Fracture Mechanics Online Class

Yielding Strip Model

In Dugdale's model, the stress field is obtained by the superposition of the uniform plate solution, of the solution of loaded crack of size $a+r_p$, and of the solution plastic zone yield, i.e. ahead of the cohesive zone

As a result, the stress field ahead of the cohesive zone reads

\begin{equation} \mathbf{\sigma}_{yy}\left(\theta=0\right)=\frac{x}{\sqrt{x^2-{\left(a+r_p\right)}^2}}\left( \sigma_\infty-\frac{2\sigma_p^0}{\pi}\text{arcotan}\frac{a}{\sqrt{r_p^2+2ar_p}}\right)+\frac{2\sigma_p^0}{\pi}\text{arcotan}\left(\frac{a}{x}\sqrt{\frac{x^2-{\left(a+r_p\right)}^2}{r_p^2+2ar_p}}\right)\,.\label{eq:stressYieldStrip} \end{equation}

Similarly, the displacement field is obtained by the superposition of the uniform plate solution, of the solution of loaded crack of size $a+r_p$, and of the solution process zone yield, i.e. on the cohesive zone

As a result, the displacement field on the crack lips and on the process zone reads

\begin{equation}\begin{array}{rcl} \mathbf{u}_y\left(\theta\rightarrow \pm \pi\right) &=& \pm \frac{\left(1+\nu\right)\left(1+\kappa\right) \sigma_p^0}{E\pi} \bigg[-\sqrt{\left(a+r_p\right)^2-x^2} \text{arcotan} \frac{a}{\sqrt{r_p^2+2ar_p}} + a \text{arcoth} \sqrt{ \frac{\left(a+r_p\right)^2 - x^2}{r_p^2 + 2ar_p}}\\ &&- x f\left(\frac{a}{x}\sqrt{ \frac{\left(a+r_p\right)^2 - x^2}{r_p^2 + 2ar_p}}\right) \bigg]\pm \frac{\left(1+\nu\right)\left(\kappa+1\right)\sigma_\infty} {2E} \sqrt{\left(a+r_p\right)^2-x^2}\,,\end{array} \label{eq:uYieldStrip}\end{equation}

where

\begin{equation}f(x) = \left\{\begin{array}{ll} \text{arcoth}(x) &\text{ if } x<a\, ;\\ \text{arctanh}(x) &\text{ if } a<x<a+r_p\,.\end{array}\right. \label{eq:ufCase3}\end{equation}

Evaluation of the process zone size

The idea behind Dugdale's model, is to evaluate the process zone size in order to remove the stress singularity. Since $\text{arcotan}(0)=\frac{\mathbf{\pi}}{2}$, the singularity at $x=a+r_p$ in Eq. (\ref{eq:stressYieldStrip}) is avoided if

\begin{equation} \sigma_{\infty}=\frac{2\sigma_p^0}{\pi}\text{arcotan}\left(\frac{a}{\sqrt{r_p^2+2ar_p}}\right)\,.\label{eq:cohesiveSize1}\end{equation}

Using the relation $\text{arcotan}\left(\frac{a}{\sqrt{r_p^2+2ar_p}}\right)=\arccos\left(\frac{\frac{a}{\sqrt{r_p^2+2ar_p}}}{\sqrt{{\left(\frac{a}{\sqrt{r_p^2+2ar_p}}\right)}^2+1}}\right)=\arccos\left(\frac{a}{a+r_p}\right)$, Eq. (\ref{eq:cohesiveSize1}) is satisfied if

\begin{equation} r_p=a\left(\sec\frac{\sigma_{\infty}{\pi}}{2\sigma_p^0}-1\right)\,.\label{eq:cohesiveSize}\end{equation}

Picture VII.21: Size of the process zone (Exact vs. SSY) of the yielding strip model.

