Aircraft Structures Aircraft Components – Part II

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Elasticity

- Balance of body *B*
 - Momenta balance
 - Linear
 - Angular
 - Boundary conditions
 - Neumann
 - Dirichlet

• Small deformations with linear elastic, homogeneous & isotropic material

$$- \text{ (Small) Strain tensor } \boldsymbol{\varepsilon} = \frac{1}{2} \left(\boldsymbol{\nabla} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{\nabla} \right), \text{ or } \begin{cases} \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\frac{\partial}{\partial \boldsymbol{x}_i} \boldsymbol{u}_j + \frac{\partial}{\partial \boldsymbol{x}_j} \boldsymbol{u}_i \right) \\ \boldsymbol{\varepsilon}_{ij} = \frac{1}{2} \left(\boldsymbol{u}_{j,i} + \boldsymbol{u}_{i,j} \right) \end{cases}$$

– Hooke's law
$$oldsymbol{\sigma}=\mathcal{H}:oldsymbol{arepsilon}$$
 , or $oldsymbol{\sigma}_{ij}=\mathcal{H}_{ijkl}oldsymbol{arepsilon}_{kl}$

with
$$\mathcal{H}_{ijkl} = \underbrace{\frac{E\nu}{(1+\nu)(1-2\nu)}}_{\lambda=K-2\mu/3} \delta_{ij}\delta_{kl} + \underbrace{\frac{E}{1+\nu}}_{2\mu} \left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right)$$

- Inverse law $\varepsilon = \mathcal{G} : \sigma$ $\lambda = K - 2\mu/3$

2

2013-2014

with

Aircraft Structures - Aircraft Components - Part II

 $\mathcal{G}_{ijkl} = \frac{1+\nu}{E} \left(\frac{1}{2}\delta_{ik}\delta_{jl} + \frac{1}{2}\delta_{il}\delta_{jk}\right) - \frac{\nu}{E}\delta_{ij}\delta_{kl}$

• General expression for unsymmetrical beams

Stress
$$\sigma_{xx} = \kappa E z \cos \alpha - \kappa E y \sin \alpha$$

With $\begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix} = \frac{\|M_{xx}\|}{\kappa E} \begin{pmatrix} I_{yy} & -I_{yz} \\ -I_{yz} & I_{zz} \end{pmatrix}^{-1} \begin{pmatrix} \sin \theta \\ -\cos \theta \end{pmatrix}$

- Curvature

$$\begin{pmatrix} -\boldsymbol{u}_{z,xx} \\ \boldsymbol{u}_{y,xx} \end{pmatrix} = \frac{\|\boldsymbol{M}_{xx}\|}{E\left(I_{yy}I_{zz} - I_{yz}I_{yz}\right)} \begin{pmatrix} I_{zz} & I_{yz} \\ I_{yz} & I_{yy} \end{pmatrix} \begin{pmatrix} \sin\theta \\ -\cos\theta \end{pmatrix}$$

In the principal axes $I_{yz} = 0$

• Euler-Bernoulli equation in the principal axis

$$-\frac{\partial^{2}}{\partial x^{2}}\left(EI\frac{\partial^{2}\boldsymbol{u}_{z}}{\partial x^{2}}\right) = f(x) \quad \text{for } x \text{ in } [0 L]$$

$$-\text{BCs}\begin{cases} -\frac{\partial}{\partial x}\left(EI\frac{\partial^{2}\boldsymbol{u}_{z}}{\partial x^{2}}\right)\Big|_{0, L} = \bar{T}_{z}\Big|_{0, L} \qquad \boldsymbol{u}_{z} = 0 \\ -EI\frac{\partial^{2}\boldsymbol{u}_{z}}{\partial x^{2}}\Big|_{0, L} = \bar{M}_{xx}\Big|_{0, L} \end{cases} \qquad \boldsymbol{u}_{z} = 0 \quad \boldsymbol{u}_{z}/dx = 0$$

- Similar equations for u_y

• General relationships

 $-\begin{cases} f_z(x) = -\partial_x T_z = -\partial_{xx} M_y \\ f_y(x) = -\partial_x T_y = \partial_{xx} M_z \end{cases}$

 $u_z = 0$ $du_z/dx = 0$ L

L

h

- Two problems considered
 - Thick symmetrical section
 - Shear stresses are small compared to bending stresses if $h/L \ll 1$
 - Thin-walled (unsymmetrical) sections
 - Shear stresses are not small compared to bending stresses
 - Deflection mainly results from bending stresses
 - 2 cases
 - Open thin-walled sections
 - » Shear = shearing through the shear center + torque
 - Closed thin-walled sections
 - » Twist due to shear has the same expression as torsion

- Shearing of symmetrical thick-section beams
 - Stress $\sigma_{zx} = -\frac{T_z S_n(z)}{I_{yy} b(z)}$ • With $S_n(z) = \int_{A^*} z dA$
 - Accurate only if h > b
 - Energetically consistent averaged shear strain z

•
$$\bar{\gamma} = \frac{T_z}{A'\mu}$$
 with $A' = \frac{1}{\int_A \frac{S_n^2}{I_{xy}^2 b^2} dA}$

• Shear center on symmetry axes

Timoshenko equations

•
$$\bar{\gamma} = 2\bar{\varepsilon}_{xz} = \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} = \theta_y + \partial_x u_z \,\& \kappa = \frac{\partial \theta_y}{\partial x}$$

• On [0 L]:
$$\begin{cases} \frac{\partial}{\partial_x} \left(EI \frac{\partial \theta_y}{\partial x} \right) - \mu A' \left(\theta_y + \partial_x u_z \right) = 0 \\ \frac{\partial}{\partial x} \left(\mu A' \left(\theta_y + \partial_x u_z \right) \right) = -f \end{cases}$$

Aircraft Structures - Aircraft Components - Part II

5

Université de Liège

• Shearing of open thin-walled section beams

- Shear flow
$$q = t\tau$$

• $q(s) = -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s tz ds' - \frac{I_{yy}T_y - I_{yz}T_z}{I_{yy}I_{zz} - I_{yz}^2} \int_0^s ty ds'$

• In the principal axes

$$q\left(s\right) = -\frac{T_z}{I_{yy}} \int_0^s tz ds' - \frac{T_y}{I_{zz}} \int_0^s ty ds'$$

- Shear center S
 - On symmetry axes
 - At walls intersection
 - Determined by momentum balance
- Shear loads correspond to
 - Shear loads passing through the shear center &
 - Torque

- Shearing of closed thin-walled section beams
 - Shear flow $q = t\tau$
 - $q(s) = q_o(s) + q(0)$
 - Open part (for anticlockwise of q, s)

$$q_{o}(s) = -\frac{I_{zz}T_{z} - I_{yz}T_{y}}{I_{yy}I_{zz} - I_{yz}^{2}} \int_{0}^{s} t(s') z(s') ds' - \frac{I_{yy}T_{y} - I_{yz}T_{z}}{I_{yy}I_{zz} - I_{yz}^{2}} \int_{0}^{s} t(s') y(s') ds'$$

Constant twist part

$$q\left(s=0\right) = \frac{y_T T_z - z_T T_y - \oint p\left(s\right) q_o\left(s\right) ds}{2A_h}$$

• The q(0) is related to the closed part of the section, but there is a $q_o(s)$ in the open part which should be considered for the shear torque $\oint p(s) q_o(s) ds$

Université 🛛 🧔

- Shearing of closed thin-walled section beams
 - Warping around twist center R

•
$$\boldsymbol{u}_{x}(s) = \boldsymbol{u}_{x}(0) + \int_{0}^{s} \frac{q}{\mu t} ds - \frac{1}{A_{h}} \oint \frac{q}{\mu t} ds \left\{ A_{Cp}(s) - \frac{z_{R}\left[y\left(s\right) - y\left(0\right)\right] - y_{R}\left[z\left(s\right) - z\left(0\right)\right]}{2} \right\}$$

• With $\boldsymbol{u}_{x}(0) = \frac{\oint t \boldsymbol{u}_{x}(s) ds}{\oint t(s) ds} - \boldsymbol{u}_{x}(0) = 0$ for symmetrical section if origin on

the symmetry axis

- Shear center S
 - Compute q for shear passing thought S

• Use

$$q\left(s=0\right) = \frac{y_T T_z - z_T T_y - \oint p\left(s\right) q_o\left(s\right) ds}{2A_h}$$

+CZ, v C

Z.

