Aircraft Design
Introduction to Conceptual Design & Aviation History

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3
http://www.ltas-cm3.ulg.ac.be/
Chemin des Chevreuils 1, B4000 Liège
L.Noels@ulg.ac.be
Goals of the classes

• Why lectures on aircraft design?
 – Aircraft design requires the accounting of multi-field interactions
 • Aerodynamics
 • Propulsion
 • Structure
 • Costs management
 • ...
 – All these different fields have to be fully integrated during design
 – The best plane is fast, fuel efficient, reliable, inexpensive to build, inexpensive to operate, comfortable, noiseless, …., but it does not exist!
Goals of the classes

• What do we want to design?
 – Examples:
 • 1907, the Army ordered to the Wright’s brothers: « one (1) heavier than air flying machine to be delivered in 6 1/2 months ».
 • 1932, TWA orders the DC-1 with a 1-page list of requirements
 – Nowadays, requirements are reported in complex manuals with
 • Customer needs
 • Certifications
 • Performances
 • Maintenance
 • Sub-systems properties, ….
Goals of the classes

- How do we want to design?
 - Requirements depend on the aircraft finality

<table>
<thead>
<tr>
<th>Dominant design criteria</th>
<th>Civil</th>
<th>Military</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance</td>
<td>Economics and safety</td>
<td>Mission accomplishment and survivability</td>
</tr>
<tr>
<td></td>
<td>Maximum economic cruise</td>
<td>Adequate range and response</td>
</tr>
<tr>
<td></td>
<td>Minimum off-design penalty</td>
<td>Overall mission accomplishment</td>
</tr>
<tr>
<td>Airfield environment</td>
<td>Moderate-to-long runways</td>
<td>Short-to-moderate runways</td>
</tr>
<tr>
<td></td>
<td>Paved runway</td>
<td>All kinds of runway surfaces</td>
</tr>
<tr>
<td></td>
<td>High-level ATC and landing aides</td>
<td>Often Spartan ATC, etc.</td>
</tr>
<tr>
<td></td>
<td>Adequate space for ground maneuver and parking</td>
<td>Limited space available</td>
</tr>
<tr>
<td>System complexity & mechanical design</td>
<td>Low maintenance-economic issue</td>
<td>Low maintenance- availability issue</td>
</tr>
<tr>
<td></td>
<td>Low system cost</td>
<td>Acceptable system cost</td>
</tr>
<tr>
<td></td>
<td>Safety and reliability</td>
<td>Reliability and survivability</td>
</tr>
<tr>
<td></td>
<td>Long service life</td>
<td>Damage tolerance</td>
</tr>
<tr>
<td>Government regulations and community</td>
<td>Must be certifiable (FAA, etc.)</td>
<td>Military standards</td>
</tr>
<tr>
<td>acceptance</td>
<td>Safety oriented</td>
<td>• Performance and safety</td>
</tr>
<tr>
<td></td>
<td>Low noise mandatory</td>
<td>• Reliability oriented</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Low noise desirable</td>
</tr>
</tbody>
</table>

2013-2014 Aircraft Design - Introduction & History
Goals of the classes

• Design stages
 – **Conceptual design**
 • Purposes
 – Define the general configuration (tail or canard, high or low wing, …)
 – Analyze the existing technologies
 – Estimate performances for the different flight stages
 – Accurate estimation of the total weight, fuel weight, engine thrust, lifting surfaces, …
 • How
 – Limited number of variables (tens): span, airfoil profile, …
 – Accurate simple formula & abacuses
 – Preliminary study
 • Higher number of variables (hundreds)
 • Starting point: conceptual design
 • Numerical simulations
 – Detailed study
 • Each component is studied in details
Goals of the classes

• Multidisciplinary optimization
 – Different possible measures of the performance
 • Minimum weight (empty or at take off)
 • Minimum operating cost (direct or total)
 • Maximum profits or maximum ROI
 • Maximum payload per €
 – How to maximize the performance?
 • Trial-&-error?
 • Experiment
 • Research
 • Numerical optimization
 – Has to account for an airplane complexity
 – Has to account for a maximum of criteria
 » Example, the weight was minimized without accounting for stability
 – Optimum or local optimum?
 – Does not innovate
 – Most of the time the requirements constrain the design
 – Is (only now) starting to become a standard tool for engineering design
 – Current aircraft design results from centuries of researches
 • (Almost) all aircrafts look the same
First attempts

- Hot air balloons (China, 2nd-3rd century, military signaling)
- Marco Polo (13th century) kites are used in order to lift humans
- First wings
 - Icarus & Dedalus
 - Abbas Ibn Firnas (9th century, Spain)
 - Eilmer of Malmesbury (11th century, England)
 - These two jumps failed (although the jumpers survive) due to the lack of stability (no tails)
 - 2008, Yves Rossy flew with rocketed wing
From birds to planes

- **The ornithopter**
 - Wings produce
 - Lift &
 - Thrust by flapping
 - ~1500, Leonardo da Vinci
 - Human is not strong enough to attach wings at the arms, so mechanical devices are needed
 - Numerous failures
From birds to planes

- The ornithopter (2)
 - A few successes
 - Toys

 - 2005, Yves Rousseau, France
 - First human-powered flight (seriously injured at second attempt)

 - 2006, DeLaurier, Canada
 - First (jet-assisted) take off

- 1513, da Vinci studied the possibility of using a fixed wing
 - Guess the lift and drag
 - Wing flapping should not contribute to lift
 - Drag is proportional to the surface
Buoyancy

- Balloons or non-powered aerostats (lighter than air)
 - 1783, France, Montgolfier brothers: first hot-air balloon
 - Believed that smoke was responsible for levity
 - Empty flight, then with animals at Versailles exhibition (Louis XVI)
 - Reached 300 m altitude

- Add a burner in order to gain autonomy
 - Flight of 8.5 km with two men on board (Rozier & Marquis d’Arlande)
Buoyancy

