Aircraft Design
Introduction to Aircraft Structures

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3
http://www.ltas-cm3.ulg.ac.be/
Chemin des Chevreuils 1, B4000 Liège
L.Noels@ulg.ac.be
Loading

- **Primary purpose of the structure**
 - To transmit and resist the applied loads
 - To provide an aerodynamic shape
 - To protect passengers, payload, systems

- **The structure has to withstand**
 - Aerodynamic loadings
 - Thrust
 - Weight and inertial loadings
 - Pressurization cycle
 - Shocks at landing, …
Aerodynamic loading

- **Example: wing loading**
 - Pressure distribution on an airfoil
 - Results from angle of attack and/or camber
 - This distribution can be modeled by
 - A lift (per unit length)
 - A drag (per unit length)
 - Applied at the Center of Pressure (CP)
 - As the CP moves with the angle of attack, this is more conveniently modeled by
 - Lift and drag
 - A constant moment
 - Applied at the fixed Aerodynamic Center (AC)
 - Can actually move due to compression effects
 - As the structural axis is not always at the CP
 - There is a torsion of the wing (particularly when ailerons are actuated)
 - There is always flexion
Aerodynamic loading

- Example: wing loading (2)
 - The lift distribution depends on
 - Sweep angle
 - Taper ratio
 - ...
 - Load can be modeled by
 - Lift and moment
 - Applied on the aerodynamic center
Aerodynamic loading

• Example: wing loading (3)
 – The lift and moment distributions result into
 • A bending moment
 – Due to \(l(y) \)
 • A torsion
 – Due to \(m(y) \)
 – Due to the fact that \(l(y) \) is not applied on the structural axis
 • Which depend on
 – Velocity
 – Altitude
 – Maneuver
 – Surface control actuation
 – Configuration (flaps down or up)
 – Gust
 – Take off weight
Aerodynamic loading

- **Load intensity**
 - Global loading can be represented by the load factor n (in g-unit)
 - n corresponds to the ratio between
 - The resulting aerodynamic loads perpendicular to the aircraft x-axis
 - The weight
 - When flying: $n \sim \frac{L}{W}$
 - Steady flight: $n = 1$
 - Pullout: $n > 1$
 - Loading factor depends on
 - Velocity
 - Altitude
 - Maneuver
 - Surface control actuation
 - Configuration (flaps down or up)
 - Gust
 - Take off weight
Aerodynamic loading

- **Placard diagram (Altitude-Velocity dependency)**
 - **Design altitude**
 - High enough to reduce drag (as density decreases with the altitude)
 - Above turbulence zone
 - **Design cruise Mach** (M_C)
 - Usually maximum operating Mach:
 Mach obtained at maximum engine thrust $M_C = M_{mo} \sim 1.06 M_{cruise}$
 - Temperature evolves linearly with altitude until the stratosphere
Aerodynamic loading

- **Placard diagram (2)**
 - Above the design altitude
 - Although density is reduced, the compressibility effects do not allow flying at higher Mach
 - The plane will fly at the same M_C number
 - Ceiling
 - At high altitude the density is too small
 - The wing cannot produce the required lift
 - The engines cannot produce the required thrust

Table:

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>M_C</th>
<th>True airspeed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph:

- Lift and thrust limit
- Stratospheric limit
- Design altitude
- Turbulences zone

Legend:

- M_C:
 - $168M_C$
 - $295.2M_C$
 - $340M_C$

Other:

- **T** (K): 216.5, 288
- **ρ (kg m$^{-3}$):** 0.36, 1.22
- **p (kPa):** 22.6, 101.3
Aerodynamic loading

- Placard diagram (3)
 - 1957, Lockheed U2
 - Ceiling 21 km (70000 ft)
 - Only one engine
 - AR ~ 10
 - Stall speed close to maximum speed

\[\begin{array}{c|c|c|c|c|c|c}
\text{True airspeed (m/s)} & \text{Altitude (km)} & \text{MC} & 168MC & 295.2MC & 340MC & \text{Stratospheric limit} \\
\hline
216.5 & 11 & 0.36 & 1.22 & 22.6 & 91 & \text{Lift and thrust limit} \\
288 & 10.8 & & & & & \text{Stratospheric limit} \\
\end{array} \]
Aerodynamic loading

• Placard diagram (4)
 – Below design altitude, when getting closer to the sea level
 • Density increases
 – Engines cannot deliver enough thrust to maintain M_C (drag increases with ρ)
 – Drag has to be kept constant
 $\rho V_{\text{True}}^{2/2}$ constant (V_{True} is the true airspeed)
 – From the dynamical pressure $\rho V_{\text{True}}^{2/2}$, the equivalent velocity at sea level can be deduced: $V_e = V_{\text{True}} (\rho / \rho_0)^{1/2}$ ($\rho_0 =$ density at sea level)
 • Equivalent velocity is constant \longrightarrow true airspeed is decreasing
 – There can be an operational limit as take off speed

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Lift and thrust limit</th>
<th>Stratospheric limit</th>
<th>Design altitude</th>
<th>Turbulences zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Lift and thrust limit</th>
<th>Stratospheric limit</th>
<th>Design altitude</th>
<th>Turbulences zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Lift and thrust limit</th>
<th>Stratospheric limit</th>
<th>Design altitude</th>
<th>Turbulences zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Lift and thrust limit</th>
<th>Stratospheric limit</th>
<th>Design altitude</th>
<th>Turbulences zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Lift and thrust limit</th>
<th>Stratospheric limit</th>
<th>Design altitude</th>
<th>Turbulences zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aerodynamic loading

