Aircraft Structures Beams - Bending & Shearing (Open Section)

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Elasticity

- Balance of body *B*
 - Momenta balance
 - Linear
 - Angular
 - Boundary conditions
 - Neumann
 - Dirichlet

• Small deformations with linear elastic, homogeneous & isotropic material

$$- \text{ (Small) Strain tensor } \boldsymbol{\varepsilon} = \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right), \text{ or } \begin{cases} \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial \boldsymbol{x}_i} \boldsymbol{u}_j + \frac{\partial}{\partial \boldsymbol{x}_j} \boldsymbol{u}_i \right) \\ \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\boldsymbol{u}_{j,i} + \boldsymbol{u}_{i,j} \right) \end{cases}$$

– Hooke's law
$$oldsymbol{\sigma}=\mathcal{H}:oldsymbol{arepsilon}$$
 , or $oldsymbol{\sigma}_{ij}=\mathcal{H}_{ijkl}oldsymbol{arepsilon}_{kl}$

with
$$\mathcal{H}_{ijkl} = \underbrace{\frac{E\nu}{(1+\nu)(1-2\nu)}}_{\lambda=K-2\mu/3} \delta_{ij}\delta_{kl} + \underbrace{\frac{E}{1+\nu}}_{2\mu} \left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$$

- Inverse law $\varepsilon = \mathcal{G} : \sigma$ $\lambda = K - 2\mu/3$

2024-2025

Aircraft Structures - Beams - Bending & Shearing

Assumptions

- Symmetrical beams
 Cross-section remains plane and M_{xx}
 perpendicular to fibers
 Bernoulli or Kirchhoff-Love theory
 Only for thin structures (h/L << 1)
 Limited bending: kL << 1
 Linear elasticity
 Small deformations

 - Homogeneous material
 - Hooke 's law
 - For pure bending
 - Vertical axis of symmetry
 - Constant curvature of the

neutral plane
$$\kappa = -\frac{\partial^2 \boldsymbol{u}_z}{\partial x^2}$$

• Kinematics

•
$$u_x = \kappa xz \implies \varepsilon_{xx} = \kappa z$$

- Linear elasticity
 - Hooke's law & stress-free edges

$$\mathbf{\sigma}_{xx} = \kappa E z$$
$$\mathbf{\sigma}_{yy} = \mathbf{\sigma}_{zz} = 0$$

Resultant forces

- Tension

$$N_x = \int_A \sigma_{xx} dy dz = \kappa E \int_A z dy dz$$

- Should be equal to zero (pure bending)
- So the neutral axis is defined such that the first moment of

area
$$\int_A z dy dz = 0$$

- The neutral axis passes through the centroid of area of the crosssection
- As, here, Oz is a symmetry axis the neutral axis passes through the centroid of the cross-section

Resultant forces (2) Z, Bending moment Z _ M_{xx} $M_{xx} = \int_{A} \kappa E z^2 dy dz = \kappa E I_{yy}$ х y • With $I_{yy} = \int_{A} z^2 dy dz$ the M_{xx} second moment of area • As $\sigma_{xx} = \kappa E z \Longrightarrow \sigma_{xx} = \frac{M_{xx}z}{I_{xx}}$ κ

• Example

- I-beam subjected to a bending moment
 - 100 kN·m
 - Applied in a 30°- inclined plane
- Distribution of stress?
- Neutral axis?

2024-2025

- Such that
$$\sigma_{xx} = 0$$

 $\implies 0 = \sigma_{xx} = 447 \ 10^6 \ \text{Pa} \cdot \text{m}^{-1}z - 1851 \ 10^6 \ \text{Pa} \cdot \text{m}^{-1}y$
 $\implies \frac{z}{y} = \frac{1851}{447} = \tan 76.4^o$

Assumptions

- Same as for symmetrical bending
 - Bernoulli or Kirchhoff-Love theory
 - Only for thin structures (*h*/*L* << 1)
 - Limited bending: *kL* << 1
 - Linear elasticity
 - Bending moment in a plane being θ-inclined

- Let us assume
 - The existence of a neutral axis
 - Being α -inclined
 - Including the axes origin

- Bending moment components
 - $M_y = M_{xx} \cdot E_y = \|M_{xx}\| \sin \theta$
 - $M_z = M_{xx} \cdot E_z = \|M_{xx}\| \cos \theta$

- Pure bending
 - Signed distance from neutral axis $\delta = z \cos \alpha y \sin \alpha$
 - Plane section remains plane

$$\boldsymbol{\sigma}_{xx} = \kappa E \delta$$
$$\implies \boldsymbol{\sigma}_{xx} = \kappa E z \cos \alpha - \kappa E y \sin \alpha$$

- Pure bending

$$N_x = \int_A \sigma_{xx} dy dz = \kappa E \int_A [z \cos \alpha - y \sin \alpha] dy dz = 0$$

• As $\int_A \delta dy dz = 0$ the neutral axis still passes through the cross-section centroid

