

June 2020

Question n° 1

The two-cell wing depicted here above has the idealized cross-section properties reported in the four Tables here below. The area of the cell II is given in two parts: the part left to the virtual line 25 and the part right to the virtual line 25. There is no wall between booms 2 and 5.

Wall	Length	Thickness	Shear
	(mm)	(mm)	modulus
			(GPa)
12, 56	950	0.5	22
23, 45	265	0.5	22
34(950	0.5	22
34	380	1.5	71
16	250	0.5	22

Boom	Section (mm ²)	Cell	Area (mm ²)
1, 6	1 000	Ι	115 000
2, 5	1 300	IIa	105 000
3, 4	1 200	IIb	315 000

Distance	Length (mm)
L1	250
L2	900
L3	400

We consider the following assumptions

- The booms carry the direct stress (due to bending) only;
- The skin panels sustain the shear stress only;
- The taper effect can be neglected;
- The cross-section has a single symmetry;
- Twist and shear centres are assumed to coincide.

You are requested to compute

- A) The location of the shear centre of the wing.
- B) The twist rate for a load $T_y = 1$ kN, $T_z = 2$ kN passing through this shear centre.

Question n° 2

The three-cell wing depicted here above has the booms distribution reported in the two Tables here below. The booms do not all have the same Young's modulus and are not symmetrically distributed in terms of their cross-section.

Distance	Length (mm)
L1	500
L2	400
L3	150
L4	50

Boom	Section (mm ²)	Young's modulus (GPa)
1	1 000	71
2	1 300	22
3	1 200	22
4	1 000	22
5	900	22
6	800	22

We consider the following assumptions

- The booms carry the direct stress (due to bending) only;
- The skin panels sustain the shear stress only;
- The taper effect can be neglected.

You are requested to compute

- A) In the referential O'x'y' linked to the mid-length of wall 3-4, the location of the inertia centre *C* governing the bending behaviour;
- B) The adequate second-moment of area terms that govern the bending behaviour with respect to this inertia centre *C*;
- C) The direct stress in the different booms considering an applied bending moment $M_{\chi'} = -10$ kN.m.