– Location of the shear center S?
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• Location of the shear center

– By symmetry:

• On Cy 

– Horizontal location?

• Consider a shearing Tz (Ty is useless

 as we know the vertical location)

• Ensure moment equilibrium

– Shear flow

•  

• As

• With
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• Shear flow

– Shear flow on bottom flange 

• As

• Maximum shear flow

• Moment around O’ induced by the shearing of bottom flange
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• Shear flow (2)

– Shear flow on the web 

• As

• “Boundary” shear flow

• Maximum shear flow

• Moment around O’ induced by the shearing of the web
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• Shear flow (3)

– Shear flow on top flange 

• As

• Moment around O’ induced by the 

 shearing of the top flange
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• Shear center

– Moment due to the shear flow: 

– It has to be balanced by the shearing
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