- So position of the neutral axis depends on
 - The geometry
 - The loading

• Principal axes

$$-\operatorname{As}\left(\begin{array}{c}\cos\alpha\\\sin\alpha\end{array}\right) = \frac{\|\boldsymbol{M}_{xx}\|}{\kappa E} \left(\begin{array}{c}I_{yy} & -I_{yz}\\-I_{yz} & I_{zz}\end{array}\right)^{-1} \left(\begin{array}{c}\sin\theta\\-\cos\theta\end{array}\right)$$

- The referential can be changed such that $\int yz dy dz = 0$

- We are in the principal axes of the section
 - This referential is load-independent
- The neutral axis is then obtained by

$$\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{\|\boldsymbol{M}_{xx}\|}{\kappa E} \begin{pmatrix} \frac{\sin \theta}{I_{yy}} \\ -\frac{\cos \theta}{I_{zz}} \end{pmatrix}$$

• And the stresses $\sigma_{xx} = \kappa E z \cos \alpha - \kappa E y \sin \alpha$ are rewritten as

$$\boldsymbol{\sigma}_{xx} = \|\boldsymbol{M}_{xx}\| \left[\frac{z}{I_{yy}}\sin\theta + \frac{y}{I_{zz}}\cos\theta\right]$$

- So in the principal axes, everything happens as for symmetrical loading

Z,

Z.

 M_{-}

• Example

- Beam subjected to a bending moment
 - 1.5 kN·m
 - In the vertical plane
- Neutral axis?
- Maximum stress due to bending ?

- As each part is symmetrical, I_{vz} with respect to C is equal to the sum of

- Area part times
- y-distance from C of section part to global section C times
- z-distance from C of section part to global section C

• Neutral axis

- As

$$\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{\|M_{xx}\|}{\kappa E} \begin{pmatrix} I_{yy} & -I_{yz} \\ -I_{yz} & I_{zz} \end{pmatrix}^{-1} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$$
with $\theta = \pi/2$, so

$$\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{1.5 \ 10^9}{\kappa E} \begin{pmatrix} 0.9972 \\ 0.2573 \end{pmatrix}$$
- Neutral axis in inclined by 14.7° as
 $\implies \tan \alpha = \frac{0.2573}{0.9972} = 0.258 = \tan 14.7^{\circ}$
Stresses
- $\sigma_{xx} = \kappa Ez \cos \alpha - \kappa Ey \sin \alpha =$
 $1.5 \ 10^9 \ 0.9972 \ z - 1.5 \ 10^9 \ 0.2573 = 1500 \ \text{MPa} \cdot \text{m}^{-1} z - 386 \ \text{MPa} \cdot \text{m}^{-1} y$

By inspection the maximum stress is reached '

$$\implies \max |\sigma_{xx}| = \sigma_{xx} (-0.008; -0.0664) = |-96.5|$$
 MPa

LIEG

universi

- **Bending deflection** •
 - Let us consider ____
 - Unsymmetrical beam •
 - Frame origin at the • cross-section centroid
 - A bending moment in • a planed being θ -inclined
 - A resulting neutral-axis • being α -inclined

Bending deflection (2) Z. Due to the bending moments _ y There is a deflection normal • to the neutral-axis х The centroid is deflected by ξ The neutral surface has a curvature κ with $\kappa = \frac{\partial^2 \xi}{\partial r^2}$ Deflection components _ $\frac{-}{\kappa}$ • $u_y = \xi \sin \alpha$ $\implies \frac{\partial^2 \boldsymbol{u}_y}{\partial r^2} = \frac{\partial^2 \xi}{\partial r^2} \sin \alpha = \kappa \sin \alpha$ • $u_z = -\xi \cos \alpha$ $\implies \frac{\partial^2 u_z}{\partial r^2} = -\frac{\partial^2 \xi}{\partial r^2} \cos \alpha = -\kappa \cos \alpha$

• Bending deflection (3)

•
$$\frac{\partial^2 u_y}{\partial x^2} = \frac{\partial^2 \xi}{\partial x^2} \sin \alpha = \kappa \sin \alpha$$

• $\frac{\partial^2 u_z}{\partial x^2} = -\frac{\partial^2 \xi}{\partial x^2} \cos \alpha = -\kappa \cos \alpha$

- The neutral-axis is obtained by

$$\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{\|\boldsymbol{M}_{xx}\|}{\kappa E} \begin{pmatrix} I_{yy} & -I_{yz} \\ -I_{yz} & I_{zz} \end{pmatrix}^{-1} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$$

$$\implies \begin{pmatrix} -\boldsymbol{u}_{z,xx} \\ \boldsymbol{u}_{y,xx} \end{pmatrix} = \frac{\|\boldsymbol{M}_{xx}\|}{E(I_{yy}I_{zz} - I_{yz}I_{yz})} \begin{pmatrix} I_{zz} & I_{yz} \\ I_{yz} & I_{yy} \end{pmatrix} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$$

$$& \$ \begin{cases} M_{y} = \|\boldsymbol{M}_{xx}\| \sin \theta = -E(I_{yy}\boldsymbol{u}_{z,xx} + I_{yz}\boldsymbol{u}_{y,xx}) \\ M_{z} = -\|\boldsymbol{M}_{xx}\| \cos \theta = E(I_{yz}\boldsymbol{u}_{z,xx} + I_{zz}\boldsymbol{u}_{y,xx}) \end{cases}$$