- **Airships or powered aerostats**
 - 1884, La France
 - First fully controllable flight
 - Order of the Army
 - 9-hp electric engine
 - 1900, von Zeppelin, Germany
 - First rigid structure
 - Improve maneuverability
 - 2x15-hp piston engines (36km/h)
 - Pitch controlled by a moving mass
 - 1908, passenger transport
 - Bombers during WWI
 - 1930, transatlantic transport
 - Hydrogen is too hazardous
 - Use of Helium
 - 1937, Hindenburg on fire
 - Use of hydrogen due to embargo
 - End of activities due to WWII
 - 1905, Louis Cartier, France
 - First wristwatch: his friend Santos-Dumont could use it during the flights
Aeronautics pioneers

- **Aerodynes (heavier than air): First gliders**
 - 16th century, da Vinci, drag proportional to surface
 - 17th century, researches on drag
 - Galileo Galilei: Proportional to density & depends on velocity
 - Huygens, Hollande & Mariotte, France: Proportional to the velocity square
 - ~1804, Cayley, UK pioneered aeronautics
 - Whirling arm to measure aerodynamic forces
 - Identified thrust, lift & drag
 - Measured attack angle effect
 - First cambered airfoils

- Dihedral wings for roll stability
- Studied the effect of the CG location on pitch stability
- 1853, built a glider
 - 1979, replica actually flew
Aeronautics pioneers

- Aerodynes (heavier than air): First gliders (2)
 - 1866, Otto Lilienthal, Germany
 - Cambered-airfoil polar diagrams
 - Not accurate
 - Built gliders (2000 flights)
 - 1896, passed out during a flight
Aeronautics pioneers

- **Aerodynes (heavier than air): First concepts**
 - ~1871, Alphonse Pénaud, France
 - Build toys
 - Roll stability: dihedral wing
 - Pitch stability: horizontal tail with negative angle of attack
 - Propulsion
 - 2-blade propeller
 - Powered by twisted rubber strands

- **Aerodyne configuration: Cayley & Pénaud vs 21st century design**

The centre of gravity was varied by sticking a weight with a sharp point into the stick whole weight was 3.82 oz., and when the centre of gravity, G, was under such part c kite as left 75 [square] inches on the anterior part and 79 [square inches] behind it, and the tail at an angle of 11.5°..., then if a velocity of 15 feet per second was given to it horizontal direction, it would skim for 20 to 30 yards supporting its own weight, a pointed downward in an angle of 18°, it would proceed uniformly in a right line for with a velocity of 15 feet per second.7
Aeronautics pioneers

- **Aerodynes: First propulsions attempts**
 - 1874, France, Felix du Temple de la Croix
 - Build the monoplane
 - Steam-powered
 - First self powered take off
 - Short distance “flights”
 - 1896, USA, Langley
 - Used the whirling arm to design the plane
 - Engine power should be equal to drag times velocity
 - Built an aerodyne
 - Unmanned
 - Steam-powered
 - Catapulted at take off
 - 1000-m long flight over the Potomac
 - Numerous possible adjustments
 - CG location
 - Angles of attack
 - 1897, France, Ader,
 - Built l’Éole III
 - 100-m long uncontrolled “flight”
 - 2x 20-hp-steam engine
First flights

- **First success: the Wright brothers, USA**
 - Success due to 2 main factors:
 - Engineering approach
 - Use of wind tunnels,
 - Attempts on gliders
 - Piston engine was available
 - Powerful and light
 - 1903 flight (Flyer I)
 - Canard and negative dihedral
 - Roll control by twisting the 2 wings:
 « wing warping »
 - Wing warping and rudder coupled
 - 37-m long flight
 - Unstable to pitch
 - Take off only with front wind
 - 12-hp engine
First controlled flights

- **Louis Blériot, France**
 - 1907, Blériot V
 - 5-m long flight
 - Monoplane with canard
 - « Wing warping » & elevators controlled by the “cloche” (to become the yoke, Esnault-Pelterie 1906)
 - 1907, Blériot VII
 - Successful U-turn
 - Monoplane with fixed wing (no control surfaces)
 - Elevators on horizontal tail can be deflected
 - Symmetrically (pitch)
 - Anti-symmetrically (roll)
 - The rudder is controlled by pedals
First controlled flights

- **Louis Blériot, France (2)**
 - 1908, contest between Blériot, Wright & Santos Dumont
 - Flights
 - Of 20 km
 - At 80 km/h
 - 1909, Blériot XI
 - Crossed the Channel
 - Military aircraft
 - Observation
 - Elevators & wing warping controlled by the yoke
 - Rudder controlled by pedals
 - Blériot pioneered the control commands
 - Yoke controls
 - Elevators (pitch)
 - Ailerons (roll)
 - Pedals control
 - Rudder (yaw)
The advent of aviation

- **WWI**
 - Airplanes became specialized
 - **Reconnaissance**
 - **Fighters**
 - 1917, Fokker DRI
 » 180 km/h at 6000 m
 - **Bombers**
 - 1917, Gotha G.V
 » 140 km/h at 6500 m
 » Machineguns
 - 1916, Handley Page O/400
 » 150 km/h at 2500 m
 » 900 kg of bombs
The advent of aviation

- **WWI (2)**
 - Use of bi or triplanes
 - Lower lift and higher drag than a wing of same total area
 - Simpler structure as the span is smaller (web structures with wood and fabric)
 - 1915, Junkers prototype
 - Mid-wing monoplane
 - Achieved due to use of sheet steel
 - Aluminum alloy were too expensive
 - 1915, Rolland Garros
 - Machinegun on aircraft nose
 - Armored propeller blades
 - No need for a gunner
 - 1915, Garros’ plane captured
 - Fokker: interrupted gear
 - Propeller and machineguns are synchronized
The advent of aviation