- **Placard diagram (5)**
 - Maximum velocity?
 - During a dive the plane can go faster than the design mach cruise
 - Design dive Mach (FAR) is defined as the minimum between
 - $1.25 \, M_C$
 - Mach actually obtained after a 20-second dive at 7.5° followed by a 1.5-g pullout $\Rightarrow M_D \sim 1.07 \, M_C$
 - Above design altitude the maximum velocity is limited by M_D constant
 - Below design altitude the maximum dive velocity V_D is the minimum of
 - $1.25 \, V_C$
 - The dive velocity (20-second dive at …) $\sim 1.15 \, V_C$
 - The velocity corresponding to M_D

![Diagram showing various flight conditions and limits](image-url)
Aerodynamic loading

- Maneuver envelope (Velocity-load factor dependency)
 - Extreme load factors
 - Light airplanes ($W < 50000$ lb)
 - From -1.8 to minimum of
 - $2.1 + 24000 \text{ lb/}[W \text{ [lb]} + 10000 \text{ lb}]$
 - 3.8
 - Airliners ($W > 50000$ lb)
 - From -1 to 2.5
 - Acrobatic airplanes
 - From -3 to 6
 - Two design velocities
 - These are equivalent velocities
 - Design dive velocity V_D
 - The plane cannot fly faster
 - Design cruise velocity V_C
 - Are these load limits relevant if the plane fly slower than V_C?

![Diagram of equivalent airspeed and load factors](image_url)
Aerodynamic loading

- **Maneuver envelope (2)**
 - At velocity lower than design cruise V_C
 - A pullout is limited by the maximum lift the plane can withstand before stalling
 - In terms of equivalent velocity and maximum lift coefficient flaps up, the maximum load factor becomes:
 \[n = \frac{L}{W} = \frac{\rho_0 V_c^2 S C_{L_{\text{max},1}}}{2W} \]
 - V_A: Intersection between stall line and n_{max}
 - This is the maximum velocity at which maximum deflection of controls is authorized
 - V_{s1}: Intersection between stall line and $n = 1$
 - This is the stall velocity in cruise (flaps up)
 - FAR requirement
 - $V_A > V_{s1} n^{1/2}$ but
 - V_A can be limited to V_C
Aerodynamic loading

• Maneuver envelope (3)
 – Negative load factor
 • At low velocities
 – Same thing than for pullout: stall limits the load factor
 • At high velocities
 – When diving only a pullout is meaningful
 – Linear interpolation between
 » \(V_e = V_D \) & \(n=0 \)
 » \(V_e = V_C \) & \(n=-1 \)

![Graph showing equivalent airspeed vs. load factor]
Aerodynamic loading

- **Maneuver envelope (4)**
 - Configuration flaps down
 - The maximum lift coefficient changes, so the load factor
 - Landing configuration
 \[n = \frac{L}{W} = \frac{\rho_0 V_e^2 S C_{L_{\text{max},0}}}{2W} \]
 - Takeoff configuration
 \[n = \frac{L}{W} = \frac{\rho_0 V_e^2 S C_{L_{\text{max}}}}{2W} \]

 - Stall velocities
 - \(V_s \): take off
 - \(V_{s0} \): landing
 - \(V_{s1} \): flaps up

 - \(V_F \): velocity below which the flaps can be down (structural limit)

- **FAR requirements**
 - \(V_F > 1.6 \ V_{s1} \) in take off configuration (MTOW)
 - \(V_F > 1.8 \ V_{s1} \) in approach configuration (weight)
 - \(V_F > 1.8 \ V_{s0} \) at landing configuration (weight)
Aerodynamic loading

• Maneuver envelope (5)
 – Altitude dependency
 • Use of equivalent velocity reduces the effect of altitude
 • But the envelope still depends on the altitude
 – With the altitude the speed of sounds decreases and density is reduced
 » For a given equivalent velocity the compressibility effects are higher
 (higher Mach number) and the maximum lift coefficient decreases
 – The computed V_D will be lower as limited by M_D constant
 • One flight envelope is therefore valid for an altitude range
 • Another factor which is altitude-dependant, and that should also be considered, is the gust factor
Aerodynamic loading

- **Gust effect**
 - Airfoil in still air
 - Airplane velocity V
 - Attack angle α_0
 - Sudden vertical gust U
 - The plane keeps temporarily the same
 - Velocity V
 - Attitude α_0
 - Due to the vertical velocity the angle of attack becomes $\alpha = \alpha_0 + \Delta \alpha \simeq \alpha_0 + \frac{U}{V}$
 - Resulting increase of plane lift (neglecting change of plane velocity)
 \[
 \Delta L \simeq \frac{\rho V^2 S \partial_a C_{L_{\text{plane}}} \Delta \alpha}{2} \simeq \frac{\rho V S C_{L_{\alpha_{\text{plane}}}} U}{2}
 \]
 - Increase in load factor
 - As $\rho UV = \rho_0 U e V_e$ \[\Delta n \approx \frac{\rho_0 V e S C_{L_{\alpha_{\text{plane}}}} U e}{2W}\]
Aerodynamic loading