As the function $\sec(x)$ can be approximated by $\sec(x)= x +\frac{x^2}{2}+\frac{5x^4}{24}+\mathcal{O}(x^6)$, the small scale yielding assumption of Eq. (\ref{eq:cohesiveSize}) reads

\begin{equation} r_p=a\left(\sec\frac{\sigma_{\infty}{\pi}}{2\sigma_p^0}-1\right)\simeq \frac{a\pi^2}{8}{\left(\frac{\sigma_\infty}{\sigma_p^0}\right)}^2 \,.\label{eq:cohesiveSizeSSY}\end{equation}

The SSY approximation (\ref{eq:cohesiveSizeSSY}) is compared to the exact solution (\ref{eq:cohesiveSize}) in Picture VII.21, in which it can be seen that the SSY approximation remains accurate when the nominal loading $\sigma_\infty$ remains lower than $40\%$ of the yield stress $\sigma_p^0$.


The stress field of the yielding strip model

Picture VII.22: Stress distribution for $y=0$ for the yielding strip model.

Using the process zone size (\ref{eq:cohesiveSize}), the stress distribution ahead of the cohesive zone is obtained from Eq. (\ref{eq:stressYieldStrip}). As the stress fields along the crack lips and along the process zone are known from the boundary conditions, the stress distribution for $y=0$ reads

\begin{equation} \mathbf{\sigma}_{yy}\left(y=0\right) = \left\{\begin{array}{l } 0\text{ if } x<a\,;\\ \sigma_p^0 \text{ if } a<x<a+r_p\,;\\ \frac{2\sigma_p^0}{\pi}\text{arcotan}\left(\frac{a}{x}\sqrt{\frac{x^2-\left(a+r_p\right)^2}{r_p^2+2ar_p}}\right)\text{ if } a+r_p<x\,.\\ \end{array}\right.\label{eq:stressYieldStripFinal} \end{equation}

The stress distribution (\ref{eq:stressYieldStripFinal}) is illustrated in Picture VII.22 for different nominal loading values $\sigma_\infty$. It can be seen that the stress singularity is avoided with the yielding strip model.


The displacement field of the yielding strip model

Using the process zone size (\ref{eq:cohesiveSize}), the displacement field on the crack lips and on the process zone (\ref{eq:uYieldStrip}) is rewritten

\begin{equation} \mathbf{u}_y\left(\theta\rightarrow \pm \pi\right) = \pm \frac{\left(1+\nu\right)\left(1+\kappa\right) \sigma_p^0}{E\pi} \bigg[ a \text{arcoth} \sqrt{ \frac{\left(a+r_p\right)^2 - x^2}{r_p^2 + 2ar_p}} - x f\left(\frac{a}{x}\sqrt{ \frac{\left(a+r_p\right)^2 - x^2}{r_p^2 + 2ar_p}}\right) \bigg]\,, \label{eq:uYieldStripFinal}\end{equation}

where $f(f)$ is defined by Eq. (\ref{eq:ufCase3}). The Crack Opening Displacement (COD) $\delta$ is thus defined as

\begin{equation} \delta=[[ \mathbf{u}_y]] = 2\frac{\left(1+\nu\right)\left(1+\kappa\right)\sigma_p^0}{E\pi}\left[a \text{arcoth }\left(\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}\right)-xf\left(\frac{a}{x}\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}\right)\right]\,.\label{eq:CODYieldStrip} \end{equation}

Picture VII.23: Displacement field and Crack Tip Opening Displacement (CTOD) $\delta_t$.

The displacement distribution (\ref{eq:uYieldStripFinal}) is illustrated in Picture VII.23 for different nominal loading values $\sigma_\infty$. It can be seen that at crack tip, i.e. for x=a, the opening is not zero. The Crack Tip Opening Displacement (CTOD) $\delta_t$ is therefore defined as the COD at $x=a$ and is derived as,

\begin{equation} \delta_t=\lim_{x\rightarrow{a^+}} [[\mathbf{u}_y]]\,,\label{eq:CTODDefinition} \end{equation}

where we have chosen arbitrarily the limit $x\rightarrow{a^+}$ from the upper side (both limits lead to the same result, but as the function $f(x)$ changes we need to choose one of them). From the COD field (\ref{eq:CODYieldStrip}), we thus have