With point S=T

8

Beam torsion: linear elasticity summary

- Torsion of symmetrical thick-section beams
 - Circular section

•
$$\tau = \mu \gamma = r \mu \theta_{,x}$$

•
$$C = \frac{M_x}{\theta_{,x}} = \int_A \mu r^2 dA$$

- Rectangular section

•
$$au_{\max} = \frac{M_x}{\alpha h b^2}$$

•
$$C = \frac{M_x}{\theta_{,x}} = \beta h b^3 \mu$$

• If *h* >> *b*

$$- \tau_{xy} = 0 \quad \& \tau_{xz} = 2\mu y \theta_{,x}$$

$$- \tau_{\rm max} = \frac{3M_x}{hb^2}$$

$$- C = \frac{M_x}{\theta_{,x}} = \frac{hb^3\mu}{3}$$

h/b	1	1.5	2	4	∞
α	0.208	0.231	0.246	0.282	1/3
β	0.141	0.196	0.229	0.281	1/3

9 Université

Beam torsion: linear elasticity summary

Ζ₹

y

- Torsion of open thin-walled section beams
 - Approximated solution for twist rate
 - Thin curved section

$$- \tau_{xs} = 2\mu n\theta_{,x}$$
$$- C = \frac{M_x}{\theta_{,x}} = \frac{1}{3}\int \mu t^3 ds$$

• Rectangles

- Warping of *s*-axis

•
$$\boldsymbol{u}_{x}^{s}(s) = \boldsymbol{u}_{x}^{s}(0) - \theta_{,x} \int_{0}^{s} p_{R} ds' = \boldsymbol{u}_{x}^{s}(0) - 2A_{R_{p}}(s) \theta_{,x}$$

 l_2

Z,

n

Beam torsion: linear elasticity summary

- Torsion of closed thin-walled section beams
 - Shear flow due to torsion $M_x = 2A_h q$
 - Rate of twist

•
$$\theta_{,x} = \frac{M_x}{4A_h^2} \oint \frac{1}{\mu t} ds$$

• Torsion rigidity for constant μ

$$I_T = \frac{4A_h^2}{\oint \frac{1}{t}ds} \le I_p = \int_A r^2 dA$$

- Warping due to torsion

•
$$\boldsymbol{u}_{x}\left(s\right) = \boldsymbol{u}_{x}\left(0\right) + \frac{M_{x}}{2A_{h}}\left[\int_{0}^{s}\frac{1}{\mu t}ds - \frac{A_{R_{p}}\left(s\right)}{A_{h}}\oint\frac{1}{\mu t}ds\right]$$

• A_{Rp} from twist center

2013-2014

Z.

 M_x

V

v

- Panel idealization
 - Booms' area depending on loading
 - For linear direct stress distribution

- Consequence on bending
 - The position of the neutral axis, and thus the second moments of area
 - Refer to the direct stress carrying area only
 - Depend on the loading case only
- Consequence on shearing
 - Open part of the shear flux
 - Shear flux for open sections

$$\begin{aligned} q_o\left(s\right) &= -\frac{I_{zz}T_z - I_{yz}T_y}{I_{yy}I_{zz} - I_{yz}^2} \begin{bmatrix} \int_0^s t_{\text{direct } \sigma} z ds + \sum_{i: \ s_i \le s} z_i A_i \end{bmatrix} - \underbrace{I_{yy}T_y - I_{yz}T_z}_{I_{yy}I_{zz} - I_{yz}^2} \begin{bmatrix} \int_0^s t_{\text{direct } \sigma} y ds + \sum_{i: \ s_i \le s} y_i A_i \end{bmatrix} - \underbrace{I_{yy}T_y - I_{yz}T_z}_{\delta \chi} \end{aligned}$$

- Consequence on torsion
 - If no axial constraint
 - Torsion analysis does not involve axial stress
 - So torsion is unaffected by the structural idealization

Ζ.

• Virtual displacement

- In linear elasticity the general formula of virtual displacement reads $\int_0^L \int_A \sigma^{(1)} : \varepsilon dA dx = P^{(1)} \Delta_P$
 - $\sigma^{(1)}$ is the stress distribution corresponding to a (unit) load $P^{(1)}$
 - Δ_P is the energetically conjugated displacement to *P* in the direction of *P*⁽¹⁾ that corresponds to the strain distribution ε
- Example: bending of a semi cantilever beam

•
$$\int_0^L \int_A \boldsymbol{\sigma}_{xx}^{(1)} \boldsymbol{\varepsilon}_{xx} dA dx = \Delta_P u$$

- In the principal axes

$$\Delta_P u = \frac{1}{E I_{yy} I_{zz}} \int_0^L \left\{ I_{zz} M_y^{(1)} M_y + I_{yy} M_z^{(1)} M_z \right\} dx$$

- Example: shearing of a semi-cantilever beam

•
$$\int_0^L \int_s q^{(1)} \frac{q}{\mu t} ds dx = \mathbf{T}^{(1)} \overline{\Delta u} = \Delta_T u$$

- Real structure
 - One, two or more cells
 - Usually
 - Resistance of stringers to shear stress is generally reduced
 - Distance between stringers is small
 - Shear can be considered constant in the skin between 2 stringers
 - Idealized section approximation holds

Aircraft Structures - Aircraft Components - Part II

- Wing loading
 - Pressure distribution in airfoil can be substituted by
 - Lift & drag acting through the AC, resulting into
 - Bending
 - Shearing (including twist if AC ≠ Shear center)
 - Pitching moment, resulting into
 - Torsion around AC (unless CP is the shear center)

Bending - As before $\sigma_{xx} = \frac{(I_{zz}M_y + I_{yz}M_z) z - (I_{yz}M_y + I_{yy}M_z) y}{I_{yy}I_{zz} - I_{yz}^2}$

- Still considering only direct stress carrying structures: *i.e.* the booms

▲ Z.

Torsion

- Assumptions
 - No axial constraints (warping allowed)
 - This is a severe restriction for wings
 - No axial stresses
 - Shape of the wing unchanged after torsion
- Methodology
 - No axial stresses only shearing
 booms can be ignored
 - The N cells carry the torque M_r
 - There is a constant shear flux q_i in each cell *i* of open area A_h^i : $M_x = \sum 2q^i A_h^i$
 - To compute the fluxes
 - Compatibility of displacements has to be ensured
 - → same rate of twist in each cell
 - For constant μ

$$\theta_{,x}=\frac{1}{2A_{h}^{i}\mu}\oint_{i}\frac{q^{i}}{t}ds$$

 a^{II}

 $q^{II}-q^{I}$

- This formula has to be adapted
 - If a cell side is connected to more than one cell
 - If shear modulus is not constant $\implies \overline{l}^{i\,i+1} = \int_{i}^{i+1} \frac{ds}{t\frac{\mu}{\mu_{\text{REF}}}}$

- Example
 - Three-cell section
 - Shear stress ?

Wall	Length (m)	Thickness (mm)	μ (GPa)
12 (1.650	1.22	24.2
12	0.508	2.03	27.6
13 & 24	0.775	1.22	24.2
34	0.380	1.63	27.6
35 & 46	0.508	0.92	20.7
56	0.254	0.92	20.7

- Non dimensional lengths
 - Take $\mu_{\text{REF}} = 27.6 \text{ GPa}$
 - Side lengths

$$\begin{cases} \bar{l}^{1\,2(} = \frac{1.65}{1.22\ 10^{-3}\frac{24.2}{27.6}} = 1542 \\ \bar{l}^{1\,2|} = \frac{0.508}{2.03\ 10^{-3}} = 250 \\ \bar{l}^{1\,3} = \bar{l}^{2\,4} = \frac{0.775}{1.22\ 10^{-3}\frac{24.2}{27.6}} = 724.5 \\ \bar{l}^{3\,4} = \frac{0.38}{1.63\ 10^{-3}} = 233 \\ \bar{l}^{3\,5} = \bar{l}^{4\,6} = \frac{0.508}{0.92\ 10^{-3}\frac{20.7}{27.6}} = 736 \\ \bar{l}^{5\,6} = \frac{0.254}{0.92\ 10^{-3}\frac{20.7}{27.6}} = 368 \end{cases}$$

Wall	Length (m)	Thickness (mm)	μ (GPa)
12 (1.650	1.22	24.2
12	0.508	2.03	27.6
13 & 24	0.775	1.22	24.2
34	0.380	1.63	27.6
35 & 46	0.508	0.92	20.7
56	0.254	0.92	20.7