• Gust effect (2)
 – Realistic vertical gust
 • The plane do not really see a sudden vertical gust
 • A real vertical gust can be modeled as graded
 – Ramp
 – Cosine
 • Modern methods consider power spectrum analysis
 – Gust alleviation factor: Before gust has reached its maximum value
 • The aircraft has developed a vertical velocity \(\Delta n \) reduces the severity
 • The aircraft might be pitching \(\Delta n \) effect on the loading (increase of decrease)
 • Elastic deformations of the structure \(\Delta n \) might increase the severity
 – So \(\Delta n \) becomes
 \[
 \Delta n \approx \frac{\rho_0 V_e S C_{L_{\alpha_{plane}}} U_e}{2W}
 \]
 • \(F \) is the gust alleviation factor (<1)
Aerodynamic loading

- **Gust alleviation factor**
 - Expression: \(\Delta n \approx \frac{\rho_0 V_e S F C_L \alpha_{plane} U_e}{2W} \)
 - FAR simple rule: \(n_g = 1 + \frac{F C_L \alpha_{plane} U_e V_e S}{498W} \)
 - \(W \) plane weight in lb
 - \(V_e \) equivalent plane velocity in knots (1 knot = 1.852 km/h)
 - Gust alleviation factor: \(F = \frac{0.88 \mu}{5.3 + \mu} \frac{\rho C_L \alpha_{plane} c g S}{2W} \)
 - Airplane weigh ratio: \(\mu = \frac{\rho C_L \alpha_{plane} c g S}{2W} \)
 - \(c \) mean aerodynamic chord
 - \(U_e \) equivalent gust velocity in ft/s
 - Is interpolated from statistical values at different altitudes and for different planes velocities
 - \(V_B \): Velocity when maximum load factor is governed by gust (see next slide)

<table>
<thead>
<tr>
<th>(U_e) in ft/s</th>
<th>(V_e = V_B)</th>
<th>(V_e = V_C)</th>
<th>(V_e = V_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000 ft and below</td>
<td>± 66</td>
<td>± 50</td>
<td>± 25</td>
</tr>
<tr>
<td>50000 ft and above</td>
<td>± 38</td>
<td>± 25</td>
<td>± 12.5</td>
</tr>
</tbody>
</table>
Aerodynamic loading

- **Gust envelope**
 - Gust load factor
 - \(n_g = 1 + \frac{F C_{L\alpha plane} U_e V_e S}{498W} \)
 - This gives two branches for \(n_g(V_e) \) for \(U_e > 0 \)
 - \(V_B \) is the intersection between
 - The stall curve
 - \(n_g(V_e) \)
 - This means that if
 - \(V_e < V_B \) the plane might stall in case of gust
 - So \(V_B \) is minimum speed to enter a gust region
 - **FAR requirements**
 - \(V_B \) can be < \(V_{s1} [n_g(V_C)]^{1/2} \)
 - \(V_B \) can be < \(V_C \)
 - \(V_B > V_A \)

<table>
<thead>
<tr>
<th>(U_e) in ft/s</th>
<th>(V_e = V_B)</th>
<th>(V_e = V_C)</th>
<th>(V_e = V_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000 ft and below</td>
<td>± 66</td>
<td>± 50</td>
<td>± 25</td>
</tr>
<tr>
<td>50000 ft and above</td>
<td>± 38</td>
<td>± 25</td>
<td>± 12.5</td>
</tr>
</tbody>
</table>
Aerodynamic loading

- **Gust envelope (2)**
 - Gust load factor
 \[n_g = 1 + \frac{F C_L \alpha \text{plane} U_e V_e S}{498W} \]
 - This gives two branches for \(n_g(V_e) \) for \(U_e < 0 \)
 - Gust envelope is the linear interpolation between
 - Positive stall
 - \(n_g(V_B) \)
 - \(n_g(V_C) \)
 - \(n_g(V_D) \)

<table>
<thead>
<tr>
<th>(U_e) in ft/s</th>
<th>(V_e = V_B)</th>
<th>(V_e = V_C)</th>
<th>(V_e = V_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20000 ft and below</td>
<td>± 66</td>
<td>± 50</td>
<td>± 25</td>
</tr>
<tr>
<td>50000 ft and above</td>
<td>± 38</td>
<td>± 25</td>
<td>± 12.5</td>
</tr>
</tbody>
</table>
Aerodynamic loading

- **Design load factors**
 - **Limit load factor** n_{limit}
 - Maximum expected load during service (from gust envelope)
 - The plane cannot experience permanent deformations
 - **Ultimate load factor** n_{ultimate}
 - Limit load times a security factor (1.5)
 - The plane can experience permanent deformations
 - The structure must be able to withstand the ultimate load for 3 seconds without failure
Structure

- **First structure designs**
 - A wood internal structure smoothed by fabrics
 - A plywood structure was also used for the fuselage

![Figure 1-5 Wood-and-fabric-type wing structure](image-url)
Was wood a good choice?