- An unsymmetrical beam
 - Deflects both vertically & horizontally even for a loading in the vertical plane
 - Excepted in the principal axes (I_{yz} =0)

Bending of unsymmetrical beams

- Shearing-bending relationship
 - Linear balance equation _ $T_z = T_z + \partial_x T_z \delta x + f_z \delta x$ $\implies f_z(x) = -\partial_x T_z$

Momentum balance equation _

$$M_y + \partial_x M_y \delta x = M_y + f_z \delta x \frac{\delta_x}{2} + (T_z + \partial_x T_z \delta_x) \, \delta x$$

as second order terms vanish $\implies T_z = \partial_x M_y$

Eventually

2024-2025

•
$$f_z(x) = -\partial_x T_z = -\partial_{xx} M_y$$

•
$$f_y(x) = -\partial_x T_y = \partial_{xx} M_z$$

Bending approximation: deflection equations

$$-\operatorname{As}\begin{cases} f_{z}(x) = -\partial_{x}T_{z} = -\partial_{xx}M_{y} \\ f_{y}(x) = -\partial_{x}T_{y} = \partial_{xx}M_{z} \end{cases} \begin{cases} M_{y} = \|\boldsymbol{M}_{xx}\|\sin\theta = -E\left(I_{yy}\boldsymbol{u}_{z,xx} + I_{yz}\boldsymbol{u}_{y,xx}\right) \\ M_{z} = -\|\boldsymbol{M}_{xx}\|\cos\theta = E\left(I_{yz}\boldsymbol{u}_{z,xx} + I_{zz}\boldsymbol{u}_{y,xx}\right) \end{cases}$$

- Deflection equations read
 - '(x) • Euler-Bernoulli equations for x in [0; L] $\begin{cases} f_{z}(x) = \partial_{xx} \left(EI_{yy} \boldsymbol{u}_{z,xx} + EI_{yz} \boldsymbol{u}_{y,xx} \right) & \boldsymbol{u}_{z} = \mathbf{0} \\ f_{y}(x) = \partial_{xx} \left(EI_{yz} \boldsymbol{u}_{z,xx} + EI_{zz} \boldsymbol{u}_{y,xx} \right) & \boldsymbol{u}_{z}/dx = \mathbf{0} \end{cases}$ L
 - Low order boundary conditions
 - Either on displacements $|\bar{\bm{u}}_z|_{0,L} = |\bm{u}_z|_{0,L}$ & $|\bar{\bm{u}}_y|_{0,L} = |\bm{u}_y|_{0,L}$
 - $\left\{ \begin{array}{l} \bar{T}_{y} \Big|_{0, L} = -\partial_{x} \left(EI_{yz} \boldsymbol{u}_{z,xx} + EI_{zz} \boldsymbol{u}_{y,xx} \right) \Big|_{0, L} \\ \bar{T}_{z} \Big|_{0, L} = -\partial_{x} \left(EI_{yy} \boldsymbol{u}_{z,xx} + EI_{yz} \boldsymbol{u}_{y,xx} \right) \Big|_{0, L} \end{array} \right.$ - Or on shearing
 - High order boundary conditions
 - Either on rotations $\bar{u}_{z,x}|_{0,L} = u_{z,x}|_{0,L}$ & $\bar{u}_{y,x}|_{0,L} = u_{y,x}|_{0,L}$
 - Or on couple

$$\begin{cases} \bar{M}_{y}\big|_{0, L} = -\left(EI_{yy}\boldsymbol{u}_{z,xx} + EI_{yz}\boldsymbol{u}_{y,xx}\right)\big|_{0, L} \\ \bar{M}_{z}\big|_{0, L} = \left(EI_{yz}\boldsymbol{u}_{z,xx} + EI_{zz}\boldsymbol{u}_{y,xx}\right)\big|_{0, L} \end{cases}$$

- Bending approximation: deflection equations with energy method
 - Same results can be obtained with an energy method
 - Let us assume we are in the principal axes and $M_z = 0$

Internal energy variation

$$\delta E_{\rm int} = \int_0^L \int_A \boldsymbol{\sigma}_{xx} \delta \boldsymbol{\varepsilon}_{xx} dA dx = \int_0^L \int_A E \kappa \delta \kappa z^2 dA dx = \int_0^L \int_A E \delta \frac{\kappa^2}{2} z^2 dA dx = \delta \int_0^L \frac{M_{xx} \kappa}{2} dx$$

Work variation of external forces

$$\delta W_{\text{ext}} = \int_{0}^{L} f(x) \,\delta \boldsymbol{u}_{z} dx + \bar{T}_{z} \delta \boldsymbol{u}_{z} \Big]_{0}^{L} - \bar{M}_{xx} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \Big|_{0}^{L}$$

$$\implies \int_0^L \frac{1}{2} EI\left(\frac{\partial^2 \boldsymbol{u}_z}{\partial x^2}\right)^2 dx = \int_0^L f(x) \, \boldsymbol{u}_z dx + \bar{T}_z \boldsymbol{u}_z \Big]_0^L - \bar{M}_{xx} \frac{\partial \boldsymbol{u}_z}{\partial x} \Big|_0^L$$