- The first airlines and airmail services (1)
 - 1911, India, Pecquet
 - Carried 6500 mails (13 km)
 - 1916, USA, Boeing
 - Founded the Pacific Aero Products Co
 - Wood seaplane (biplane)
 - Seaplanes can easily find long runaways
 - 1917, the company became the Boeing Airplane Company
 - 1927, it became the United Aircraft and Transport Corporation
 - 1918, airmails carried by the US postal
 - 4 pilots
 - DC/New-York
 - De Havilland DH4
The advent of aviation

• The first airlines and airmail services (2)
 – 1918, France, first flights of the “aéropostale”
 • Toulouse – Barcelona, and then to Casablanca & Dakar
 • To south America, transport by
 – Boat between Dakar and the Brazil
 – Airplanes between Brazil and Chile
 • 1930, Mermoz carried 122 kg of airmails
 – Between Dakar & Natal (Brazil)
 – Latécoère 28 (21-h flight)
 – Crashed on the way back
The advent of aviation

- The first airlines and airmail services (3)
 - 1919, foundation of KLM
 - 1920, London-Amsterdam
 - Airco DH 16, 4 passengers
 - Warm clothes and earplugs
 - 1919, Atlantic crossing
 - With multiple stops
 - WWI: boats were threatened by U-boats
 - 1 NC out of 3 (the NC-4) succeeded
 - 15-day long trip
 - 1927, New-York Paris
 - First atlantic crossing without stop
 - 33-hour long trip
 - Lindbergh, pilot of the US Postal
 - On the Spirit of St Louis
The advent of aviation

- National Advisory Committee for Aeronautics
 - 1915, foundation of N.A.C.A.
 - USA wanted to catch up with Europe
 - 1915 - 1950, airfoils tested in wind tunnels
 - 1933, 4-digit NACA airfoils
 - 1st digit: maximum camber as percentage of the chord
 - 2nd digit: distance of maximum camber from leading edge in 10% of chord
 - 3rd & 4th digits: maximum thickness as percentage of the chord
 - 1935, 5-digit NACA airfoils
 - High lift airfoils
 - 2nd & 2nd bis: distance in 5% of chord
 - 1939, 6-digit laminar airfoils
 - Maximum thickness further back
 - Lower drag
 - Efficient at high subsonic velocity
 - First flight on Mustang P51 (1942)
 - ... (see next slides)
 - 1958, became the N.A.S.A.
The advent of aviation

- **The first airliners**
 - 1933, Boeing 247
 - Semimonocoque structure in anodized aluminum
 - 1931, wood laminate is forbidden after the TWA599 accident
 - Moisture had leaked into the interior of one wing
 - Weakened the glue bonding the spars
 - Wing of the Fokker entered into flutter
 - Cantilevered wing with flaps, elevators with trim
 - Deicing & retractable landing gear
 - Autopilot (rudder & elevators)
 - Cruise at 300 km/h (3000-m altitude)
 - 1938, Boeing 307 with pressurized cabin (340 km/h at 8000 m)
The advent of aviation

- **The first airliners (2)**
 - The B247 are sold only to United Airlines (former part of Boeing)
 - 60 aircraft at $60000 each
 - TWA ordered the DC-1 at Douglas Corporation
 - 1934, production model is the DC-2
 - 2 x 710-hp engines
 - First comfortable airliner
 - Los-Angeles/New York in 18h
WWII

- Air supremacy became strategic

Spitfire

- Elliptic wing
 - Already used in Germany
 - Reduces the (lift) induced drag
 - Over/under-pressure on in/extrados induce vortex at wing tips
 - Create a downwash & a drag
 - This drag is higher at low velocity when the angle of attack is higher

Bf109 Messerschmitt

- Straight leading edges & small wing area
 - Reduce parasitic drag (friction & pressure)
 - This drag is important at high velocity
 - Wing efficient at high velocity
• **Air supremacy became strategic (2)**

 Spitfire

 • Elliptic wing stalls at once ➞
 - Spitfire was subject to spin
 - At high angle of attack one wing side stalls during yaw
 - A washout was introduced
 - Wing roots at higher angle of attack than wing tips
 - Wing roots stall first
 - Ailerons remain efficient
 - Pilot can reduce the yaw

 • Thin airfoils
 - Root: 13% thick
 - Tip: 6% thick

 • Monocoque (duralumin)

 Bf109 Messerschmitt

 • Short wing inefficient at low velocity
 - Use of high-lift devices
 - Automatic slats
 - Flaps

 • Thin airfoils
 - Root 14.5% thick

 • Monocoque (duralumin)
Air supremacy became strategic (3)

Spitfire

- Rolls-Royce engine
 - Supercharged
 - Liquid-cooled
 - V12
 - 1400cv
 - Carburetor (deep dives forbidden)
- 600 km/h at 4000 m
- Ceiling 11000 m
- Rate of climb 13.5 m/s

Bf109 Messerschmitt

- Daimler-Benz engine
 - Supercharged
 - Liquid-cooled
 - Inverted V12
 - 1500cv
 - Direct fuel injection (allowed dives)
- 640 km/h at 6300 m
- Ceiling 12000 m
- Rate of climb 17 m/s
Toward high subsonic velocities

- Forces on control surfaces increase with velocity (1)
 - WWI & WWII: mechanical control
 - Part of the control surface in front of the hinge
 - Horn balance (F4U corsair)
 - Hinge balance (Fokker Dr1)
 - Drag increase
 - Optimized at low or high deflection (not both of them)
 - Servomechanisms
 - Flettner or servo-tabs
 - Move in the opposite direction of the control surface
 - B 29, Bf 109, B 707, ...
 - Introduction of a geared-spring so the felt force is constant per “g”
Toward high subsonic velocities

- Forces on control surfaces increase with velocity (2)
 - ~1945
 - All moving tail (XP 42)
 - Aerodynamic center close to the hinge
 - Felt control force
 » Introduction of a bob-weight »: constant felt force per « g »
 » Introduction of damping: felt force depends on the maneuver
 - Research in supersonic range
 - Servomechanisms inefficient as the flow is modified in supersonic
 - Development of hydromechanical devices
 - Introduction of hydraulically assisted commands
 - Hydraulic force acts on mechanical command (as in powered steering)
 - 1945, P-80, for the ailerons; 1952, DH.106 Comet
 - Introduction of hydromechanical command
 - The mechanical circuit commands an hydraulic one
 - Artificial feel devices
 - Avoid overstressing the structure
 - Springs, bob-weight, stick shaker, …
Forces on control surfaces increase with velocity (3)