- Intersecting lengths

$$\begin{cases} \bar{l}_1^2 = \bar{l}^{1\,2|} = 250 \\ \bar{l}_2^3 = \bar{l}^{3\,4} = 233 \end{cases}$$

$$\begin{aligned} \theta_{,x} &= \frac{1}{2A_{h}^{II}\mu_{\text{REF}}} \left[-q^{I}\bar{l}_{1}^{2} + q^{II}\bar{l}^{2} - q^{III}\bar{l}_{2}^{3} \right] = \frac{1}{2\ 0.355\ 27.6\ 10^{9}} \left[-250q^{I} + 1932q^{II} - 233q^{III} \right] \\ & \Longrightarrow \theta_{,x} = -12.8\ 10^{-9}\ \text{N}^{-1}\ q^{I} + 98.6\ 10^{-9}\ \text{N}^{-1}\ q^{II} - 11.9\ 10^{-9}\ \text{N}^{-1}\ q^{III} \\ & - \text{ Cell III} \\ \theta_{,x} &= \frac{1}{2A_{h}^{III}\mu_{\text{REF}}} \left[-q^{II}\bar{l}_{2}^{3} + q^{III}\bar{l}^{3} \right] = \frac{1}{2\ 0.161\ 27.6\ 10^{9}} \left[-233q^{II} + 2073q^{III} \right] \end{aligned}$$

$$\implies \theta_{,x} = -26.2 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{II} + 233 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{III}$$

• 3 equations for 4 unknowns ____ momentum equilibrium

- Shear fluxes
 - Applied torque

•
$$M_x = \sum_i 2q^i A_h^i = 2 \left[0.258 q^I + 0.355 q^{II} + 0.161 q^{III} \right] \text{ m}^2 = 11300 \text{ N} \cdot \text{m}$$

- Equations

• 2 $[0.258q^{I} + 0.355q^{II} + 0.161q^{III}]$ m² = 11300 N · m

•
$$126 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{I} - 17.6 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{II}$$

= $-12.8 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{I} + 98.6 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{II} - 11.9 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{III}$

•
$$126 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{I} - 17.6 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{II}$$

= $-26.2 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{II} + 233 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{III}$

- Resolution

$$q^{I} = \frac{98.6 + 17.6}{126 + 12.8} q^{II} - \frac{11.9}{126 + 12.8} q^{III} = 0.837 q^{II} - 0.086 q^{III}$$

$$\implies \begin{cases} q^{II} = \frac{233 + 126\ 0.086}{126\ 0.837 - 17.6 + 26.2} q^{III} = 2.138 q^{III} \\ q^{I} = (0.837\ 2.138 - 0.086)\ q^{III} = 1.7 q^{III} \end{cases}$$

$$\implies 2 \left[0.258\ 1.7 + 0.355\ 2.138 + 0.161 \right] \ m^{2}q^{III} = 11300 \ N \cdot m$$

• She	ar stress	$\begin{cases} q^{III} = \frac{11300}{2.72} = \\ q^{II} = 4200\ 2.1 \\ q^{I} = 4200\ 1.7 \end{cases}$	$= 4.2 \ 10^{3}$ $138 = 8.9 \ 10^{3}$ $\tau = 7.1 \ 10^{3}$ $\tau = 5.8 \ M$	$N \cdot m^{-1}$ $10^{3} N \cdot m^{-1}$ $^{3} N \cdot m^{-1}$ Pa	$M_x = 11.$	3 kN·1 3	n $\tau = 4.6 \text{ MPa}$
			τ =	0.89 MPa	$\tau = 2.9$	MPa	$\tau = 4.6 \text{ MPa}$ $\tau = 4.6 \text{ MPa}$
Wall	Length (m)	Thickness (mm)	μ (GPa)	- τ =	7.3 MPa		
12 (1.650	1.22	24.2				
12	0.508	2.03	27.6				
13 & 24	0.775	1.22	24.2				
34	0.380	1.63	27.6				
35 & 46	0.508	0.92	20.7				
56	0.254	0.92	20.7				

Shearing

- Assumptions
 - Shear loads do not pass through shear center
 - Booms carry direct stress only
 - Skins carry shear stress
 - Generally skins also carry direct stress
- Methodology
 - Cut each cell
 - Cut on top so the correction is minimal
 - Compute the open flux of the whole beam section

$$q_{o}(s) = -\frac{I_{zz}T_{z} - I_{yz}T_{y}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} z ds + \sum_{i: s_{i} \leq s} z_{i}A_{i} \right] - \frac{I_{yy}T_{y} - I_{yz}T_{z}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right]$$

• Compute the missing $q^i(0)$ at the cuts using compatibility of twist rate

 $a^{III}(0)$

 T_{7}

 $q^{II}(0)$

 $q^{I}(0)$

- Shearing (2)
 - Twist rate compatibility
 - For torsion we found

$$\theta_{,x} = \frac{1}{2A_h^i \mu_{\text{REF}}} \left[-q^{i-1} \bar{l}_{i-1}^i + q^i \bar{l}^i - q^{i+1} \bar{l}_i^{i+1} \right]$$

- But $q^i = q_o + q^i(0)$
 - *q_o* not dependant on the cell number (computed for the whole section)
- So twist rate in each cell *i* is rewritten

$$\theta_{,x} = \frac{1}{2A_h^i \mu_{\text{REF}}} \left[-q^{i-1}(0)\overline{l}_{i-1}^i + q^i(0)\overline{l}^i + \oint_{\text{cell }i} \frac{q_o}{t\frac{\mu}{\mu_{\text{REF}}}} ds - q^{i+1}(0)\overline{l}_i^{i+1} \right]$$

• Section twist rate computed by momentum equilibrium (anticlockwise q, s)

$$M_x = y_T T_z - z_T T_y = \sum_i \int_{\text{wall } i} qpds$$

$$\implies y_T T_z - z_T T_y = \sum_i \int_{\text{wall } i} q_o pds + \sum_i \oint_{\text{cell } i} q^i(0)pds$$

$$\implies y_T T_z - z_T T_y = \sum_i \int_{\text{wall } i} q_o pds + \sum_i 2A_h^i q^i(0)$$

 $a^{III}(0)$

 $q^{II}(0)$

 $q^{I}(0)$

• Shear center

- Define successively shear loads
 - T_z to determine y_s
 - T_y to determine z_S
- Compute open shear fluxes
 - As before
- To compute the fluxes at cut
 - Twist rate is equal to zero
 - As loads pass through shear center
 - $q^i(0)$ are deduced from

$$0 = \theta_{,x} = \frac{1}{2A_h^i \mu_{\text{REF}}} \left[-q^{i-1}(0)\overline{l}_{i-1}^i + q^i(0)\overline{l}^i + \oint_{\text{cell }i} \frac{q_o}{t\frac{\mu}{\mu_{\text{REF}}}} ds - q^{i+1}(0)\overline{l}_i^{i+1} \right]$$

S

 $q^{I}(0)$

 $q^{II}(0)$

- Shear center position $y_s(z_s)$ is obtained from momentum equilibrium

$$y_T T_z(-z_T T_y) = \sum_i \int_{\text{wall } i} q_o p ds + \sum_i \oint_{\text{cell } i} q^i(0) p ds$$

 $a^{III}(0)$

Wall	Length (m)	Thickness (mm)	μ (GPa)
12 & 56	1.023	1.22	27.6
23	1.274	1.63	27.6
34	2.200	2.03	27.6
483	0.400	2.64	27.6
572	0.460	2.64	27.6
61	0.330	1.63	27.6
78	1.270	1.22	82.8

Boom	Area (mm ²)
1, 6	2580
2, 5	3880
3, 4	3230
Cell	Area (m²)
I	0.265
П	0.213
ш	0 413

Bending

As boom distribution is symmetric: $z'_{C} = 0.23 \text{ m}$ • $I_{yy} = 2\left(A_3 z^{3^2} + A_2 z^{2^2} + A_1 z^{1^2}\right)$ $= 2 (0.003230 \ 0.2^2 + 0.00388 \ 0.23^2 + 0.00258 \ 0.165^2) = 0.000809 \ m^4$ $\sigma_{xx}^{1} = -\sigma_{xx}^{6} = \frac{M_{y}}{I_{yy}}z^{1} = \frac{300 \ 10^{3}}{0.000809} \ 0.165 = 61.2 \ \text{MPa}$ • $\left\{ \sigma_{xx}^2 = -\sigma_{xx}^5 = \frac{M_y}{I_{uu}} z^2 = \frac{300 \ 10^3}{0.000809} \ 0.23 = 85.3 \text{ MPa} \right\}$ $\sigma_{xx}^{3} = -\sigma_{xx}^{4} = \frac{M_{y}}{I_{uu}} z^{3} = \frac{300 \ 10^{3}}{0.000809} \ 0.2 = 74.2 \text{ MPa}$ $T_z = 86.8 \text{ kN}^{2}$ Boom Area 3 (mm²) Π $h_l = 0.4$ m Ш 8 $h_m = 0.46 \text{ m}$ 1, 6 2580 $M_{y} = 300 \text{ kN} \cdot \text{m}$ $h_r = 0.33 \text{ m}$ $h_o = 0.28 \text{ m}$ 2, 5 3880 3, 4 3230 5 $l_o = 1.27 \text{ m}$ $l_r = 1.02 \text{ m}$ Aircraft Structures - Aircraft Components - Part II 30 2013-2014 Université de Liège