- Bending approximation: deflection equations with energy method (2)
 - Energy conservation

$$\int_{0}^{L} \frac{1}{2} EI\left(\frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}}\right)^{2} dx = u_{z} = 0$$

$$\int_{0}^{L} f(x) \boldsymbol{u}_{z} dx + \bar{T}_{z} \boldsymbol{u}_{z} \Big]_{0}^{L} - \bar{M}_{xx} \frac{\partial \boldsymbol{u}_{z}}{\partial x} \Big|_{0}^{L}$$

$$u_{z} = 0$$

$$\frac{M > 0}{L}$$

• Integration by parts of the internal energy variation

$$\delta E_{\text{int}} = \int_{0}^{L} EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial^{2} \delta \boldsymbol{u}_{z}}{\partial x^{2}} dx = \left[EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \right]_{0}^{L} - \int_{0}^{L} \frac{\partial}{\partial x} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} dx$$
$$\delta E_{\text{int}} = \left[EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \right]_{0}^{L} - \left[\frac{\partial}{\partial x} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \delta \boldsymbol{u}_{z} \right]_{0}^{L} + \int_{0}^{L} \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \left(EI \frac{\partial^{2} \boldsymbol{u}_{z}}{\partial x^{2}} \right) \delta \boldsymbol{u}_{z} dx$$

Work variation of external forces

$$\delta W_{\text{ext}} = \int_{0}^{L} f(x) \,\delta \boldsymbol{u}_{z} dx + \bar{T}_{z} \delta \boldsymbol{u}_{z} \Big]_{0}^{L} - \bar{M}_{xx} \frac{\partial \delta \boldsymbol{u}_{z}}{\partial x} \Big]_{0}^{L}$$

- Bending approximation: deflection equations with energy method (3)
 - Energy conservation (2)
 - As δu_z is arbitrary:
 ⇒ Euler-Bernoulli equations

•
$$\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = f(x)$$
 on [0, L] &

$$u_{z} = 0$$

$$du_{z}/dx = 0$$

$$L$$

$$T_{z}$$

$$M > 0$$

•
$$\begin{cases} -\frac{\partial}{\partial x} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) \Big|_{0,L} = \bar{T}_z \Big|_{0,L} \\ -EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \Big|_{0,L} = \bar{M}_{xx} \Big|_{0,L} \end{cases}$$

- Remark: if displacement or rotation constrained at x=0 or x=L
 - $\delta u_z = 0$ is no longer arbitrary at this point
 - The boundary condition
 - » Becomes u_z = value or/and $u_{z,x}$ = value
 - » Instead of being on shear or/and couple

• Bending approximation: shearing

– As

- $f_z(x) = -\partial_x T_z = -\partial_{xx} M_y$
- $f_y(x) = -\partial_x T_y = \partial_{xx} M_z$
- There are no shearing loads only if the bending moment is constant
 - Cross section remains plane only if constant bending moments
 - Beam with cross-section dimensions << L
 - If bending variation is reduced (Saint-Venant)
 - Shear stress O(T/bh) ~ bending stress x h/L
 - Shear stress can be neglected
 - For thin-walled cross sections (as plates/shells)
 - Shear stress O(T/th) cannot be neglected
 - If bending variation is reduced (Saint-Venant)
 - -----> Deflection is primarily due to bending strain

Bending for thin-walled sections

- Second moments of area for thin-walled sections
 - Thin walled section
 - Thickness t << cross-section dimensions
 - Example I_{yy} of a U-thin walled cross-section

$$I_{yy} = 2\left(\frac{\left(b + \frac{t}{2}\right)t^{3}}{12} + \left(b + \frac{t}{2}\right)t\frac{h^{2}}{4}\right) + \frac{t(h-t)^{3}}{12} - \frac{bth^{2}}{12} + \frac{th^{3}}{12} + \mathcal{O}\left(bt^{3}\right) + \mathcal{O}\left(ht^{3}\right) + \mathcal{O}\left(t^{4}\right) + \mathcal{O}\left(h^{2}t^{2}\right)^{2}$$
$$\implies I_{yy} \simeq \frac{bth^{2}}{2} + \frac{th^{3}}{12}$$

• This result is obtained directly if the section is

represented as a single line

$$I_{yy} = t \int_{l} z^{2} dl = t \left(b \frac{h^{2}}{4} + \frac{h^{3}}{12} + b \frac{h^{2}}{4} \right) = \frac{bth^{2}}{2} + \frac{th^{3}}{12}$$
$$\implies I_{yy} = \frac{th^{3}}{12} \left[1 + \frac{6b}{h} \right]$$

 $Z \blacklozenge$

h

Shearing of beams

 T_{z}

- Shear stress
 - A naïve solution is a uniform stress

•
$$\tau = \sigma_{xz} = \frac{T_z}{A}$$

- By reciprocity this would lead to $\sigma_{zx} = \tau$
- Impossible as the surface is stress-free
- So the shear stress has to be tangent to the contour