- **Fly-by-wire**
 - Hydraulic circuit electrically actuated
 - 1950 Avro Vulcain
 - 1969 Concorde
 - Hydraulic circuit actuated by a computer (analogical or digital)
 - 1972, NASA modified F8
 - 1974, F16 with relax stability
 - Aircraft with negative stability in subsonic range
 - Better maneuverability
 - 1984 A320, 1994 B777

- **Advantages**
 - Lighter and safer (redundancy)
 - Can be adapted to flight regime
 - Relax stability possible
 - Allow suppressing
 - Spinning and stall
 - Pilot induced oscillations: pilot corrections acting in opposite phase with the aircraft response → series of increasing overcorrections in opposite directions
Compressibility effects

- 1887, Austria
 - Mach took a picture of a supersonic flow
- ~WWI
 - Propeller tips experienced supersonic flow
- 1918, Caldwell & Fales, NACA,
 - High subsonic wind tunnel (700 km/h)
 - At critical Mach number
 - Increase of drag
 - Decrease of lift
 - Lift moves backward
 - Control surfaces inefficient at Mach > 1
- 1935, Volta conference
 - Busemann, Germany pioneered the concept of swept wing
 - Normal Mach number lower than aircraft Mach number
- Spitfire with thin airfoils
 - Higher critical Mach
 - But low torsional stiffness
 - Risk of aileron reversal
Groundbreaking concepts during WWII: Propulsion

- Above 700 km/h propellers are inefficient
 - 1939, Henkel HE 178
 - First flight with radial turbojet
 - 1941-1944 Messerschmitt Me 262
 - Swept wing
 - Only to move the CG backward (engines on the wing)
 - Critical Mach: 0.86 (sweep was too low)
 - Automatic slats
 - Tricycle landing gear
 - When taking off the elevators were efficient only when the horizontal tail was horizontal
 - With old tailwheel configuration the pilot had to brake before taking off
 - Prevents ground looping
Groundbreaking concepts during WWII: Propulsion

- Above 700 km/h propellers are inefficient (3)
 - 1944, Germany, pulse jet engine
 - Cheap and easy to produce
 - Prototype on Me 328
 - V1 (630 km/h at 900 m)
 - Works at zero velocity
 - Non continuous thrust
 - Rocket engine, Germany
 - 1941, Me163
 - November 1944, V2
 - Mach 4
 - Altitude: 100 km
Groundbreaking concepts during WWII: Propulsion

- Above 700 km/h propellers are inefficient (4)
 - Ramjet
 - Continuous thrust
 - Thrust only is $V > 160$ km/h
 - Concept, Lorin, 1911, France
 - 1941, Germany
 - Tested on a Dornier 17 at 200 m/s
 - Research on coal use
 - 1948, Le Leduc 010, France
 - Launched in altitude
 - Mach 0.85
 - 1964, SR71
 - The engine works as a ramjet for Mach > 3
Groundbreaking concepts during WWII: toward supersonic flights

- **The « sound barrier »**
 - End of the 30s
 - Physics in transonic range is not known
 - Equations cannot be linearized
 - No computers
 - 1935, UK, Hilton explain to a journalist that drag increases in an unknown way close to Mach 1: this became the « sound barrier »
 - 1941, the P-38 accidents popularized the barrier hoax
 - Early 40s: Measure of transonic flow
 - 1941, USA, Mach 1 experiences in wind tunnel failed due to the shock reflections (solved in 48 by adding holes in the walls)
 - 1944, scaled models were attached on a P-51 wing
 - During dive at Mach 0.81 the flow on the extrados reached locally Mach 1.4
Groundbreaking concepts during WWII: toward supersonic flights

• The « sound barrier » (2)
 – Bell X-1
 • Transonic research airplane
 • Rocket engine
 • Launched from a B29
 • All moving tail
 – Control in supersonic
 • 1947 Chuck Yeager reached Mach 1.06
Groundbreaking concepts during WWII: aerodynamics

- **Tailless aircrafts**
 - ~1930, Lippisch, Germany
 - No horizontal stabilizer
 - Glider (Storch, 1930)
 - Delta wing (Delta I, 1931)
 - Flying wing (Delta V, 1937)
 - Swept wing (Delta IV, 1932; Me 163, 1939)

- **The wing has elevons**
 - Act as
 - Elevator (if symmetric)
 - Ailerons (if antisymmetric)
 - To act as elevators they have to be backward of the CG
 - at wing tips
 - torsion
 - When producing a positive (nose up) moment (take off), the lift is reduced
Groundbreaking concepts during WWII: aerodynamics

- **Tailless aircraft: Δ wing**
 - **Advantages:**
 - **Mach > 1:**
 - If enough swept: leading edges behind Mach cone generated by the aircraft nose
 - low drag
 - Higher surface area compared to swept wing
 - **Mach << 1:**
 - At high angle of attack, a vortex is generated and remains stable on top of the wing
 - flow at high velocity
 - underpressure
 - lift
 - Maneuverability at low velocity
 - **Simple and robust structure**
 - **Drawback:** low aspect-ratio
 - induced drag
Groundbreaking concepts during WWII: aerodynamics

- **Tailless aircraft: Δ wing (2)**
 - Vortex generated at high angle of attack
 - Leading Edge eXtensions
 - SU 27, F18, …
 - Chines of SR-71
 - Originally for stealth mode
 - Add maneuverability
 - Super maneuverability
 - At stall (high angles of attack) the plane can
 - Dive
 - Spin
 - Enter in deep stall (elevators are inefficient and the plane falls with a constant angle of attack)
 - Combination canard / LEX / fly-by-wire / thrust vectoring
 - SU30, F22, …
 - Some maneuvers are still possible during stall
Groundbreaking concepts during WWII: aerodynamics