- Open-cells shearing (2)
 - As only booms are carrying direct stress (2)

•
$$q_o^{5\,6} = q_o^{7\,5} - \frac{T_z}{I_{yy}} z^5 A_5 = -96 \ 10^3 - \frac{86800}{0.809 \ 10^{-3}} (-0.23) \ 0.003880 = 0$$

• $q_o^{6\,1} = q_o^{5\,6} - \frac{T_z}{I_{yy}} z^6 A_6 = -\frac{86800}{0.809 \ 10^{-3}} (-0.165) \ 0.00258 = 45.7 \ \text{N} \cdot \text{m}^{-1}$

- What remain to be determined are the $q^i(0)$ at the cuts
 - Use of twist rate compatibility

$$\theta_{,x} = \frac{1}{2A_{h}^{i}\mu_{\text{REF}}} \left[-q^{i-1}(0)\overline{l}_{i-1}^{i} + q^{i}(0)\overline{l}^{i} + \oint_{\text{cell }i} \frac{q_{o}}{t\frac{\mu}{\mu_{\text{REF}}}} ds - q^{i+1}(0)\overline{l}_{i}^{i+1} \right]$$

$$\frac{\theta_{,x}}{h_{i}} = \frac{1}{2A_{h}^{i}\mu_{\text{REF}}} \left[-q^{i-1}(0)\overline{l}_{i-1}^{i} + q^{i}(0)\overline{l}^{i} + \oint_{\text{cell }i} \frac{q_{o}}{t\frac{\mu}{\mu_{\text{REF}}}} ds - q^{i+1}(0)\overline{l}_{i}^{i+1} \right]$$

$$\frac{\theta_{,x}}{h_{i}} = \frac{1}{2A_{h}^{i}\mu_{\text{REF}}} \left[-q^{i-1}(0)\overline{l}_{i-1}^{i} + q^{i}(0)\overline{l}^{i} + \oint_{\text{cell }i} \frac{q_{o}}{t\frac{\mu}{\mu_{\text{REF}}}} ds - q^{i+1}(0)\overline{l}_{i}^{i+1} \right]$$

$$\frac{\theta_{,x}}{h_{i}} = \frac{1}{2A_{h}^{i}\mu_{\text{REF}}} \left[-q^{i-1}(0)\overline{l}_{i-1}^{i} + q^{i}(0)\overline{l}_{i}^{i} + \frac{1}{2A_{h}^{i}\mu_{\text{REF}}} ds - q^{i+1}(0)\overline{l}_{i}^{i+1} \right]$$

$$\frac{\theta_{,x}}{h_{i}} = \frac{1}{2580} \left[\frac{1}{4} + \frac{1}{2} +$$

- Non dimensional lengths
 - Take $\mu_{REF} = 27.6 \text{ GPa}$
 - Side lengths

Wall	Length (m)	Thickness (mm)	μ (GPa)
12 & 56	1.023	1.22	27.6
23	1.274	1.63	27.6
34	2.200	2.03	27.6
483	0.400	2.64	27.6
572	0.460	2.64	27.6
61	0.330	1.63	27.6
78	1.270	1.22	82.8

- Intersecting lengths

$$\begin{cases} \bar{l}_1^2 = \bar{l}^{38} = 152 \frac{0.15}{0.4} = 57 \\ \bar{l}_2^3 = \bar{l}^{27} = 174 \frac{0.18}{0.46} = 68 \end{cases}$$

•	ntegration	of	open-cell	flux	on cells	
---	------------	----	-----------	------	----------	--

_	$\oint_{1} \frac{q_o}{t - \mu} d$	$ds = 69 \ 10^3 \frac{0.4}{0.00264}$
	$\mu_{\rm REF}$	$= 10.5 \ 10^6 \ \mathrm{N} \cdot \mathrm{m}^{-1}$

$$-\oint_{2} \frac{q_{o}}{t\frac{\mu}{\mu_{\text{REF}}}} ds = -69 \ 10^{3} \frac{0.15}{0.00264} + 96 \ 10^{3} \frac{0.18}{0.00264} = 2.63 \ 10^{6} \ \text{N} \cdot \text{m}^{-1}$$

Wall	Length (m)	Thickness (mm)	μ (GPa)
12 & 56	1.023	1.22	27.6
23	1.274	1.63	27.6
34	2.200	2.03	27.6
483	0.400	2.64	27.6
572	0.460	2.64	27.6
61	0.330	1.63	27.6
78	1.270	1.22	82.8

35

Université de Liège

Aircraft Structures - Aircraft Components - Part II

Twist rate $- \text{ Cell I: } \theta_{,x} = \frac{1}{2 A_h^I \mu_{\text{REF}}} \left| q^I(0) \bar{l}^1 + \oint_1 \frac{q_o}{t \frac{\mu}{\mu}} ds - q^{II}(0) \bar{l}_1^2 \right|$ $\implies \theta_{,x} = \frac{1}{2.0.2652.27.6.10^9} \left[1236q^I(0) + 10.5.10^6 - 57q^{II}(0) \right]$ $\implies \theta_{,x} = 0.00072 \text{ m}^{-1} + 84.4 \ 10^{-9} \text{ N}^{-1} \ q^{I}(0) - 3.89 \ 10^{-9} \text{ N}^{-1} \ q^{II}(0)$ - Cell II: $\theta_{,x} = \frac{1}{2 A_{h}^{II} \mu_{\text{REF}}} \left[-q^{I} \bar{l}_{1}^{2} + q^{II}(0) \bar{l}^{2} + \oint_{2} \frac{q_{o}}{t \frac{\mu}{\mu_{\text{REF}}}} ds - q^{III}(0) \bar{l}_{2}^{3} \right]$ $\implies \theta_{,x} = \frac{1}{2\ 0\ 213\ 27\ 6\ 10^9} \left[-57q^I + 1254q^{II}(0) + 2.63\ 10^6 - 68q^{III}(0) \right]$ $\implies \theta_{x} = 0.000224 \text{ m}^{-1} - 4.85 \ 10^{-9} \text{ N}^{-1} \ q^{I}(0) +$ $106.7 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{II}(0) - 5.78 \ 10^{-9} \ \mathrm{N}^{-1} \ q^{III}(0)$ $- \text{ Cell III: } \theta_{,x} = \frac{1}{2 \; A_{b}^{III} \; \mu_{\text{REF}}} \left| -q^{II} \overline{l}_{2}^{3} + q^{III}(0) \overline{l}^{3} + \oint_{2} \frac{q_{o}}{t - \mu} ds \right|$ $\implies \theta_{,x} = \frac{1}{2.0.413.27.6.10^9} \left[-68q^{II} + 2054q^{III}(0) - 7.5.10^6 \right]$ $\implies \theta_{,x} = -0.000326 \text{ m}^{-1} - 2.98 \ 10^{-9} \text{ N}^{-1} \ q^{II}(0) + 90.1 \ 10^{-9} \text{ N}^{-1} q^{III}(0)$

- Momentum balance
 - Equation

$$y_T T_z - z_T T_y = \sum_i \int_{\text{wall } i} q_o p ds + \sum_i 2A_h^i q^i(0)$$

- Balance around O' $\int q_o p_{O'} ds = -\left(q^{48} l^{48} + q^{83} l^{83}\right) l_o + q^{61} l^{61} l_r$ $= -69 \ 10^3 \ 0.4 \ 1.27 + 45.7 \ 10^3 \ 0.33 \ 1.02 = -19.7 \ 10^3 \ \text{N} \cdot \text{m}$

 $\implies 0 = -19700 \text{ N} \cdot \text{m} + 2\ 0.265 \text{ m}^2\ q^I(0) + 2\ 0.213 \text{ m}^2\ q^{II}(0) + 2\ 0.413 \text{ m}^2\ q^{III}(0)$ $\implies 0.53 \text{ m}^2\ q^I(0) + 0.426 \text{ m}^2\ q^{II}(0) + 0.826 \text{ m}^2\ q^{III}(0) = 19700 \text{ N} \cdot \text{m}$