For thick cross section

▲*Z*

h

L

х

 M_{y}

δx

 T_{z}

 $f_{z}(x)$

 $T_z + \partial_x T_z \, \delta x$

х

 $M_{y} + \partial_{x}M_{y} \,\delta x$

 $N_{x}^{*} + \partial_{x} N_{x}^{*} \delta x$

Z,

V

- Assumptions
 - Thick section
 - Symmetrical beam
 - $M_y = ||\boldsymbol{M}_{xx}||$
 - $M_z = 0$

2024-2025

- Shear stress
 - From equilibrium (previous slide): $T_z = \partial_x M_y$
 - Let us consider the lower part of the beam (cross section A^*)

Z,

• Normal force acting on this lower part extremities

$$\begin{cases} N_x^* = \int_{A^*} \boldsymbol{\sigma} dA = \frac{M_y}{I_{yy}} \int_{A^*} z dA \\ N_x^* + \partial_x N_x^* \delta x = \int_{A^*} (\boldsymbol{\sigma} + \partial_x \boldsymbol{\sigma} \delta x) \, dA = \frac{M_y + \partial_x M_y \delta x}{I_{yy}} \int_{A^*} z dA \\ \implies \partial_x N_x^* = \frac{\partial_x M_y}{I_{yy}} \int_{A^*} z dA = \frac{T_z}{I_{yy}} \int_{A^*} z dA = \frac{T_z S_n(z)}{I_{yy}} \end{cases}$$

• With the reduced moment of area $S_n(z) = \int_{A^*} z dA$

• Shear stress (2)

- We found
$$\partial_x N_x^* = \frac{T_z S_n(z)}{I_{yy}}$$

- But lower part of the beam is at equilibrium
- So the upper part should apply
 - On the lower part
 - A force $R\delta x$

• With
$$R\delta x = \partial_x N_x^* \delta_x = \frac{T_z S_n(z)}{I_{yy}} \delta x$$

 $\implies R = \frac{T_z S_n(z)}{I_{yy}}$

Shear stress

2024-2025

• On the cut surface, assuming uniform shear stress on b(z)

$$\sigma_{xz} = \sigma_{zx} = \tau = -\frac{R\delta x}{b(z)\,\delta x} = -\frac{T_z S_n(z)}{I_{yy}b(z)}$$
$$\implies \sigma_{zx} = -\frac{T_z S_n(z)}{I_{yy}b(z)}$$

• Deformation

- Section shear strain in linear elasticity

•
$$\gamma = 2\boldsymbol{\varepsilon}_{xz} = \frac{\boldsymbol{\sigma}_{xz}}{\mu} = \frac{\tau}{\mu}$$

• But shear stress is not uniform

$$\boldsymbol{\sigma}_{zx} = -\frac{T_z S_n\left(z\right)}{I_{yy} b\left(z\right)}$$

- $\gamma = 0$ on top and bottom surfaces

-
$$\gamma_{\rm max} = rac{ au_{
m max}}{\mu}$$
 at neutral axis

• The average shear strain $\overline{\gamma}$ is defined as

 The angle of the deformed neutral axis with its original direction

• Deformation (2)

- Average $\overline{\gamma}$ obtained by energy method
 - Work of external forces

$$- \delta^2 W_{\text{ext}} = T_z \delta \bar{\gamma} \delta x$$

- If the shear stress was uniform one would have $\ \bar{\gamma} = \frac{T_z}{A\mu}$
- To account for the non-uniformity, a corrected area *A*' is used $\bar{\gamma} = \frac{T_z}{A'\mu}$

 $\implies \delta^2 W_{\rm ext} = T_z \delta \frac{T_z}{A' \mu} \delta x = \delta \frac{T_z^2}{2A' \mu} \delta x$ • Internal energy variation

$$- \delta^{2} E_{\text{int}} = \int_{A} \left(\boldsymbol{\sigma}_{xz} \delta \boldsymbol{\varepsilon}_{xz} + \boldsymbol{\sigma}_{xz} \delta \boldsymbol{\varepsilon}_{xz} \right) dA \delta x = \int_{A} \frac{1}{\mu} \boldsymbol{\sigma}_{xz} \delta \boldsymbol{\sigma}_{xz} dA \delta x$$
$$- \text{As } \boldsymbol{\sigma}_{zx} = -\frac{T_{z} S_{n} \left(z \right)}{I_{yy} b \left(z \right)}$$
$$\implies \delta^{2} E_{\text{int}} = \int_{A} \frac{1}{2\mu} \delta \boldsymbol{\sigma}_{xz}^{2} dA \delta x = \frac{1}{2} \delta \int_{A} \frac{T_{z}^{2} S_{n}^{2}}{\mu I_{yy}^{2} b^{2}} dA \delta x$$

2024-2025

Z.