\begin{equation} \delta_t = \lim_{x\rightarrow{a^+}} 8\frac{\sigma_p^0}{E'\pi}\left[a \text{arcoth} \left(\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}\right) - x \text{arcoth} \left(\frac{a}{x} \sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}\right)\right]\,, \end{equation}

or using the identity $\text{arcoth} x = \frac{1}{2} \ln \frac{x+1}{x-1}$

\begin{equation} \begin{array}{rcl}\delta_t&=&\lim_{x\rightarrow{a^+}} 4\frac{\sigma_p^0}{E'\pi}\left[a \ln \left(\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}+1\right) - a \ln \left(\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1\right)\right. -\\&& \left.x \ln \left(\frac{a}{x}\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}+1\right) +x \ln \left(\frac{a}{x} \sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1\right)\right]\,. \end{array}\end{equation}

As the limits of the first and third terms cancel each other, this equation becomes

\begin{equation} \delta_t = \lim_{x\rightarrow{a^+}} 4\frac{\sigma_p^0}{E'\pi}\left[- a \ln \left( \sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1\right) +x \ln \left(\frac{a}{x} \sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1\right)\right]\,, \end{equation}

which can be rewritten

\begin{equation} \delta_t=\lim_{x\rightarrow{a^+}} 4\frac{\sigma_p^0}{E'\pi} \left[a \ln \left( \frac{\frac{a}{x}\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1}{\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1}\right) + \left(x-a\right) \ln \left(\frac{a}{x}\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1\right)\right]\,. \end{equation}

The limit of the second term tends to zero as a polynomial "wins" on a logarithm function, leading to

\begin{equation} \delta_t=\lim_{x\rightarrow{a^+}} 4\frac{\sigma_p^0 a}{E'\pi} \ln \left( \frac{\frac{a}{x}\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1}{\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1}\right)\,. \label{eq:CTODTmp}\end{equation}

The indetermination is removed by applying the Hospital's Theorem, yielding

\begin{equation}\begin{array}{lcl} \lim_{x\rightarrow{a^+}} \frac{\frac{a}{x}\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1}{\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}}-1} &=& \lim_{x\rightarrow{a^+}} \frac{ -\frac{a}{x^2}\sqrt{\frac{\left(a+r_p\right)^2-x^2}{r_p^2+2ar_p}} - \frac{a}{\sqrt{r_p^2+2ar_p}\sqrt{\left(a+r_p\right)^2-x^2}}} {\frac{-x}{\sqrt{r_p^2+2ar_p}\sqrt{\left(a+r_p\right)^2-x^2}}} \\ &=& \lim_{x\rightarrow{a^+}}\frac{ -\frac{a}{x^2}\bigg(\left(a+r_p\right)^2-x^2\bigg)-a}{-x} = \frac{\left(a+r_p\right)^2}{a^2}\,,\end{array}\end{equation}

and Eq. (\ref{eq:CTODTmp}) becomes

\begin{equation} \delta_t=\lim_{x\rightarrow{a^+}} 8\frac{\sigma_p^0 a}{E'\pi} \ln \left(\frac{\left(a+r_p\right)}{a}\right)\,. \label{eq:CTODTmp2}\end{equation}

Using the size of the process zone (\ref{eq:cohesiveSize}), the CTOD $\delta_t$ is eventually rewritten as

\begin{equation} \delta_t=\lim_{x\rightarrow{a}}[[\mathbf{u}_y]]=8\frac{\sigma_p^0a}{E'\pi}\ln\left(\sec\frac{\sigma_\infty\pi}{2\sigma_p^0}\right)\,, \label{eq:CTODYieldStrip} \end{equation}

with

\begin{equation} E' = \frac{4E}{\left(1+\nu\right)\left(\kappa+1\right)} \left\{\begin{array}{ll} E &\text{ in plane-}\sigma\,;\\ \frac{E}{1-\nu^2}&\text{ in plane-}\varepsilon\,. \end{array} \right.\end{equation}