Compatibility ٠

$$\begin{cases} 0.00072 \text{ m}^{-1} + 84.4 \ 10^{-9} \text{ N}^{-1} q^{I}(0) - 3.89 \ 10^{-9} \text{ N}^{-1} q^{II}(0) \\ = 0.000224 \text{ m}^{-1} - 4.85 \ 10^{-9} \text{ N}^{-1} q^{I}(0) + 106.7 \ 10^{-9} \text{ N}^{-1} q^{II}(0) - 5.78 \ 10^{-9} \text{ N}^{-1} q^{III}(0) \\ 0.00072 \text{ m}^{-1} + 84.4 \ 10^{-9} \text{ N}^{-1} q^{I}(0) - 3.89 \ 10^{-9} \text{ N}^{-1} q^{II}(0) \\ = -0.000326 \text{ m}^{-1} - 2.98 \ 10^{-9} \text{ N}^{-1} q^{II}(0) + 90.1 \ 10^{-9} \text{ N}^{-1} q^{III}(0) \\ 0.53 \text{ m}^{2} q^{I}(0) + 0.426 \text{ m}^{2} q^{II}(0) + 0.826 \text{ m}^{2} q^{III}(0) = 19700 \text{ N} \cdot \text{m} \\ q^{I}(0) = \frac{0.000224 - 0.00072}{84.4 \ 10^{-9} + 4.85 \ 10^{-9}} + \frac{106.7 + 3.89}{84.4 + 4.85} q^{II}(0) - \frac{5.78}{84.4 + 4.85} q^{III} \\ \implies q^{I}(0) = -5557 + 1.239q^{II}(0) - 0.065q^{III} \\ 0.00072 - 0.00047 + (104.6 - 3.89 + 2.98) \ 10^{-9} q^{II}(0) - (5.49 + 90.1) \ 10^{-9} q^{III}(0) = -0.000326 \\ \implies q^{II}(0) = 0.92 \ q^{III}(0) - 5555 \implies q^{I}(0) = -12440 + 1.07q^{III} \\ -6593. + 0.57q^{III}(0) - 2366 + 0.39 \ q^{III}(0) + 0.826 \ q^{III}(0) = 19700 \\ \implies q^{II}(0) = 16 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{I}(0) = 9.2 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{I}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{I}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{I}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0) = 4.7 \ 10^{3} \text{ N} \cdot \text{m}^{-1} \\ q^{II}(0)$$

- Tapered wing
 - Effect on a single cell beam: same as for wing spars & box beams
 - Web shear modified by direct loads on adjacent booms

- Tapered wing (2)
 - Effect on $q^i(0)$
 - Direct loads on booms are modifying the momentum balance

• So equation
$$y_T T_z - z_T T_y = \sum_i \int_{\text{wall } i} q_o p ds + \sum_i 2A_h^i q^i(0)$$
 becomes
 $y_T T_z - z_T T_y = \sum_i \int_{\text{wall } i} q_o p ds + \sum_{\text{cell } c} 2A_h^c q^c(0) + \sum_{\text{boom } j} y^j P_z^j - \sum_{\text{boom } j} z^j P_y^j$

Example

- Tapered 2-cell wing
- Idealized cross-sections
 - Booms carry direct stresses only ٠
 - Skins carry shear stress only
- Singly symmetrical section
 - Symmetrically tapered in the *z*-direction

 $Z \blacktriangle$

B

 ∞

- Booms 1 & 6 in *O'xz* plane
- Loading in larger cross-section known _

y

- Shear on wall 2-5
- **Bending moment** •
- Stresses at larger _ cross-section?
 - Direct? •
 - Shear flux?

2013-2014

Web	Thickness (mm)	μ (GPa)
12	0.8	27.6
23	0.8	27.6
45	0.8	27.6
56	0.8	27.6
16	1	27.6
25	1	27.6
34	1	27.6

 $l_{y} = 0.3 m$

42= 900 mm

10 kN

Az

 $l_{rb} = 0.2 \text{ m}$

 $1_{\text{M}} = 0.15 \text{ m}$

1.65 kN·m

 $h_b = 0.08 \text{ m}$

L = 1.2 m

42

 $l_{1b} = 0.4 \text{ m}$

 $A_1 = 600 \text{ mm}^2$

Université 🛛 🦉

Bending •

- Symmetrical with y-axis
$$I_{yz} = 0$$

• $I_{yy} = 2(A_1 + A_2 + A_3) \frac{h_b^2}{4} = \frac{2\ 0.0006 + 0.0009}{2} \ 0.18^2 = 34\ 10^{-6} \ m^4$
• $P_x^1 = P_x^3 = -P_x^4 = -P_x^6 = \sigma_{xx}^1 A_1 = \frac{M_y z^1}{I_{yy}} A_1 = \frac{-1650\ 0.09}{34\ 10^{-6}} \ 0.0006 = -2.62\ 10^3 \ N$
• $P_x^2 = -P_x^5 = \sigma_{xx}^2 A_2 = \frac{M_y z^2}{I_{yy}} A_2 = \frac{-1650\ 0.09}{34\ 10^{-6}} \ 0.0009 = -3.93\ 10^3 \ N$
• $P_x^2 = -P_x^5 = \sigma_{xx}^2 A_2 = \frac{M_y z^2}{I_{yy}} A_2 = \frac{-1650\ 0.09}{34\ 10^{-6}} \ 0.0009 = -3.93\ 10^3 \ N$

43

Booms loading - As $P_r^1 = P_r^3 = -P_r^4 = -P_r^6 = -2.62 \ 10^3$ N & $P_r^2 = -P_r^5 = -3.93 \ 10^3$ N $P_z^1 = P_z^3 = P_z^4 = P_z^6 = P_x^1 \frac{\delta z^1}{\delta x^1} = -2620 \frac{-0.05}{1.2} = 109 \text{ N}$ $P_z^2 = P_z^5 = P_x^2 \frac{\delta z^2}{\delta x^2} = -3930 \frac{-0.05}{1.2} = 164$ N $P_y^3 = -P_y^4 = P_x^3 \frac{\delta y^3}{\delta x^3} = -2620 \frac{0.15}{1.2} = -328$ N $P_y^2 = -P_y^5 = P_x^2 \frac{\delta y^2}{\delta x^2} = -3930 \frac{0.1}{1.2} = -328$ N $P_{y}^{1} = -P_{y}^{6} = P_{x}^{1} \frac{\delta y^{1}}{\delta x^{1}} = -2620 \ 0 = 0$ $A_1 = 600 \text{ mm}^2$ = 900 mm² 10 kN 18 m $h_{h} = 0.08 \text{ m}$ A3 A1 h_b A2 L = 1.2 m $l_{1b} = 0.4 \text{ m}$ $l_{rb} = 0.2 \text{ m}$ 1.65 kN∙m Aircraft Structures - Aircraft Components - Part II 2013-2014 44 Université U 🖉

Web loading $-T_z^{\text{web}} = T_z - \sum P_z^i = 10000 - 4\ 109 - 2\ 164 = 9236 \text{ N}$ boom i $-T_y^{\text{web}} = T_y - \sum P_y^i = 0$ $T_z = 10 \text{ kN}$ boom i $A_2 = 900 \text{ mm}^2$ $A_3 = 600 \text{ mm}^2$ $A_1 = 600 \text{ mm}^2$ Remark y -q, s are anticlockwise (orientation of Oy) 0.18 0 $A_5 = A_2 \qquad A_4 = A \nexists$ $4 \text{ m} \qquad l_{rb} = 0.2 \text{ m}$ $A_6 = A_1$ $l_{lb} = 0.4 \text{ m}$

- Non dimensional lengths
 - Take μ_{REF} = 27.6 GPa
 - Side lengths

$$\begin{cases} \bar{l}^{1\,2} = \bar{l}^{5\,6} = \frac{0.4}{0.0008} = 500\\ \bar{l}^{2\,3} = \bar{l}^{4\,5} = \frac{0.2}{0.0008} = 250\\ \bar{l}^{1\,6} = \bar{l}^{2\,5} = \bar{l}^{3\,4} = \frac{0.18}{0.001} = 180 \end{cases}$$
Cell lengths

$$\vec{l}^{1} = \vec{l}^{12} + \vec{l}^{25} + \vec{l}^{56} + \vec{l}^{61} = 1360$$
$$\vec{l}^{2} = \vec{l}^{23} + \vec{l}^{34} + \vec{l}^{45} + \vec{l}^{52} = 860$$

Intersecting length

 $\bar{l}_1^2 = \bar{l}^{25} = 180$

Web	Thickness (mm)	μ (GPa)	
12	0.8	27.6	
23	0.8	27.6	
45	0.8	27.6	
56	0.8	27.6	
16	1	27.6	
25	1	27.6	
34	1	27.6	

• Twist Rate

_

Cell I

$$\theta_{,x} = \frac{1}{2 A_h^I \mu_{\text{REF}}} \left[q^I(0) \bar{l}^1 + \oint_1 \frac{q_o}{t \frac{\mu}{\mu_{\text{REF}}}} ds - q^{II}(0) \bar{l}_1^2 \right]$$

$$\implies \theta_{,x} = \frac{1}{2 \ 0.4 \ 0.18 \ 27.6 \ 10^9} \left[1360 \ q^I(0) - 1.31 \ 10^6 - 180 \ q^{II}(0) \right]$$

$$\implies \theta_{,x} = -0.0003296 \ \text{m}^{-1} + 342 \ 10^{-9} \ \text{N}^{-1} q^I(0) - 45.3 \ 10^{-9} \ \text{N}^{-1} q^{II}(0)$$