- Specific mechanical properties of wood are favorable to aluminum alloy

<table>
<thead>
<tr>
<th>Material</th>
<th>Yield or tensile strength* [MPa]</th>
<th>Young [MPa]</th>
<th>Density [kg · m⁻³]</th>
<th>Ratio Young-Density</th>
<th>Ratio Strength-Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>100*</td>
<td>14000</td>
<td>640</td>
<td>21.9</td>
<td>0.156</td>
</tr>
<tr>
<td>Structural steel</td>
<td>200</td>
<td>210000</td>
<td>7800</td>
<td>26.9</td>
<td>0.025</td>
</tr>
<tr>
<td>Aluminum</td>
<td>75</td>
<td>70000</td>
<td>2700</td>
<td>8.9</td>
<td>0.027</td>
</tr>
<tr>
<td>High strength steel alloy A514</td>
<td>690</td>
<td>210000</td>
<td>7800</td>
<td>26.9</td>
<td>0.088</td>
</tr>
<tr>
<td>Aluminum alloy 2014</td>
<td>400</td>
<td>73000</td>
<td>2700</td>
<td>9.3</td>
<td>0.148</td>
</tr>
<tr>
<td>Titanium alloy 6Al-4V</td>
<td>830</td>
<td>118000</td>
<td>4510</td>
<td>26.17</td>
<td>0.184</td>
</tr>
<tr>
<td>Carbon fiber reinforced plastic</td>
<td>1400* (theoretical)</td>
<td>130000</td>
<td>1800</td>
<td>72.2</td>
<td>0.777</td>
</tr>
</tbody>
</table>
Structure

• Was wood a good choice (2)?
 – Drawbacks of wood
 • Moisture absorption changed shape and dimensions
 • Glued structures affected by humidity
 • Strongly anisotropic
 • Oversee import
 • Not suited to stress concentration
 – Wood-fabric structures
 • Were not always waterproof
 – Picture Fokker Dr.I
 • Did not allow to build high-aspect ratio wing
 – Most of the planes were biplanes or triplanes with lower lift/drag ratio
Structure

• Was wood a good choice (3)?
 – Nowadays, only light aircrafts are built using this concept (ex: Mudry)
 – In 1915, Junkers constructed a steel plane
 • Cantilevered wing
 • Steel is too heavy (specific tensile strength too low)
• **Duralumin**
 – 1909, Alfred Wilm, Germany
 • An aluminum alloy containing
 – 3.5 per cent copper
 – 0.5 per cent magnesium
 – Silicon and iron as impurities
 spontaneously hardened after quenching from about 480°C.
 – This alloy had interesting specific mechanical properties
 • Yield 230 MPa but
 • Density only 2700 kg · m⁻³
 – The question was
 • How to efficiently use this duralumin?
Structure

• Monocoque
 – Instead of
 • Using a frame as main structure and
 • Covering it with thin metal sheets
 – The skin of the structure can be such that it resists the load by itself
 • Lighter than framed structures
 • Sport cars (carbon fiber)
 • Soda can (aluminum)
 – As long as it is filled, it is resistant
 – Empty, it is subjected to buckling
 – These structures are subject to buckling and cannot be used for an aircraft
Structure

- **Semi-monocoque**
 - Monocoques are subject to buckling
 - The skin of the shell is usually supported by
 - Longitudinal stiffening members
 - Transverse frames
to enable it to resist bending, compressive and torsional loads without buckling
 - These stiffeners are fixed to the skin instead of putting a skin on a structural frame
- **First semi-monocoque aircrafts were made of duralumin (example: spitfire)**
Semi-monocoque structure

- Global view
Semi-monocoque structure

- **Wing: Box-beam structure**
 - 2 or 3 spars
 - Ribs
 - Stringers fixed to the skin
 - Transport aircrafts
 - Skin >\(\sim 1.\text{ mm}\)
 - Ribs >\(\sim 0.5\text{ mm}\)
 - Spars >\(\sim 1.\text{ mm}\)
Semi-monocoque structure

- **Fuselage**
 - Circular if pressurized
 - Longerons
 - Stringers
 - Frames or formers
 - Bulkheads (see next slide)
Semi-monocoque structure

• **Fuselage (2)**
 - Circular if pressurized
 - Longerons
 - Stringers
 - Frames or formers
 - Bulkheads
 - **Reinforcement at**
 - Wing root
 - Empennage fixation
 - Engine fixation
 - ...
 - **Pressurization**
 - Between cabin and tailfin
 - B747, Japan Airline 123: bulkhead repaired with a single row of rivets instead of two
Design criteria

- **Structural integrity of the airframe**
 - Must be ensured in the event of
 - Failure of a single primary structural element
 - Partial damage occurrence in extensive structures (e.g. skin panels)
 - Crack propagation
 - Adequate residual strength and stiffness
 - Slow rate of crack propagation
 - Design for a specified life in terms of
 - Operational hours
 - Number of flight cycles (ground-air-ground)
Design criteria

- **Minimum structural weight**
 - **Wing**
 - Fixed items & fuel tank outboard of wing (reduce wing loading)
 - 1-m free of fuel at wing tip (avoid fire risk in case of electrostatic loads)
 - Heavy mass at the wing in front of the structural axis (reduce aeroelastic issues)
 - Use the same ribs to support landing gear, flaps, engine
 - If possible wing in one part (throughout the fuselage for mid-wing)
 - **Landing gear**
 - Commonly attached to the wing
 - Should not induce bending nor shearing larger than in flight
 - Close to the root
 - Just forward of flexural axis
Design criteria

• **Minimum structural weight (2)**
 - Fuselage
 • Heavy masses near the CG (reduce the inertia loads)
 • Limited number of bulkheads
 - Empennages
 • Far from the wing (to reduce the aerodynamic loading)
 • Supported by an existing bulkhead
 - Other
 • Simple structures (avoid rollers, …)
Design criteria

- Ease of maintenance and inspection
Materials

- **Aluminum alloys**
 - **Duralumin (2xxx)**
 - 4-7% Cu, 0.5-1.5% Mg, 0.2-2% Mn, 0.3% Si, 0.2-1% Fe
 - Picture: F15 horizontal stabilizer skin
 - **Magnesium-Silicon alloy (6xxx)**
 - 0.1-0.4% Cu, 0.5-1.5% Mg, 0.1-0.4% Mn, 0.3-2% Si, 0.1-0.7% Fe
 - **Aluminum-Zinc-Magnesium alloy (7xxx)**
 - 1-2.5% Cu, 1-7% Zn, 1-3% Mg, 0.3% Si
 - Used on fuselage and wing, also for rivets, ...