- **Swept wing**
 - 1944, Sabre F86
 - Order of the Air Force for a transonic turbojet
 - Original design inspired from the XFJ-1
 - Order of the Navy
 - Critical Mach was too low and the original design did not respect the Air Force requirements
Groundbreaking concepts during WWII: aerodynamics

- **Swept wing (2)**
 - 1944, Me P1011
 - Wing with sweep angle of 30, 40 or 45°
 (to be changed on the ground)
 - 1944, Sabre F86
 - Original design failed due to the unswept wing
 - 1947, Prototype XP86
 - Swept wing (35°)
 - Automatic slats of the Me262
 - Symmetric airfoil (uncambered)
 - Pressurized cockpit
 - 1948, sound barrier broken during dive
 - Turbojet
 - GE J47
 - Thrust: 23 kN
 - Hydromechanical Controls
 - Super Sabre F 100
 - 1953, Mach 1.05
Groundbreaking concepts during WWII: aerodynamics

• **Pitch up or Sabre dance**
 - Swept wing
 - Higher lift at wing tips
 - Flow from wing roots to wing tips → stall first at tips
 - Wing tips are backward → when stalling the lift moves ahead → positive moment (nose up)
 - Horizontal tail in turbulent flow → inefficient (deep stall), particularly for T tail (F101)
 - At high angle of attack the wing tips stall and the plane enters into pitch up mode
Groundbreaking concepts during WWII: aerodynamics

- **Pitch up or Sabre dance (2)**
 - Solutions: wing root has to stall first
 - Washout
 - Prevent boundary layer separation at tips
 - Slats at tips (higher camber \(\rightarrow\) lower attack angle)
 - Vortex generation on the extrados
 » Vortilons (DC9, B717, Embraer)
 (act only at high angle of attack)
 » Sawtooth (Super Etendard)
 - Prevent root to tip flow
 - Wing fences (SU22)
 - Forward swept
 » 1984, X29
 » Unstable in yaw (fly-by-wire)
Groundbreaking concepts during WWII: aerodynamics

- **Swept wing: B47**
 - 1944, Army order
 - Design inspired from the B29
 - Drag too high → 35° swept
 - Turbojet
 - 6 x GE J47
 - Thrust: 23 kN each
 - Jato-assisted take off
 - Cruise: 900 km/h at 10000 m
 - Large body+swept → Dutch-Roll
 - Roll & yaw are coupled
 - If too stable in roll (high wing), correction of the yaw (during stabilization) happens when rolls is already damped
 - Induces roll in the opposite direction
 - Solutions
 » Yaw damping
 » Negative dihedral (less stable in roll)
Supersonic military aircrafts

• **Variable-geometry aircraft**
 - Supersonic bomber
 • Supersonic → swept or Δ wing
 • Taking off from an aircraft carrier → unswept wing for higher lift (perpendicular flow higher & no transversal flow)
 - 1944, Me P1011
 • Wing with sweep angle of 30, 40 or 45° (to be changed on the ground)
 • Prototype captured and sent to Bell
 - 1951, Bell X-5, variable geometry aircraft
 • Subject to stalling
 • Aerodynamic center moves with sweep angle
• Variable-geometry aircraft (2)
 – 1967, Supersonic bomber F111
 – Drawbacks
 • Displacement of the aerodynamic pressure center
 – Move the fuel
 – LEX
 – Glove vane (F14)
 • Mechanisms too complex
 – Heavy
 – Synchronizations issues
 – Solution
 • Oblique wing?
 – Symmetry problem
Modern airliners

1952, De Havilland 106 Comet 1, UK (1)
- First jetliner, 36 passengers, pressurized cabin (0.58 atm)
- Wrong aerodynamics at high angle of attack (takeoff)
 - 1953, 2 crashes: lift loss due to swept wing and air intakes inefficient

Design issue
- 1953, India, crash during storm
 - « Structural failure » of the stabilizer
 - The pilot does not “feel” the forces due to the fully powered controls (hydraulically assisted)
 - Fatigue due to overstress?
• 1952, De Havilland 106 Comet 1, UK (2)
 – More design issues
 • 1954, January, flight BOAC 781 Rome-Heathrow
 – Plane G-ALYP disintegrated above the sea
 – After 1300 flights
 – Autopsies of passengers’ lungs revealed explosive decompression
 – Bomb? Turbine failure?
 → turbine rings with armor plates
 • 1954, April, flight SAA 201 Rome-Cairo
 – Plane G-ALYY disintegrated
 • 1954, April, reconstruction of plane ALYP from the recovered wreckages
 – Proof of fracture, but origin unknown
 • 1954, April, test of fuselage ALYU in water tank
 – Pressurization cycles of the cabin simulated
 – Rupture at port window after only 3057 pressurization cycles well before the design limit of 10000 cycles
Modern airliners

• 1952, De Havilland 106 Comet 1, UK (3)
 – 1954, August, ALYP roof retrieved from sea
 • Origin of failure at the communication window
 • Use of square riveted windows
 • Punched riveting instead of drill riveting
 → existence of initial defects

• 1958, Comet 3 et 4
 – Round windows glued
 – Fuselage thicker
 – Too late
Modern airliners

- **1958, Boeing 707**
 - First commercial success
 - 1952, prototype 367-80
 - Beginning of the 50s
 - Companies are comfortable with propellers, and are not pushing for turbojets
 - Boeing
 - Used turbojets successfully on the B47
 - Wanted to demonstrated viability of civil turbojets
 - 1958, B707 sold to Pan Am ($ 4M)
 - 110 passengers
 - 4 JT3C turbojets
 - 52 kN each
 - Compression ratio 11.5
 - ~950 km/h (M 0.9) at 11000 m
 - 1960, introduction of turbofans
 - 1958, DC-8
Modern airliners