 γ_{max}

δx

Deformation (3)

- Average $\overline{\gamma}$ obtained by energy method (2)
 - Work of external forces = Internal energy variation

$$\begin{split} \delta^2 E_{\rm int} &= \frac{1}{2} \delta \int_A \frac{T_z^2 S_n^2}{\mu I_{yy}^2 b^2} dA \delta x = \delta \frac{T_z^2}{2A'\mu} \delta x = \delta^2 W_{\rm ext} \\ & \Longrightarrow \int_A \frac{S_n^2}{2\mu I_{yy}^2 b^2} dA = \frac{1}{2A'\mu} \end{split}$$

Average shear strain $\bar{\gamma} = \frac{T_z}{A'\mu}$ •

• With
$$A' = \frac{1}{\int_A \frac{S_n^2}{I_{yy}^2 b^2} dA}$$

Under the assumption of a constant shear stress on b(z)•

 $T_z + \partial_x T_z \, \delta x$

х

• Deformation (4)

- Shearing equations
 - Shearing is the difference between
 - Neutral fiber deflection
 - Orientation of the cross section

» Angle
$$\theta_y$$

$$\implies \bar{\gamma} = 2\bar{\varepsilon}_{xz} = \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} = \theta_y + \partial_x u_z$$

f(x)

IVI

L

• Curvature is then computed from the variation in cross-section direction $\implies \kappa - \frac{\partial \theta_y}{\partial \theta_y}$

 $u_{z} = 0$

$$\implies \kappa = \frac{\partial v_y}{\partial x}$$

• Timoshenko equations on [0, L]

- As
$$\partial_x M_{xx} - T_z = 0$$

 $\xrightarrow{\partial} \frac{\partial}{\partial_x} \left(EI \frac{\partial \theta_y}{\partial x} \right) - \mu A' \left(\theta_y + \partial_x u_z \right) = 0$
- As $\partial_x T_z = -f$
 $\xrightarrow{\partial} \frac{\partial}{\partial x} \left(\mu A' \left(\theta_y + \partial_x u_z \right) \right) = -f$

х

 M_{xx}

Х

Shear effect

- Bernoulli assumption
 - Timoshenko beam equations

$$\frac{\partial}{\partial_x} \left(EI \frac{\partial \theta_y}{\partial x} \right) - \mu A' (\theta_y + \partial_x u_z) = 0$$
$$\frac{\partial}{\partial x} \left(\mu A' (\theta_y + \partial_x u_z) \right) = -f$$

- Euler-Bernoulli equations

$$\frac{\partial^2}{\partial x^2} \left(EI \frac{\partial^2 \boldsymbol{u}_z}{\partial x^2} \right) = f(x)$$

It has been assumed that

the cross-section remains planar and perpendicular to the neutral axis

$$- \boldsymbol{u}_{z,x} = -\boldsymbol{\theta}_{y}$$

- Validity:
$$(EI)/(L^2)(1'\mu) << 1$$

• Example: shear stress for a rectangular section

- Using
$$\sigma_{zx} = -rac{T_z S_n\left(z
ight)}{I_{yy} b\left(z
ight)}$$

• Reduced moment of area

$$S_n(z) = \int_{A^*} z dA = b \int_{-\frac{h}{2}}^z z' dz' = b \frac{z^2 - \frac{h^2}{4}}{2} = \frac{bh^2}{8} \left[\left(\frac{2z}{h}\right)^2 + \frac{bh^2}{4} - \frac{bh^2}{4} \right] \left[\left(\frac{2z}{h}\right)^2 + \frac{bh^2}{4} - \frac{bh^2}{4} - \frac{bh^2}{4} - \frac{bh^2}{4} \right] \left[\left(\frac{2z}{h}\right)^2 + \frac{bh^2}{4} - \frac{bh^2}{4}$$

Shear stress

$$\boldsymbol{\sigma}_{zx} = \frac{bh^2}{8} \left[1 - \left(\frac{2z}{h}\right)^2 \right] \frac{12T_z}{b^2 h^3} = \frac{3T_z}{2bh} \left[1 - \left(\frac{2z}{h}\right)^2 \right]$$

• Maximum shear stress reached at *z*=0:
$$au_{\max} = \frac{3T_z}{2bh}$$

- Exact solution (elasticity theory):
 - Maximum shear stress reached at *y*=*z*=0

$$\tau_{\rm max} = \alpha \frac{3T_z}{2bh} \quad \frac{h/b}{\alpha} \quad \frac{2}{1.033} \quad \frac{1/2}{1.126} \quad \frac{1}{1.396}$$

• Shear stress is not uniform on b, but this is a correct approximation for h > b

Z.