<table>
<thead>
<tr>
<th></th>
<th>Yield [MPa]</th>
<th>Weldability</th>
<th>Machinability</th>
<th>Corrosion resistance</th>
<th>Fatigue properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>2024-T351</td>
<td>270</td>
<td>No</td>
<td>Average</td>
<td>Poor</td>
<td>Excellent</td>
</tr>
<tr>
<td>6061 T6</td>
<td>240</td>
<td>Excellent</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>7075 T651</td>
<td>400</td>
<td>No</td>
<td>Average</td>
<td>Average</td>
<td>Good</td>
</tr>
</tbody>
</table>
Materials

• Steel
 – Iron
 • Specific strength too low
 – Ultra-high-tensile strength carbon alloys
 • Brittleness
 • Not easily machinable, nor to weld
 – Maraging steel
 • Low carbon (<0.03%)
 • 17-19% Ni, 8-9% Co, 3-3.5 Mo, 0.15-0.25% Ti
 • High Yield strength (1400 MPa)
 • Compared to carbon-alloy
 – Higher toughness
 – Easier to machine and to weld
 – Better corrosion resistance
 – 3x more expensive
 • Aircraft arrester hook, undercarriage, …
 • Can be used at elevated temperature (400°C)
Materials

• **Titanium alloy**
 - High specific strength
 - Example Ti 6Al-4V
 - Yield 830 MPa, density 4510 kg · m⁻³
 - Properties
 - High toughness
 - Good fatigue resistance
 - Good corrosion resistance
 - Except at high T° and salt environment
 - Good Machinability and can be welded
 - Retains strength at high T° (500°C)
 - High primary and fabrication cost
 - 7X higher than aluminum alloys
 - Uses
 - Military aircrafts
 - Picture: F22 wing spars (Ti 6Al-4V)
 - Slat and flap tracks
 - Picture: B757 flap track (Ti 10V-2Fe-3Al)
 - Undercarriage
Materials

• Composite
 – Fibers in a matrix
 • Fibers: polymers, metals or ceramics
 • Matrix: polymers, metals or ceramics
 • Fibers orientation: unidirectional, woven, random
 – Carbon Fiber Reinforced Plastic
 • Carbon woven fibers in epoxy resin
 – Picture: carbon fibers
 • Tensile strength: 1400 MPa
 • Density: 1800 kg·m$^{-3}$
 • A laminate is a stack of CFRP plies
 – Picture: skin with stringers
Materials

- Composite (2)
 - Wing, fuselage, ...
 - Typhoon: CFRP
 - 70% of the skin
 - 40% of total weight
 - B787:
 - Fuselage all in CFRP
Materials

- **Composite (3)**
 - *Drawbacks*
 - “Brittle” rupture mode
 - Impact damage
 - Resin can absorb moisture

- **Glare**
 - Thin layers of aluminum interspersed with Glass Fiber Reinforced Plastic
 - Improves damage resistance
Materials

- **Materials summary**
 - Military aircrafts use more
 - Composite
 - Titanium alloy
 - Civil aircrafts
 - More and more composite
Assembly

- **Sub-assembly**
 - Each sub-assembly is constructed
 - In specialized designed jigs
 - In different factories, countries
• Component weight can be estimated
 – For conceptual design
 – Based on statistical results of traditional aluminum structures
 – Example: wing
Structural weight

- **Structural weight [lbs]**
 - Wing with ailerons
 \[W_w = 4.22 S + 1.642 \times 10^{-6} \frac{n_{\text{ultim}} b^3 \sqrt{W_{\text{to}} ZFW}}{t_c \cos^2 \Lambda} \left(1 + 2\lambda \right) \]

 - S: gross area of the wing [ft2]
 - W_{to}: take off weight [lb]
 - b: span [ft]
 - ZFW: zero fuel weight [lb]
 - Λ: sweep angle of the structural axis
 - t: airfoil thickness [ft]
 - λ: taper ($c_{\text{tip}}/c_{\text{root}}$)
 - c: chord [ft]
 - Horizontal empennage & elevators
 \[W_T = 5.25 S_{\text{exp}} + 0.8 \times 10^{-6} \frac{n_{\text{ultim}} b^3 W_{\text{to}} \bar{c} \sqrt{S_{\text{exp}}}}{t_T \cos^2 \Lambda_T l_T S_T^2} \]

 - S_{exp}: exposed empennage area [ft2]
 - l_T: distance plane CG to empennage CP [ft]
 - \bar{c}: average aerodynamic chord of the wing [ft]
 - S_T: gross empennage area [ft2]
 - b_T: empennage span [ft]
 - t_T: empennage airfoil thickness [ft]
 - c_T: empennage chord [ft]
 - Λ_T: sweep angle of empennage structural axis
Structural weight