- **1968, Boeing 737**
 - 100-160 passengers
 - 6000 planes sold (2009)
 - Twinjet
 - Lower fuel consumption
 - 60-minute rule (at that time in the US)
 - 737-100: P&W JT8
 - 1985, 737-400, CFM56-3
 - High by-pass ratio (5:1)
 - Compression ratio 27.5
Modern airliners

• 1969, Boeing 747
 – 1963, Boeing sent a proposal for a troop transport aircraft
 • Able to be loaded from the nose
 • Lockheed won the contest (C-5 Galaxy)
 • Boeing recycled the project to build a wide-body civil airliner
 • ~400 passengers
 • New P&W JTD9 engines
 – High by-pass ratio
 – 207-kN thrust each (take off)
 • Cruise: 913km/h at 12000 m (Mach 0.855)
Modern airliners

- Transonic wave drag
 - Flow is supersonic on the extrados
 - Shock wave → drag
 - ~1960, Whitcomb, NASA,
 - Supercritical airfoils
 - Flat extrados
 - Camber at the trailing edge (rear loading)
 - Reduce shock wave severity (until reaching divergence Mach)
Modern airliners

- Transonic wave drag (2)
 - Supercritical airfoils
 - 1973, tested on the F8

- Since the mid-70s
 - Used on civil airliners
 - A300, B767, B777, ERJ 145 …
• **1972, Airbus 300**
 – 1967, France, Germany & UK wanted to come back on the market
 • A300 project
 • 1968, the Ge CF6-5 engines are adopted instead of developing new high-by-pass RR engines with a thrust > 200kN
 – UK drew back temporarily
 – RR developed the engine and went bankrupt
 – Nationalization of RR
 – Hawker-Siddeley, UK, will produce the wing
 • 1970, Airbus was founded
 – France would produce the cockpit
 – Germany would produce the fuselage,
 – The Netherlands would produce the flaps & spoilers
 – Spain would produce the tail
Modern airliners

• 1972, Airbus 300 (2)
 – First wide-body twinjet (260 passengers)
 • Outside the USA, the maximum
diversion distance followed a
 90-minute rule (ICAO) and not
 a 60-minute rule
 • 1988, it became 120 or 180 minutes
 • The A300 became ETOPS-90 and then -180
 – Use of
 • Supercritical airfoils
 • Wingtip fences
 – Reduce wing tip vortex
 lower drag
Modern airliners

- **Airbus (subsidies) VS Boeing (public)**
 - In service
 - 1982, A320, Narrow body
 - First commercial success for Airbus
 - First fly-by-wire airliner
 - 1982, B767, Wide body twinjet
 - 1983, B757, Narrow body twinjet
 - 1992, A330/340, Two/Four-engine wide-body (common structures)
 - 1994, B777, largest wide-body twinjet (300-400 passengers), fly-by-wire
 - 1997, Boeing bought McDonnell Douglas → old DC became B717, etc …
 - 2007, A380
 - Two-deck configuration
 - 500-800 passengers
 - Four RR Trent 900
 » 3-m diameter
 » 300-kN thrust (take off)
 - 560 tons (MTOW)
 - 250/300-million €

Modern airliners

- **Airbus (subsidies) VS Boeing (public) (2)**
 - Most recent airliners
 - **B787**
 - 250-passenger twinjet
 - $150 millions
 - 787 concept
 - -20% fuel consumption
 - was favored to the Sonic Cruiser
 - 0.98 M
 and to the 747X
 - A380 competitor
 - 50% structural weight in composite
 - Cabin pressurized
 - To 1800 m (usually 2600 m)
 - With higher humidity level
 - Genx or RR Trent 1000 engines
 - By-pass ratio 9.5:1,
 - **A350**, 250 passengers twinjet
 - 52% structural weight in composite
Supersonic transports (SST)

- ~1955, there had been a market for SST
 - At Mach 2, the consumption per km & per N thrust is the same than for a turbofan at Mach 0.85
 - 1962, 2 projects
 - La caravelle (Sud aviation)
 - Le 223 (Bristol)
 - They merged to reduce the costs → Le Concorde
 - Development costed 6 times higher than the initial budget
 - Favored foundation of Airbus?

![Supersonic Transport](image-url)
Supersonic transports (SST)

• ~1955, there had been a market for SST (2)
 – Le Concorde
 • Engines are efficient at super-cruise
 – Olympus RR/Snecma turbojets
 » Afterburner only in transonic
 – Inefficient at lower velocity
 • Ogival Δ wing inefficient at low velocity
 • 1971, Supersonic regime was authorized only above ocean ➔
 Le Concorde was no longer profitable
 – Tickets price just allowed to pay operation costs but not development costs
 – 2000, accident during take off
 • Tire exploded after rolling on a wreckage
 • A piece of rubber hit the fuel tank and broke an electrical cable
 • Shockwave in the fuel tank caused a leak
 • Leaking fuel ignited due to severed electrical cable
 – 2003, economic crisis ➔ Le Concorde is removed from service
Supersonic transports (SST)

- ~1955, there had been a market for SST (3)
 - 1964, USA asked for proposals
 - 2 projects
 - L2000 (Lockheed)
 - B 2707 (Boeing)
 » Initially with variable geometry
 - B 2707 is selected
 - Variable geometry was too heavy
 - Became a Δ wing
 - 1971, Supersonic regime was authorized only above ocean
 ➔ they stopped the development
 - 1963, Tu-144 (Russia)
 - 1969, First supersonic flight
 - 1973, crash at Paris (Mirage ?)
 - 1975, used for mail services
 - 1977, passenger transport
 - 1978, accident & end of services
 - Required afterburner in super-cruise
 - Canard (positive moment without reducing lift as when acting on the elevons)
Near future

• **Air traffic evolution**
 - Airbus estimations for 2026
 • Revenue Passenger km: x2
 • Cargo transport: x3
 • 23000 new aircrafts will be required only for passenger transport
 - Mainly for Asia