- Cell II

$$\begin{aligned} \theta_{,x} &= \frac{1}{2 A_h^{II} \mu_{\text{REF}}} \left[q^{II}(0) \bar{l}^2 + \oint_2 \frac{q_o}{t \frac{\mu}{\mu_{\text{REF}}}} ds - q^I(0) \bar{l}_1^2 \right] \\ & \Longrightarrow \theta_{,x} = \frac{1}{2 \ 0.2 \ 0.18 \ 27.6 \ 10^9} \left[860 \ q^{II}(0) + 1.31 \ 10^6 - 180 \ q^I(0) \right] \\ & \Longrightarrow \theta_{,x} = 0.000659 \ \text{m}^{-1} - 90.6 \ 10^{-9} \ \text{N}^{-1} q^I(0) + 432. \ 10^{-9} \ \text{N}^{-1} q^{II}(0) \end{aligned}$$

49

Compatibility

$$-\begin{cases} -0.0003296 \text{ m}^{-1} + 342 \ 10^{-9} \text{ N}^{-1} q^{I}(0) - 45.3 \ 10^{-9} \text{ N}^{-1} q^{II}(0) \\ = 0.000659 \text{ m}^{-1} - 90.6 \ 10^{-9} \text{ N}^{-1} q^{I}(0) + 432. \ 10^{-9} \text{ N}^{-1} q^{II}(0) \\ 0 = 691 \text{ N} \cdot \text{m} + 0.144 \text{ m}^{2} q^{I}(0) + 0.072 \text{ m}^{2} q^{II}(0) \end{cases}$$

$$\implies q^{I}(0) = \frac{0.000659 + 0.0003296}{342 \ 10^{-9} + 90.6 \ 10^{-9}} + \frac{432 + 45.3}{342 + 90.6} q^{II}(0)$$

$$\implies q^{I}(0) = 2285 \ \text{N} \cdot \text{m}^{-1} + 1.03q^{II}(0)$$

$$\implies 0 = 691 + 329 + (0.072 + 0.159) q^{II}(0)$$

$$\implies q^{II}(0) = -4.4 \ 10^{3} \ \text{N} \cdot \text{m}^{-1}$$

$$\implies q^{I}(0) = -2.3 \ 10^{3} \ \text{N} \cdot \text{m}^{-1}$$

- Symmetric wing section
 - 2 closed cells
 - 1 open cell
- Idealized section
 - Walls carry shear stress
 - Constant shear modulus
 - 12 & 56 are assumed straight
 - Booms carry direct stress
- Shear center?

Wall	Length	Thickness	Boom	Area (mm ²)	
	(mm)	(mm)	1 6	645	
12 56	510	0 559	., 0	010	
12,00	010	0.000	2, 5	1290	
23.45	765	0.915	,		
,			3, 4	1935	
34(1015	0.559			
34	304	2 030	Cell	Area (mm ²)	
<u> </u>	504	2.000		~ /	
25	304	1.625	I	93 000	
L			П	258 000	

2013-2014

Aircraft Structures - Aircraft Components - Part II

54 Université Ug

References

• Lecture notes

 Aircraft Structures for engineering students, T. H. G. Megson, Butterworth-Heinemann, An imprint of Elsevier Science, 2003, ISBN 0 340 70588 4

• Other references

- Books
 - Mécanique des matériaux, C. Massonet & S. Cescotto, De boek Université, 1994, ISBN 2-8041-2021-X

- Symmetric wing section
 - Shear center lies on *Oy*
 - Consider T_z only

 $-I_{yz} = 0$

Idealized section

$$\implies q(s) = -\frac{T_z}{I_{yy}} \sum_{i: s_i \le s} z_i A_i + q(0)$$

• With

$$I_{yy} = \sum_{i=1}^{6} A_i z_i^2$$

= 2 × 645 × 102² + 2 × 1290 × 152² +
2 × 1935 × 152² = 162.4 × 10⁶ mm⁴

Boom	Area (mm ²)
1, 6	645
2, 5	1290
3, 4	1935

- Open shear flow

$$q_{o}(s) = -\frac{T_{z}}{I_{yy}} \sum_{i: s_{i} \leq s} z_{i}A_{i} \quad \textcircled{\qquad} q_{o}(s) = -6.16 \times 10^{-9}T_{z} \sum_{i: s_{i} \leq s} A_{i}z_{i}$$

3, 4

1935

57

Université de Liège

- Compatibility
 - Rate of twist in each cell
 - Should be the same (by compatibility)
 - Should be zero (no torsion)
 - Use formula

e same
lity) ro
$$\begin{array}{c}
3 \\ -1.81 \\ x \\ 10^{-3} \\ -1.62 \\ -$$

 $\wedge z$

$$\theta_{,x} = \frac{1}{2A_{h}^{i}\mu_{\text{REF}}} \left[-q^{i-1}(0)\overline{l}_{i-1}^{i} + q^{i}(0)\overline{l}^{i} + \oint_{\text{cell }i} \frac{q_{o}}{t\frac{\mu}{\mu_{\text{REF}}}} ds - q^{i+1}(0)\overline{l}_{i}^{i+1} \right]$$

• Requires non dimensional lengths and integration of open shear flux

304 mm

836.1

Z,

 $\stackrel{y_T}{\longleftrightarrow}$

0

 T_{z}

Π

y

S

- Non dimensional lengths
 - Constant shear modulus
 - Sides length

$$\begin{cases} \bar{l}^{23} = \bar{l}^{45} = \frac{765}{0.915} \\ \bar{l}^{34^{\dagger}} = \frac{304}{2.03} = 149.8 \\ \bar{l}^{34^{\dagger}} = \frac{1015}{0.559} = 1815.7 \\ \bar{l}^{25} = \frac{304}{1.625} = 187.1 \end{cases}$$

- Intercepting length

$$\bar{l}_1^2 = \bar{l}^{34^{|}} = 149.8$$

- Cells length

$$\begin{cases} \bar{l}^1 = \bar{l}^{34'} + \bar{l}^{34'} = 1965.5 \\ \bar{l}^2 = \bar{l}^{23} + \bar{l}^{34'} + \bar{l}^{45} + \bar{l}^{52} = 2009.1 \end{cases}$$

			6 🗸
	< 762 m	\rightarrow $\stackrel{5}{\leftarrow}$ m 508	> mm
	Wall	Length (mm)	Thickness (mm)
	12, 56	510	0.559
	23, 45	765	0.915
Ī	34(1015	0.559
Ī	34	304	2.030
	25	304	1.625

2

 $\frac{1}{304}$ mm

204 mm

- Cell I

$$\oint_{1} \frac{q_o}{t \frac{\mu}{\mu_{BEE}}} \, ds = \frac{q_0^{43^{|}} \times l^{43^{|}}}{t^{43^{|}}} = \frac{1.81 \times 10^{-3} T_z \times 304}{2.03} = 0.271 T_z$$

- Cell II

$$\oint_{2} \frac{q_{o}}{t \frac{\mu}{\mu_{REF}}} ds = \frac{q_{0}^{34^{|}} \times l^{34^{|}}}{t^{34^{|}}} + \frac{q_{0}^{52} \times l^{52}}{t^{52}}$$
$$= \frac{-1.81 \times 10^{-3} T_{z} \times 304}{2.03} + \frac{1.62 \times 10^{-3} T_{z} \times 304}{1.625} = 319.64 \times 10^{-4} T_{z}$$

60

Université de Liège

62 Université

Aircraft Structures - Aircraft Components - Part II

66

Université de Liège

67 Université Ug

- Web shearing
 - Due to taper

$$T_y^{web} = T_y - \sum_{i=1}^{6} \mathbf{P}_y^i = 0$$

$$T_z^{web} = T_z - \sum_{i=1}^{6} \mathbf{P}_z^i = 12000 - 2 \times (53.6 + 145.2 + 145.2) = 11312 N$$

$$T_z = 12 \text{ kN}$$

 $I_z = 12 \text{ kN}$ S Open shear flow 320 mm 320 mm Π III - As $T_v^{web} = 0$ \downarrow 210 mm y $q_o = -\frac{T_z^{web}}{I_{yy}} \sum_{i: s_i \leq s} A_i z_i \qquad -M_y = 1.8 \text{ kN m}$ 6 4|← 590 mm 790 mm $q_o(s) = -1.188 \times 10^{-4} \sum A_i z_i$ $i:s_i \leq s$