- Structural weight [lbs] (2)
 - Fin without rudder
 \[W_{F'} = 2.62 S_F + 1.5 \times 10^{-5} \frac{n_{ultim} b_F^3}{S_F} \left(8 + 0.44 \frac{W_{to}}{S_F} \right) \frac{t_F}{c_F} \cos^2 \Lambda_F \]

 \(S_F \): fin area [ft\(^2\)]
 \(t_F \): fin airfoil thickness [ft]
 \(\Lambda_F \): sweep angle of fin structural axis

 \(b_F \): fin height [ft]
 \(c_F \): fin chord [ft]
 \(S \): gross surface of wing [ft\(^2\)]

 - Rudder: \(W_r / S_r \sim 1.6 W_{F'} / S_F \)

 - Fuselage
 - Pressure index
 \[I_p = 1.5 \times 10^{-3} \Delta p_{\text{max width fus}} \]
 - \(\Delta p \) [lb/ft\(^2\)] (cabin pressure ~2600m)
 - Bending index
 \[I_b = 1.91 \times 10^{-4} n_{\text{limit at ZFW}} (ZFW - W_w - W_{\text{wing-mounted engines}}) \frac{\text{length fus}}{\text{height fus}^2} \]

 - Weight depends on wetted area \(S_{\text{wetted}} \) [ft\(^2\)] (area in direct contact with air)
 \[W_{\text{fus}} = (1.051 + 0.102 I_{\text{fus}}) S_{\text{fus, wetted}} \]

 \[I_{\text{fus}} = \begin{cases}
 I_p & \text{if } I_p > I_b \\
 \frac{I_p^2 + I_b^2}{2I_b} & \text{if } I_p < I_b
 \end{cases} \]
Structural weight

- **Structural weight [lbs] (3)**
 - **Systems**
 - Landing gear
 - Hydromechanical system of control surfaces
 \[W_{\text{gear}} = 0.04 \, W_{\text{to}} \]
 \[W_{\text{SC}} = I_{\text{SC}} \left(S_{T_{\text{exp}}} + S_{F} \right) \]
 \[I_{\text{sc}} \text{ [lb/ft}^2\text{]} : 3.5, 2.5 \text{ or } 1.7 \text{ (fully, partially or not powered)} \]
 - Propulsion
 \[W_{\text{prop}} = 1.6 \, W_{\text{eng}} \sim 0.6486 \, T_{\text{to}}^{0.9255} \]
 \[T_{\text{to}} \, : \, \text{Static thrust (M 0) at sea level [lbf], } *1\text{lbf} \sim 4.4 \text{ N} \]
 - Equipment
 - APU
 - Instruments (business, domestic, transatlantic)
 - Hydraulics
 - Electrical
 - Electronics (business, domestic, transatlantic)
 - Furnishing
 - if < 300 seats
 - if > 300 seats
 \[W_{\text{furn}} \sim (43.7 - 0.037 \, N_{\text{seats}}) \, N_{\text{seats}} + 46 \, N_{\text{seats}} \]
 - AC & deicing
 - Payload (\(W_{\text{payload}} \))
 - Operating items (class dependant)
 - Flight crew
 - Flight attendant
 - Passengers (people and luggage)
 - **Definitions**
 - ZFW: Sum of these components
 \[ZFW = \Sigma \, W_{i} \]
Structural weight