20 year demand for 23,385 passenger aircraft worth US$2.6 trillion

<table>
<thead>
<tr>
<th>Number of new aircraft</th>
<th>Percentage</th>
<th>Price (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-aisle</td>
<td>71%</td>
<td>43%</td>
</tr>
<tr>
<td>Small twin-aisle</td>
<td>17%</td>
<td>27%</td>
</tr>
<tr>
<td>Intermediate twin-aisle</td>
<td>7%</td>
<td>14%</td>
</tr>
<tr>
<td>Very large aircraft</td>
<td>5%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Passenger aircraft >100 seats (excluding freighters)

Freight traffic to triple in twenty years

AAGR: Annual Average Growth Rate
* FTKs: Freight Tonne Kilometres

2013-2014 Aircraft Design - Introduction & History
Near future

Next aircraft generation?
- During the last 35 years
 - Aircrafts look the same
 - Operation costs have been reduced by 3
- During the next following years
 - Fuel consumption should be reduced by 70 %
 - Active control (10%)
 » Smaller stabilizing surfaces
 - Airflow control (wing & fuselage) (10%)
 » Lower drag
 - New materials (20%)
 - Propulsion (20%)
 » More efficient turbines
 - Multidisciplinary optimization (10%)
 » The use of a new technology requires a total redesign of the aircraft to be fully exploited
 - Supersonic business jets ?
References

- **Reference of the classes**

- **Others**
 - **On-line**
 - Introduction to the aerodynamics of flights, SP-367, NASA Langley research center, http://history.nasa.gov/SP-367/contents.htm
 - Dryden Flight Research Center, http://www.nasa.gov/centers/dryden/home/index.html
 - http://www.centennialofflight.gov/essay_cat/re_category.htm

 - **Books**
Annex 1: Wind tunnels

- **History of wind tunnels**
 - 1746, UK, Robins
 - First whirling arms
 - Cayley, Langley, Lilienthal used this device
 - Low accuracy
 - 1872, UK, Wenham
 - First wind tunnel
 - Velocity 40 km/h, section 45x45 cm
 - Airfoil study
 - Lift applied at the front
 - Deduced erroneously that wings should be long and should have a reduced chord
 - Verified that such wings have a high lift to drag ratio
 - This ratio is higher than previous measures obtained with whirling arms
 - Proposed to use superposed wings (biplanes etc)
 - ~1880, UK, Maxim
 - Build a wind tunnel
 - Velocity 80 km/h, section 90x90 cm
 - Drag of a system > sum of the individual drags
Annex 1: Wind tunnels

History of wind tunnels (2)

- ~1880, UK, Phillips
 - Used Wenham results
 - Built his own wind tunnel with convergent
 - Airfoil with extrados more cambered than intrados
 - 1893-1907, build multi-planes
 - Failures

- 1883, Reynolds, UK
 - Results obtained with scaled models in wind tunnels can be extrapolated to real dimensions if the flow is dynamically identical: $Re = \frac{UL}{\nu}$ constant
• **Advantage:** canard increases the total lift

![Diagram](image)

• **Canard design is difficult**
 - Stability requires $\Delta L'_Z < \Delta L_Z$ for $\Delta \theta > 0$
 - When flaps are down, this requires $\Delta L'_Z > \Delta L_Z$
 - Canard should stall before the wing
 - So the plane dives and its velocity increases
 - Control surfaces on the wing remain effective
 - Use of the wing at maximum angle of attack is therefore forbidden
 - Over/under-pressure on in/extrados induce vortex at wing tips
 - (Lift) induced drag
 - Canard induces a downwash near wing roots and upwash near wing tips
 - Decreases wing efficiency and increases stall risk at wing tips
 - Reduces wing control surfaces efficiency

• **Really useful with unstable design**
Annex 3: The advent of aviation

• The first airlines and airmail services (4)
 – 1927, foundation of Pan Am
 • Airmail service to Cuba
 • Seaplanes
 • 1938, transatlantic airline (Boeing 314)
 – 1934, Air Mail Scandal
 • 1925 (Kelly act), the US-post can contract with public (US meaning) companies
 • Airmail subsidized per letter ➞ junk mails
 • 1930 (Hoover), subsidies for cargo capacity instead of cargo carried ➞ advent of passenger transport
 • 1930, 3 accredited companies: TW&A, United (Boeing) & AA (conglomerate of 82 companies)
 • 1934, allegation of collusion between the companies and the Roosevelt administration
 – Roosevelt
 » Canceled the accreditations,
 » Split the companies into manufacturers and transport companies ➞ Boeing & United are distinct
 – The Army (Air Corps) is temporarily in charge of the airmail
 » Poor infrastructures and no modern airplanes ➞ numerous accidents
 » New contracts with new companies
Annex 4: Solutions to pitch up

- **Wing root has to stall first**
 - Washout
 - Taper > 1 (XF91)
 - Prevent boundary layer separation at tips
 - Slats at tips (higher camber \(\rightarrow\) lower attack angle)
 - Vortex generation on the extrados
 » vortilons (DC9, B717, Embraer), pylons
 » Sawtooth (Super Etendard)
 » Golf ball effect (Gloster Javelin)
 - Prevent root to tip flow
 - Wing fences (SU22)
 - Forward swept
 » 1944, JU 287
 » 1984, X29
 » Unstable in yaw \(\rightarrow\) fly-by-wire
Annex 5: Boeing 727

- **1964**
 - Companies wanted to reduce the fuel consumption
 - Twinjet forbidden on roads further than 60-minute flight from an airport (Caribbean)
 - Development of a three-engine airliner
 - P&W JT8
 - 62 kN
 - Low by-pass turbofan (0.96:1)
 - Noisy
 - 150 passengers
 - Introduction of an APU
 - Hydro mechanical commands

- **Comparison**
 - Consumption in g / Available Seat km
 - 727: 37
 - 707: 62
Annex 6: Buoyancy