- $T_z = 12 \text{ kN}$ Compatibility S Rate of twist in 320 mm 320 mm each cell Π III 15.21 7.48 15.21 Should be the same $\downarrow 210 \text{ mm}$ • (by compatibility) $-M_v = 1.8 \text{ kN m}$ Use formula 790 mm 590 mm • $\theta_{,x} = \frac{1}{2A_{h}^{i}\mu_{\text{REF}}} \left| -q^{i-1}(0)\overline{l}_{i-1}^{i} + q^{i}(0)\overline{l}^{i} + \oint_{\text{cell }i} \frac{q_{o}}{t\frac{\mu}{\mu_{\text{REF}}}} ds - q^{i+1}(0)\overline{l}_{i}^{i+1} \right|$
 - Requires non dimensional lengths and integration of open shear flux

 Non dimensional lengths (2) Cells length 	Wall	Length (mm)	Thickness (mm)
$(\bar{l}^1 - \bar{l}^{34'} + \bar{l}^{34'}) = 2160$	12, 56	600	1.0
$\begin{cases} \bar{l}^2 = \bar{l}^{23} + \bar{l}^{34^{\dagger}} + \bar{l}^{45} + \bar{l}^{52} = 1920 \end{cases}$	23, 45	800	1.0
$ \vec{l}^3 = \vec{l}^{12} + \vec{l}^{25} + \vec{l}^{56} + \vec{l}^{61} = 1500 $	34(1200	0.6
	34	320	2.0
	25	320	2.0
	16	210	1.5
320 mm I I 15.211 $-M_y = 1.8 \text{ kN m}$ 4	<i>T_z</i> <i>S</i> <i>II</i> 15.21	= 12 kN $2 s$ $z III$ 7.48 y y $z s$ $z s$ $z s$ y $z s$	320 mm

2013-2014

Exercise 2: Tapered wing

- Cell I, II & III

$$\oint_{1} \frac{q_{o}}{t\frac{\mu}{\mu_{REF}}} ds = \frac{q_{0}^{43^{|}} \times l^{43^{|}}}{t^{43^{|}}} = \frac{15.21 \times 320}{2} = 2433.6$$

$$\oint_{2} \frac{q_{o}}{t\frac{\mu}{\mu_{REF}}} ds = \frac{q_{0}^{34^{|}} \times l^{34^{|}}}{t^{34^{|}}} + \frac{q_{0}^{52} \times l^{52}}{t^{52}} = \frac{(-15.21) \times 320}{2} + \frac{15.21 \times 320}{2} = 0$$

$$\oint_{3} \frac{q_{o}}{t\frac{\mu}{\mu_{REF}}} ds = \frac{q_{0}^{25} \times l^{25}}{t^{25}} + \frac{q_{0}^{61} \times l^{61}}{t^{61}} = \frac{(-15.21) \times 320}{2} + \frac{7.48 \times 210}{1.5} = -1384.8$$

TERS

Aircraft Structures - Aircraft Components - Part II

73

Twist rate	Cell	Area (mm ²)
	I	100 000
$\theta_{,x} = \frac{1}{2 A_{I}^{I} \mu_{\text{RFF}}} \left[q^{I}(0) \bar{l}^{1} + \oint_{1} \frac{q_{o}}{t - \mu} ds - q^{II}(0) \bar{l}_{1}^{2} \right]$	П	260 000
$= - \frac{1}{h} \rho^{-} \Pi E \Gamma \left[\int J \Gamma \rho \mu_{REF} \right]$	Ш	180 000
$\square \theta_{,x} = \frac{1}{2 \times 100000 \mu} \left(2160 q^{T} \left(0 \right) - 160 q^{T} \left(0 \right) + 2433.6 \right)$		
	г	
$\theta = \frac{1}{1} \left[-a^{I}(0) \overline{l}^{2} + a^{II}(0) \overline{l}^{2} + \delta - \frac{q_{o}}{1} - a^{III}(0) \overline{l}^{2} \right]$	1) \overline{I}^{3}	

$$\begin{aligned} \theta_{,x} &= \frac{1}{2 \; A_{h}^{II} \; \mu_{\text{REF}}} \left[-q^{I} \left(0 \right) \bar{l}_{1}^{2} + q^{II} \left(0 \right) \bar{l}^{2} + \oint_{2} \frac{q_{o}}{t \frac{\mu}{\mu_{REF}}} - q^{III} \left(0 \right) \bar{l}_{2}^{3} \right] \\ & \Longrightarrow \; \theta_{,x} = \frac{1}{2 \times 260000 \mu} \left(-160 q^{I} \left(0 \right) + 1920 q^{II} \left(0 \right) - 160 q^{III} \left(0 \right) \right) \\ - \; \text{Cell III} \\ \theta_{,x} &= \frac{1}{2 \; A_{h}^{III} \; \mu_{\text{REF}}} \left[-q^{II} \left(0 \right) \bar{l}_{2}^{3} + q^{III} \left(0 \right) \bar{l}^{3} + \oint_{3} \frac{q_{o}}{t \frac{\mu}{\mu_{REF}}} \right] \\ & \Longrightarrow \; \theta_{,x} = \frac{1}{2 \times 180000 \mu} \left(-160 q^{II} \left(0 \right) + 1500 q^{III} \left(0 \right) - 1384.8 \right) \end{aligned}$$

Three equations and 4 unknowns

momentum equilibrium

Exercise 2: Tapered wing

$$\sum_{\text{boom } j} y^{j} \mathbf{P}_{z}^{j} = y^{1} \mathbf{P}_{z}^{1} + y^{3} \mathbf{P}_{z}^{3} + y^{4} \mathbf{P}_{z}^{4} + y^{6} \mathbf{P}_{z}^{6}$$

$$= 590 \times 53.6 + (-790) \times 145.2 + (-790) \times 145.2 + 590 \times 53.6 = -166170 \text{ } N.mm$$

$$\sum_{\text{boom } j} z^{j} \mathbf{P}_{y}^{j} = z^{1} \mathbf{P}_{y}^{1} + z^{3} \mathbf{P}_{y}^{3} + z^{4} \mathbf{P}_{y}^{4} + z^{6} \mathbf{P}_{y}^{6}$$

$$= 105 \times 142.9 + 160 \times (-435.5) + (-160) \times 435.5 + (-105) \times (-142.9) = -109351 \text{ } N.mm$$

Exercise 2: Tapered wing

$$\sum_{i} \int_{\text{wall } i} q_o p \, ds = q_o^{61} \times l^{61} \times 590 - q_o^{43^{|}} \times l^{43^{|}} \times 790$$
$$= 7.48 \times 210 \times 590 - 15.21 \times 320 \times 790 = -2918000 \, N.mm$$

Leading to

• System of equations

$$\frac{1}{2 \times 1000\mu} \left(21.60q^{I}(0) - 1.60q^{II}(0) + 24.34 \right) = \frac{1}{2 \times 1000\mu} \left(-0.615q^{I}(0) + 7.385q^{II}(0) - 0.615q^{III}(0) \right) \\ \frac{1}{2 \times 1000\mu} \left(21.60q^{I}(0) - 1.60q^{II}(0) + 24.34 \right) = \frac{1}{2 \times 1000\mu} \left(-0.889q^{II}(0) + 8.333q^{III}(0) - 7.691 \right) \\ q^{I}(0) + 2.6q^{II}(0) + 1.8q^{III}(0) - 14.88 = 0$$

$$\int 22.215q^{I}(0) - 8.985q^{II}(0) + 0.615q^{III}(0) + 24.34 = 0 \\ 21.60q^{I}(0) - 0.711q^{II}(0) - 8.333q^{III}(0) + 32.031 = 0$$

$$21.60q^{I}(0) - 0.711q^{II}(0) - 8.333q^{III}(0) + 32.031 = 0$$

$$q^{I}(0) + 2.6q^{II}(0) + 1.8q^{III}(0) - 14.88 = 0$$

Constant shear flows (in N/mm)

$$\begin{pmatrix} 22.215 & -8.985 & 0.615 \\ 21.6 & -0.711 & -8.333 \\ 1 & 2.6 & 1.8 \end{pmatrix} * \begin{bmatrix} q^{I}(0) \\ q^{II}(0) \\ q^{III}(0) \end{bmatrix} = \begin{bmatrix} -24.34 \\ -32.031 \\ 14.88 \end{bmatrix}$$
$$\longleftrightarrow \begin{bmatrix} q^{I}(0) \\ q^{II}(0) \\ q^{III}(0) \end{bmatrix} = \begin{bmatrix} 0.06 \\ 3.11 \\ 3.74 \end{bmatrix}$$

Total shear flow

• Example

- Straight wing box
- Idealized cross-sections
 - Booms carry direct stresses only
 - Skins carry shear stress only
 - 2-mm thick
 - E = 69 GPa, $\mu = 25.9$ GPa
 - Singly symmetrical section
- Load
 - At the free surface
 - Through shear center
- Deflection
 - Due to direct stress?
 - Due to shear flux?