 A^*

τ

х

b(z)

h

- So if shear stress is uniform on b (ok for h > b) $A' = \frac{5}{6}A$

2024-2025

- Extending these equations to unsymmetrical beams
 - The equations remain valid
 - If we are in principal axes as $I_{vz} = 0$ • as everything happens as if uncoupled
 - In linear elasticity, as superposition • principle holds, the same equations can be derived for \boldsymbol{u}_{y}

- But if the loads do not pass through a point called the shear center S there will be a twist of the beam
 - This point is difficult to obtained for unsymmetrical non-thin-walled sections ٠
 - This problem is not relevant for light aeronautic structures based on thinwalled sections
 - Only thin-walled sections will be considered ۲

Shearing of thin-walled cross section beams

- General relationships
 - Consider thin-walled sections
 - Symmetrical or not
 - Closed or open
 - Assumption
 - Shear is uniform on the thickness t

 \implies Definition of the shear flow $q = t \tau$

Balance equations

•
$$(\boldsymbol{\sigma}_{xx} + \partial_x \boldsymbol{\sigma}_{xx} \delta x) t \delta s - \boldsymbol{\sigma}_{xx} t \delta s +$$

 $(q + \partial_s q \delta s) \delta_x - q \delta x = 0$
 $\implies t \partial_x \boldsymbol{\sigma}_{xx} + \partial_s q = 0$

•
$$(\boldsymbol{\sigma}_s + \partial_s \boldsymbol{\sigma}_s \delta s) t \delta x - \boldsymbol{\sigma}_s t \delta x +$$

 $(q + \partial_x q \delta x) \delta_s - q \delta s = 0$
 $\implies t \partial_s \boldsymbol{\sigma}_s + \partial_x q = 0$

Aircraft Structures - Beams - Bending & Shearing

Shearing of thin-walled cross section beams

• Shear flow

- Assumption
 - No twisting of the beam
 - Shear loads pass through a particular point called shear center *S*
 - If this is not the case there is a torsion combined to the shearing

- Equation
$$t\partial_x \boldsymbol{\sigma}_{xx} + \partial_s q = 0$$

- Direct bending stress obtained from
- ! We use pure bending theory: section assumed to remain planar (not true)

$$\begin{cases} \boldsymbol{\sigma}_{xx} = \kappa E z \cos \alpha - \kappa E y \sin \alpha \\ \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{\|\boldsymbol{M}_{xx}\|}{\kappa E} \begin{pmatrix} I_{yy} & -I_{yz} \\ -I_{yz} & I_{zz} \end{pmatrix}^{-1} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix} \\ \implies \boldsymbol{\sigma}_{xx} = \kappa E \begin{pmatrix} z & -y \end{pmatrix} \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{1}{I_{yy}I_{zz} - I_{yz}^2} \begin{pmatrix} z & -y \end{pmatrix} \begin{pmatrix} I_{zz} & I_{yz} \\ I_{yz} & I_{yy} \end{pmatrix} \begin{pmatrix} M_y \\ M_z \end{pmatrix} \\ \xrightarrow{2024-2025} \text{Aircraft Structures - Beams - Bending \& Shearing} \end{cases}$$

Shearing of thin-walled cross section beams

- Shear flow (2) - Equations (2) • $\boldsymbol{\sigma}_{xx} = \frac{1}{I_{xx}I_{zz} - I_{zx}^2} \begin{pmatrix} z & -y \end{pmatrix} \begin{pmatrix} I_{zz} & I_{yz} \\ I_{yz} & I_{yy} \end{pmatrix} \begin{pmatrix} M_y \\ M_z \end{pmatrix}$ $\implies \boldsymbol{\sigma}_{xx} = \frac{(I_{zz}M_y + I_{yz}M_z) z - (I_{yz}M_y + I_{yy}M_z) y}{I_{yy}I_{zz} - I_{yz}^2}$ S Assuming the variation of moment is larger than the variation of section $\partial_x \sigma_{xx} = \frac{(I_{zz}M_{y,x} + I_{yz}M_{z,x}) z - (I_{yz}M_{y,x} + I_{yy}M_{z,x}) y}{I_{yy}I_{zz} - I_{yz}^2}$ • But $t\partial_x \sigma_{xx} + \partial_s q = 0$, $T_z = \partial_x M_y$ & $T_y = -\partial_x M_z$ $\implies \partial_s q = -\frac{I_{zz}I_z - I_{yz}I_y}{I_{zz}I_{zz} - I^2} tz - \frac{I_{yy}I_y - I_{yz}I_z}{I_{zz}I_{zz} - I^2} ty$
 - Eventually

$$q(s) - q(0) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') \, z(s') \, ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s t(s') \, y(s') \, ds'$$

- Shear flow for an open section beam
 - For an open section q(s) = 0 as

on the boundary $\sigma_{xz}(0) = \sigma_{zx}(0) = 0$

$$\implies q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s tz ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s ty ds' = -\frac{I_{zz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s ty ds' = -\frac{I_{zz}T_z}{I_{yz}} \int_0^s ty ds' =$$

In the principal axes •

$$q\left(s\right) = -\frac{T_{z}}{I_{yy}} \int_{0}^{s} tz ds' - \frac{T_{y}}{I_{zz}} \int_{0}^{s} ty ds$$

To be compared to the thick cross section approximation

$$- \boldsymbol{\sigma}_{zx} = -\frac{T_z S_n\left(z\right)}{I_{yy} b\left(z\right)}$$

Has been obtained for symmetrical beam

- and assuming constant stress on b
- For unsymmetrical beams, the same approximation leads to

$$\begin{split} b\left(s\right)\tau\left(s\right) &= -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2}\int_0^s bzds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2}\int_0^s byds' \\ \text{Accurate only for } h/b > 1 \end{split}$$

Z,

b(z)