- **Structural weight [lbs] (4)**

 - **Examples**

<table>
<thead>
<tr>
<th>Aircraft System</th>
<th>Citation-500</th>
<th>MDAT-30</th>
<th>MDAT-50</th>
<th>F-28</th>
<th>MDAT-70</th>
<th>DC-9-10</th>
<th>BAC-111</th>
<th>DC-9-30</th>
<th>737-200</th>
<th>727-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing System</td>
<td>1,020</td>
<td>3,143</td>
<td>4,360</td>
<td>7,526</td>
<td>5,910</td>
<td>9,366</td>
<td>9,817</td>
<td>11,391</td>
<td>11,164</td>
<td>17,682</td>
</tr>
<tr>
<td>Tail System</td>
<td>288</td>
<td>1,010</td>
<td>1,193</td>
<td>1,477</td>
<td>1,505</td>
<td>2,619</td>
<td>2,470</td>
<td>2,790</td>
<td>2,777</td>
<td>4,148</td>
</tr>
<tr>
<td>Body System</td>
<td>930</td>
<td>4,276</td>
<td>5,692</td>
<td>6,909</td>
<td>7,118</td>
<td>9,452</td>
<td>11,274</td>
<td>11,118</td>
<td>11,920</td>
<td>17,589</td>
</tr>
<tr>
<td>Alighting Gear System</td>
<td>425</td>
<td>1,379</td>
<td>1,874</td>
<td>2,564</td>
<td>2,440</td>
<td>3,640</td>
<td>3,465</td>
<td>4,182</td>
<td>4,038</td>
<td>7,244</td>
</tr>
<tr>
<td>Nacelle System</td>
<td>241</td>
<td>948</td>
<td>1,294</td>
<td>866</td>
<td>1,684</td>
<td>1,462</td>
<td>1,191</td>
<td>1,462</td>
<td>1,515</td>
<td>2,226</td>
</tr>
<tr>
<td>Propulsion System (less Dry Engine)</td>
<td>340</td>
<td>1,140</td>
<td>1,338</td>
<td>988</td>
<td>1,702</td>
<td>1,478</td>
<td>1,788</td>
<td>2,190</td>
<td>1,721</td>
<td>3,052</td>
</tr>
<tr>
<td>Flight Controls System (less Auto Pilot)</td>
<td>196</td>
<td>600</td>
<td>699</td>
<td>1,404</td>
<td>805</td>
<td>1,102</td>
<td>1,655</td>
<td>1,434</td>
<td>2,325</td>
<td>2,836</td>
</tr>
<tr>
<td>Auxiliary Power System</td>
<td>0</td>
<td>343</td>
<td>400</td>
<td>320</td>
<td>460</td>
<td>805</td>
<td>719</td>
<td>817</td>
<td>855</td>
<td>0</td>
</tr>
<tr>
<td>Instrument System</td>
<td>76</td>
<td>300</td>
<td>300</td>
<td>267</td>
<td>300</td>
<td>490</td>
<td>504</td>
<td>575</td>
<td>518</td>
<td>723</td>
</tr>
<tr>
<td>Hydraulic and Pneumatic System</td>
<td>94</td>
<td>257</td>
<td>300</td>
<td>406</td>
<td>345</td>
<td>681</td>
<td>1,391</td>
<td>753</td>
<td>835</td>
<td>1,054</td>
</tr>
<tr>
<td>Electrical System</td>
<td>361</td>
<td>617</td>
<td>825</td>
<td>953</td>
<td>1,040</td>
<td>1,631</td>
<td>1,610</td>
<td>1,715</td>
<td>2,156</td>
<td>2,988</td>
</tr>
<tr>
<td>Avionics System (incl. Auto Pilot)</td>
<td>321</td>
<td>586</td>
<td>586</td>
<td>923</td>
<td>586</td>
<td>1,039</td>
<td>1,368</td>
<td>1,108</td>
<td>1,100</td>
<td>1,844</td>
</tr>
<tr>
<td>Furnishings and Equipment System</td>
<td>794</td>
<td>2,657</td>
<td>3,548</td>
<td>3,335</td>
<td>4,772</td>
<td>6,690</td>
<td>7,771</td>
<td>8,594</td>
<td>9,119</td>
<td>11,962</td>
</tr>
<tr>
<td>Air Conditioning System</td>
<td>188</td>
<td>325</td>
<td>435</td>
<td>520</td>
<td>550</td>
<td>1,016</td>
<td>1,062</td>
<td>1,110</td>
<td>1,084</td>
<td>1,526</td>
</tr>
<tr>
<td>Anti-Icing System</td>
<td>101</td>
<td>384</td>
<td>448</td>
<td>520</td>
<td>511</td>
<td>472</td>
<td>234</td>
<td>474</td>
<td>113</td>
<td>639</td>
</tr>
<tr>
<td>Load and Handling System</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>9</td>
<td>57</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Empty Weight (less Dry Engine)	5,377	17,985	23,312	29,178	29,748	41,962	46,328	49,770	51,240	75,528
Dry Engine Weight	1,002	2,480	3,373	4,327	4,392	6,113	5,434	6,160	6,212	9,322
Empty Weight (M.E.W.)	6,379	20,465	26,685	33,505	34,140	48,075	51,762	55,930	57,452	84,850
Takeoff Gross Weight	11,650	34,480	46,850	62,000	61,000	86,300	99,650	108,000	104,000	161,000

Manufacturer empty weight
Structural weight [lbs] (5)