y

Bending

- As boom distribution is symmetric
 - $I_{yy} = \sum_{i} A_i z^{i^2} = 4\ 0.00065\ 0.125^2 + 2\ 0.0013\ 0.125^2 = 81.25\ 10^{-6}\ m^4$
- Moment
 - For T_z = 44.5 kN: $M_y = -44.5 \ 10^3 \ (2-x) = 44.5 \ 10^3 \ x \ N 89 \ 10^3 \ N \cdot m$
 - For $T_z = 1$ N: $M_y^{(1)} = -1 \ (2 x) = x \ N 2 \ N \cdot m$
- Deflection due to bending

2013-2014

• Shearing

- As the wing is not tapered, the shear flux is constant with respect to x

$$q_{o}(s) = -\frac{I_{zz}T_{z} - I_{yz}T_{y}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} z ds + \sum_{i: s_{i} \leq s} z_{i}A_{i} \right] - \frac{I_{yy}T_{y} - I_{yz}T_{z}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{yy}T_{y} - I_{yz}T_{z}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{yy}T_{y} - I_{yz}T_{z}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{yy}T_{y} - I_{yz}T_{z}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{yy}T_{zz} - I_{yz}^{2}}{I_{yy}I_{zz} - I_{yz}^{2}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{yy}T_{zz} - I_{yz}^{2}}{I_{z}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{yz}T_{z} - I_{yz}^{2}}{I_{z}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{yz}T_{z} - I_{yz}^{2}}{I_{z}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{yz}T_{z} - I_{yz}^{2}}{I_{z}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{z}T_{z} - I_{z}^{2}}{I_{z}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{z}T_{z} - I_{z}^{2}}{I_{z}} \left[\int_{0}^{s} t_{\text{direct } \sigma} y ds + \sum_{i: s_{i} \leq s} y_{i}A_{i} \right] - \frac{I_{z}T_{z} - I_{z}^{2}}{I_{z}} \left[\int_{0}^{s} t_{z} - I_{z}^{2} \int_{0}^{s} I_{z}^{2} \left[\int_{0}^{s} t_{z} - I_{z}^{2} \int_{0}^{s} I_{z}^{2} \left[\int_{0}^{s} t_{z} - I_{z}^{2} \int_{0}^{s} I_{z}^{2} \left[\int_{0}^{s} I_{z} - I_{z}^{2} \int_{0}^{s} I_{z}^{2} \left[\int_{0}^{s} I_{z} - I_{z}^{2} \int_{0}^{s} I_{z}^{2} \left[\int_{0}^{s} I_{z} - I_{z}^{2} I_{z}^{2} \left[\int_{0}^{s} I_{z} - I_{z}^{2} I_{z}^{2} \left[\int_{0}^{s} I_{z}^{2} I_{z}^{2} \left[\int_{0}^{s} I_{z}^{2} I_{z}^{2} \left[\int_{0}^{s} I_{z}^{2} I_{z}^{2} \left[\int_{0}^{s} I_{z}^{2} I_{z}^{2} I_{z}^{2} I_{z}^{2} I_{z}^{2} \left[\int_{0}^{s} I_{z}^{2} I_{z$$

2013-2014

81 Université Ug

Annex 1: Deflection of wing

Annex 1: Deflection of wing

- Non dimensional lengths
 - Take μ_{REF} = 25.9 GPa
 - Sides length

$$\begin{cases} \bar{l}^{12} = \bar{l}^{56} = \frac{0.5}{0.002} = 250 \\ \bar{l}^{23} = \bar{l}^{45} = \frac{0.25}{0.002} = 125 \\ \bar{l}^{16} = \bar{l}^{25} = \bar{l}^{34} = \frac{0.25}{0.002} = 125 \end{cases}$$
Cells length

$$\bar{l}^1 = \bar{l}^{12} + \bar{l}^{25} + \bar{l}^{56} + \bar{l}^{61} = 750$$
$$\bar{l}^2 = \bar{l}^{23} + \bar{l}^{34} + \bar{l}^{45} + \bar{l}^{25} = 500$$

Intersecting length

$$\bar{l}_1^2 = \bar{l}^{25} = 125$$

$$A_{1} = 650 \text{ mm}^{2} \qquad A_{2} = 1300 \text{ mm}^{2} \qquad A_{3} = 650 \text{ mm}^{2}$$

$$y \qquad 89 \text{ kN.m}^{-1} \qquad 44.5 \text{ kN.m}$$

• Integration of open shear flux on cells

Cell *I*
$$\oint_{1} \frac{q_o}{t \frac{\mu}{\mu_{\text{REF}}}} ds = -\frac{89000}{0.002} 0.25 + \frac{44500}{0.002} 0.25 = -5.56 \ 10^6 \text{N} \cdot \text{m}^{-1}$$

$$\oint_{2} \frac{q_o}{t \frac{\mu}{\mu_{\text{REF}}}} ds = -\frac{44500}{0.002} 0.25 + \frac{89000}{0.002} 0.25 = 5.56 \ 10^6 \text{N} \cdot \text{m}^{-1}$$

2013-2014

84

• Twist rate

- Is equal to zero as the loading passes through the shear center
- Cell I

$$0 = \theta_{,x} = \frac{1}{2 A_h^I \mu_{\text{REF}}} \left[q^I(0) \bar{l}^1 + \oint_1 \frac{q_o}{t \frac{\mu}{\mu_{\text{REF}}}} ds - q^{II}(0) \bar{l}_1^2 \right]$$

$$\implies q^I(0) \bar{l}^1 + \oint_1 \frac{q_o}{t \frac{\mu}{\mu_{\text{REF}}}} ds - q^{II}(0) \bar{l}_1^2 = 0$$

$$\implies 750 q^I(0) - 5.56 \ 10^6 \ \text{N} \cdot \text{m}^{-1} - 125 \ q^{II}(0) = 0$$

- Cell II

$$0 = \theta_{,x} = \frac{1}{2 A_h^{II} \mu_{\text{REF}}} \left[q^{II}(0) \vec{l}^2 + \oint_2 \frac{q_o}{t \frac{\mu}{\mu_{\text{REF}}}} ds - q^I(0) \vec{l}_1^2 \right]$$

$$\implies q^{II}(0) \vec{l}^2 + \oint_2 \frac{q_o}{t \frac{\mu}{\mu_{\text{REF}}}} ds - q^I(0) \vec{l}_1^2 = 0$$

$$\implies 500 q^{II}(0) + 5.56 \ 10^6 \ \text{N} \cdot \text{m}^{-1} - 125 \ q^I(0) = 0$$

Solution

$$-35.5610^{6} \text{ N} \cdot \text{m}^{-1} + (4750 - 125) q^{I}(0) = 0 \implies q^{I}(0) = 5.810^{3} \text{ N} \cdot \text{m}^{-1}$$
$$\implies q^{II}(0) = \frac{125q^{I}(0) - 5.5610^{6}}{500} = -9.710^{3} \text{ N} \cdot \text{m}^{-1}$$
$$2013-2014 \qquad \text{Aircraft Structures - Aircraft Components - Part II} \qquad 85$$

Annex 1: Deflection of wing

• Shear flux

- For $T_z = 1$ kN

• By linearity, $q^{(1)} = q / 44500$

• Deflection due to shearing

$$\Delta_{T}u = \int_{0}^{L} \int_{s} \frac{q^{(1)}q}{\mu t} ds dx = \int_{0}^{2} \int_{s} \frac{q^{2}}{44.5 \ 10^{3} \ 0.002 \ 25.9 \ 10^{9}} ds dx$$

$$= 0.8676 \ 10^{-12} \int_{s} q^{2} ds$$

$$\Rightarrow \Delta_{T}u = 0.8676 \ 10^{-12} \ 10^{6} \ [5.8^{2} \ 0.5 \ 2 + 9.7^{2} \ 0.25 \ 2 + 50.3^{2} \ 0.25 + 73.5^{2} \ 0.25 + 73.5^{2} \ 0.25 + 54.2^{2} \ 0.25] = 0.00243 \ \mathrm{m}$$

$$= 0.00243 \ \mathrm{m}$$

$$A_{1} \xrightarrow{5.8 \ \mathrm{kN.m}} A_{2} \xrightarrow{9.7 \ \mathrm{kN.m}^{-1}} 54.2^{1} \ \mathrm{kN.m}^{-1} \ \mathrm{kN.m}^{-1}$$

- Total deflection
 - As displacement components are both oriented toward z

 $\Delta u = \Delta_T u + \Delta_P = 0.002 + 0.021 = 0.023 \text{ m}$