 A^*

Shearing of thin-walled open section beams

• Shear center

- Definition:
 - No twisting of the beam if shear loads pass through a particular point called shear center *S*
- Practically
 - Shear loads are represented by loads passing through *S* and by a torque
- Location
 - If axis of symmetry: S lies on it
 - If cruciform or angle sections, as q is along these section, S is at the intersection

· Generally speaking: obtained by considering the moment equilibrium

Shearing of thin-walled open section beams

Example ٠

- U-thin walled cross section
 - From previous exercise

$$\begin{cases} y'_{C} = \frac{b}{2 + \frac{h}{b}} \\ I_{yy} = \frac{th^{3}}{12} \left[1 + \frac{6b}{h} \right] \\ I_{zz} = \frac{2tb^{3}}{12} + 2tb \left(\frac{b}{2} - \frac{b}{2 + \frac{h}{b}} \right)^{2} + ht \left(\frac{b}{2 + \frac{h}{b}} \right)^{2} \end{cases}$$

Location of the shear center *S*? _

 $\mathbf{A}Z$

 $T_{z \uparrow}$

Shearing of thin-walled open section beams

- Location of the shear center
 - By symmetry:
 - On *Cy*
 - Horizontal location?
 - Consider a shearing T_z (T_y is useless as we know the vertical location)
 - Ensure moment equilibrium
 - Shear flow

•
$$q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s tz ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s ty ds'$$

• As
$$I_{yz} = 0 \implies q(s) = -\frac{T_z}{I_{yy}} \int_0^s tz ds'$$

• With
$$I_{yy} = \frac{th^3}{12} \left[1 + \frac{6b}{h} \right]$$

 $\implies q\left(s\right) = -\frac{12T_z}{h^3 \left(1 + \frac{6b}{h}\right)} \int_0^s z ds'$

• Shear flow

- Shear flow on bottom flange

• As
$$q(s) = -\frac{12T_z}{h^3 \left(1 + \frac{6b}{h}\right)} \int_0^s z ds'$$

 $\implies q(s) = -\frac{12T_z}{h^3 \left(1 + \frac{6b}{h}\right)} \left(-\frac{h}{2}\right) (b - y')$
 $\implies q(y') = \frac{6T_z}{h^2 \left(1 + \frac{6b}{h}\right)} (b - y')$

• Maximum shear flow
$$q(y'=0) = \frac{6T_z b}{h^2 \left(1+\frac{6b}{h}\right)}$$

• Moment around O' induced by the shearing of bottom flange

$$+ M_{O'} = -\frac{h}{2} \frac{q (y'=0) b}{2} = -\frac{3T_z b^2}{2h \left(1 + \frac{6b}{h}\right)}$$

 $\mathbf{A}Z$

 T_{z}

S

• Shear flow (2)

- Shear flow on the web

• As
$$q(s) = -\frac{12T_z}{h^3 \left(1 + \frac{6b}{h}\right)} \int_0^s z ds'$$

 $\implies q(z') = \frac{6T_z b}{h^2 \left(1 + \frac{6b}{h}\right)} - \frac{12T_z}{h^3 \left(1 + \frac{6b}{h}\right)} \int_{-\frac{h}{2}}^{z'} z'' dz''$
 $\implies q(z') = \frac{6T_z b}{h^2 \left(1 + \frac{6b}{h}\right)} - \frac{6T_z}{h^3 \left(1 + \frac{6b}{h}\right)} \left[z'^2 - \frac{h^2}{4}\right]$
• "Boundary" shear flow

$$q\left(z'=-\frac{h}{2}\right) = q\left(z'=\frac{h}{2}\right) = \frac{6T_zb}{h^2\left(1+\frac{6b}{h}\right)}$$

• Maximum shear flow

$$q(z'=0) = \frac{6T_z b}{h^2 \left(1 + \frac{6b}{h}\right)} + \frac{3T_z}{2h \left(1 + \frac{6b}{h}\right)}$$

• Moment around O' induced by the shearing of the web

$$+ M_{O'} = 0$$

• Shear flow (3)

• Moment around O' induced by the

shearing of the top flange

$$+ M_{O'} = \frac{h}{2} \left(-\frac{q \left(y' = 0 \right) b}{2} \right) = -\frac{3T_z b^2}{2h \left(1 + \frac{6b}{h} \right)}$$

• Shear center

- Moment due to the shear flow:

$$+ M_{O'} = -\frac{3T_z b^2}{h\left(1 + \frac{6b}{h}\right)}$$

- It has to be balanced by the shearing

$$\implies T_z y'_S = -\frac{3T_z b^2}{h\left(1 + \frac{6b}{h}\right)}$$
$$\implies y'_S = -\frac{3b^2}{h\left(1 + \frac{6b}{h}\right)}$$

References

• Lecture notes

 Aircraft Structures for engineering students, T. H. G. Megson, Butterworth-Heinemann, An imprint of Elsevier Science, 2003, ISBN 0 340 70588 4

• Other references

- Books
 - Mécanique des matériaux, C. Massonet & S. Cescotto, De boek Université, 1994, ISBN 2-8041-2021-X