Examples

<table>
<thead>
<tr>
<th>Aircraft System</th>
<th>727-200</th>
<th>707-320</th>
<th>DC-8-55</th>
<th>DC-8-62</th>
<th>DC-10-10</th>
<th>L-1011</th>
<th>DC-10-40</th>
<th>747</th>
<th>SCAT-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing System</td>
<td>18,529</td>
<td>28,647</td>
<td>34,909</td>
<td>36,247</td>
<td>48,990</td>
<td>47,401</td>
<td>57,748</td>
<td>88,741</td>
<td>83,940</td>
</tr>
<tr>
<td>Tail System</td>
<td>4,142</td>
<td>6,004</td>
<td>4,952</td>
<td>4,930</td>
<td>13,657</td>
<td>8,570</td>
<td>14,454</td>
<td>11,958</td>
<td>8,590</td>
</tr>
<tr>
<td>Body System</td>
<td>22,415</td>
<td>22,299</td>
<td>22,246</td>
<td>23,704</td>
<td>44,790</td>
<td>49,432</td>
<td>46,522</td>
<td>68,452</td>
<td>54,322</td>
</tr>
<tr>
<td>Lighting Gear System</td>
<td>7,948</td>
<td>11,216</td>
<td>11,682</td>
<td>11,449</td>
<td>18,581</td>
<td>19,923</td>
<td>25,085</td>
<td>32,220</td>
<td>28,720</td>
</tr>
<tr>
<td>Nacelle System</td>
<td>2,225</td>
<td>3,176</td>
<td>4,644</td>
<td>6,648</td>
<td>8,493</td>
<td>8,916</td>
<td>9,328</td>
<td>10,830</td>
<td>15,650</td>
</tr>
<tr>
<td>Propulsion System (less Dry Engine)</td>
<td>3,022</td>
<td>5,306</td>
<td>9,410</td>
<td>7,840</td>
<td>7,673</td>
<td>8,279</td>
<td>13,503</td>
<td>9,605</td>
<td>6,310</td>
</tr>
<tr>
<td>Flight Controls System (less Auto Pilot)</td>
<td>2,984</td>
<td>2,139</td>
<td>2,035</td>
<td>2,098</td>
<td>5,120</td>
<td>5,068</td>
<td>5,188</td>
<td>6,886</td>
<td>10,777</td>
</tr>
<tr>
<td>Auxiliary Power Plant System</td>
<td>849</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,589</td>
<td>1,202</td>
<td>1,592</td>
<td>1,797</td>
<td>--</td>
</tr>
<tr>
<td>Instrument System</td>
<td>827</td>
<td>550</td>
<td>1,002</td>
<td>916</td>
<td>1,349</td>
<td>1,016</td>
<td>1,645</td>
<td>1,486</td>
<td>3,400</td>
</tr>
<tr>
<td>Hydraulic and Pneumatic Group</td>
<td>1,147</td>
<td>1,557</td>
<td>2,250</td>
<td>1,744</td>
<td>4,150</td>
<td>4,401</td>
<td>4,346</td>
<td>5,067</td>
<td>10,670</td>
</tr>
<tr>
<td>Electrical System</td>
<td>2,844</td>
<td>3,944</td>
<td>2,414</td>
<td>2,752</td>
<td>5,366</td>
<td>5,490</td>
<td>5,293</td>
<td>5,305</td>
<td>6,002</td>
</tr>
<tr>
<td>Avionics System (incl. Auto Pilot)</td>
<td>1,896</td>
<td>1,815</td>
<td>1,870</td>
<td>2,058</td>
<td>2,827</td>
<td>2,801</td>
<td>3,186</td>
<td>4,134</td>
<td>4,178</td>
</tr>
<tr>
<td>Furnishings and Equipment System</td>
<td>14,702</td>
<td>16,875</td>
<td>15,884</td>
<td>15,340</td>
<td>38,072</td>
<td>32,829</td>
<td>33,114</td>
<td>48,007</td>
<td>20,615</td>
</tr>
<tr>
<td>Air Conditioning System</td>
<td>1,802</td>
<td>1,602</td>
<td>2,388</td>
<td>2,296</td>
<td>2,368</td>
<td>3,344</td>
<td>2,527</td>
<td>3,634</td>
<td>2,820</td>
</tr>
<tr>
<td>Anti-icing System</td>
<td>666</td>
<td>626</td>
<td>794</td>
<td>673</td>
<td>616</td>
<td>296</td>
<td>555</td>
<td>413</td>
<td>210</td>
</tr>
<tr>
<td>Load and Handling System</td>
<td>19</td>
<td>--</td>
<td>55</td>
<td>54</td>
<td>46</td>
<td>--</td>
<td>62</td>
<td>228**</td>
<td>--</td>
</tr>
</tbody>
</table>

| Empty Weight (less Dry Engine) | 86,017 | 105,756 | 116,535 | 118,749 | 203,521 | 198,968| 224,148 | 297,867| 256,204 |
| Dry Engine Weight | 9,678 | 19,420 | 16,936 | 17,316 | 23,229 | 30,046 | 25,587 | 35,700 | 45,020 |

| Empty Weight (M.E.W.) | 95,695 | 125,176 | 133,471 | 136,065 | 226,750 | 229,014| 249,735 | 333,567| 301,224 |
| Takeoff Gross Weight | 175,000 | 312,000 | 325,000 | 335,000 | 430,000 | 430,000| 565,000 | 775,000| 631,000 |
Structural weight

• **CG locations**
 - Wing: 30% chord at wing MAC
 - Horizontal tail: 30% chord at 35% semi-span
 - Fin: 30% chord at 35% of vertical height
 - Surface controls: 40% chord on wing MAC
 - Fuselage: 45% of fuselage length
 - Main Gear: located sufficiently aft of aft c.g. to permit 5% - 8% of load on nose gear
 - Hydraulics: 75% at wing c.g., 25% at tail c.g.
 - AC / deicing: End of fuse nose section
 - Propulsion: 50% of nacelle length for each engine
 - Electrical: 75% at fuselage center, 25% at propulsion c.g.
 - Electronics and Instruments: 40% of nose section
 - APU: Varies
 - Furnishings, passengers, baggage, cargo, operating items, flight attendants: From layout. Near 51% of fuselage length
 - Crew: 45% of nose length
 - Fuel: Compute from tank layout
Fuel weight

For a given mission

- Taxi & takeoff
 \[W_{\text{taxi}} = 0.0035 \ W_{\text{to}} \]
- Landing & taxi
 \[W_{\text{land}} = 0.0035 \ W_{\text{to}} \]
- Reserve
 - Should allow
 - Deviations from the flight plan
 - Diversion to an alternate airport
 - Airliners
 - \(W_{\text{res}} \approx 0.08 \ ZFW \)
 - Business jet
 - \(W_{\text{res}} \) fuel consumption for ¾-h cruise
 - Climbing (angle of \(\approx 10^\circ \))
 \[
 \frac{W_{\text{climb}}}{W_{\text{TO}}} \approx \frac{1}{100} \left[\frac{\text{cruise altitude [ft]}}{31600 \ [ft]} + \frac{1}{2} M_{\text{cruise}}^2 \right]
 \]
 - Descend: \(\approx \) same fuel consumption than cruise
 - Take Off Weight (TOW):
 \[W_{\text{to}} = ZFW + W_{\text{res}} + W_f \]
 - Landing weight:
 \[ZFW + W_{\text{res}} + 0.0035 \ W_{\text{to}} \]
References

• Lecture notes

• Other reference
 – Book