- **Balloons or non-powered aerostats (lighter than air) (2)**
 - 1783, Jacques Charles, France
 - Identified buoyancy (Archimede's principle)
 - Replaced hot-air by hydrogen
 - Flew 43 km
 - 1861, USA
 - Used for military observation during civil war
 - NB: 1709, Bartholomeu Lourenço de Gusmão (Portugal)?
 - Sketch of a machine with hydrogen balloons
Annex 7: Airchips

• **Airships or powered aerostats (lighter than air)**

 – 1785, Blanchard, France
 • Crossed English Channel
 • Balloon using hydrogen
 • « Flapping wings » as propulsion means?
 • Ruder for lateral control (yaw)
 • Has parachute on board

 – 1852, Giffart, France
 • First steam-powered airship
 • 3-hp steam engine
 • 27-km long flight
 • Unable to flight against the wind

 – 1872, Dupuis de Lôme, France
 • First airship with, although limited, maneuverability
 • Order of the French army
 • Communication during the 70s war
 • 8-person powered
Annex 8: Aeronautics pioneers

• Aerodynes (heavier than air): First airplanes
 – 1842, Hanson & Stringfellow, UK
 • Aeriel Steam Carriage concept (too heavy)
 • Concept of
 – Lifting surfaces
 – Tails
 – Propulsion
 – 1848, Stringfellow, UK
 • First steamed powered flight
 • Unmanned airplane
 – ~1871, Alphonse Pénau, France
 • Build toys
 • Roll stability: dihedral wing
 • Pitch stability: horizontal tail with negative angle of attack
 • Propulsion
 – 2-blade propeller
 – Powered by twisted rubber strands
Annex 9: First flights

- **First success: the Wright brothers, USA (2)**
 - 1904 flight (Flyer II)
 - 15-hp engine (catapulted at take off)
 - Suppressed the negative dihedral
 - Add weight under the canard (stability)
 - Reduced the camber of airfoils
 - Lower drag
 - 1-km long flight
 - Accomplished circles
 - 1905 flight (Flyer III)
 - 25-hp piston engine
 - 4-km long flight
 - Improved the stability by increasing the control surfaces
 - Roll and pitch controls dissociated
- **1906, Alberto Santos-Dumont, Brazil**
 - Flight of the 14bis
Canard configuration vs horizontal tail

- Advantage: canard increases the total lift
- Canard design is difficult
 - Stability requires $\Delta L'_Z < \Delta L_Z$ for $\Delta \theta > 0$
 - When flaps are down, this requires $\Delta L'_Z > \Delta L_Z$
 - Canard should stall before the wing
 - So the plane dives and its velocity increases
 - Use of the wing at maximum angle of attack is therefore forbidden
- Really useful with unstable design
• **Compressibility effects**
 - 1941, accident of a P38 unable to recover from a dive
 - NACA build a Mach 0.75 full size wind tunnel
 - Above Mach 0.68 they found that
 - Lift moves backward on the wing
 - Wing lift decreases \(\rightarrow \) less downwash \(\rightarrow \) more lift on horizontal tail
 - Dive unrecoverable until reaching low altitude
 - Introduction
 - Limit airspeed vs altitude abacus
 - Diving flaps (change center of pressure location)
 - These compressibility effects were actually already known
Annex 12: Groundbreaking concepts during WWII: Propulsion

• **Above 700 km/h propellers are inefficient (2)**
 – 1941-1944 Messerschmitt Me 262 (2)
 • 2 Junkers Jumo 004 engines
 – First axial turbojet
 – Thrust: 8800 N (each)
 – Compression ratio: 3.14
 – Diesel
 • 870 km/h (Mach 0.7) at 6000 m
 • Ceiling: 11000 m
 • No anti-G suit
 • Too fast for machinegun to be used
 → rockets R4m
 – Similar aircrafts
 • UK: Gloster Meteor
 • US: P59

2013-2014 Aircraft Design - Introduction & History
Annex 12: Groundbreaking concepts during WWII: aerodynamics

- **Tailless aircrafts (2)**
 - Longitudinal stability
 - Lift backward of CG
 - Longitudinal equilibrium
 - As lift is backward of CG
 - Wing should produce a positive (nose up) moment
 - Cambered airfoils produce negative moment
 - So how to reach the equilibrium?
 - Reflex airfoils
 - Negative camber at the trailing edge
 - Solar Pathfinder
 - Swept wing with tips at negative angle of attack
 - Horten IV
 - Elevons deflection
 - These devices increase the drag
 - No high lift devices
 - As they produce a negative moment
Annex 12: Groundbreaking concepts during WWII: aerodynamics

- **Tailless aircraft: flying wing**
 - **1944**
 - The Me 262 cannot reach London (Fuel consumption of the Jumo 004 is too high)
 - The Horten brothers want to remove fuselage & tail in order to reduce the drag
 - Ho 229 derived from the glider Ho II
 - Glider & prototype build
 - Version 3 captured by the USA
 - **1947, Northop YB49, USA**
 - Low critical Mach number (thick airfoil)
 - Not stable enough to be used as a bomber
Annex 12: Groundbreaking concepts during WWII: aerodynamics

• **Tailless aircraft: flying wing (2)**
 – 1989, B-2 spirit
 • Stealth: a flying wing has a low Radar Cross Section
 • Stability possible with fly-by-wire control
 • Velocity: 760 km/h
Annex 12: Groundbreaking concepts during WWII: aerodynamics

- **Tailless aircraft: swept wing**
 - 1941, Me 163
 - Short swept wing
 - Rocket engine
 - Slots at leading edges
 - Air from below accelerates through the slot towards above the wing
 - This high-speed flow delays boundary layer separation
 - Decrease stall speed
 - Make spin impossible
 - Too fast for
 - Machineguns required skill
 - Only a few successful shootings
- 8-minute long flights
 - Velocity of 1004 km/h
- Ejection seat
Annex 12: Groundbreaking concepts during WWII: aerodynamics

- **Tailless aircraft: Δ wing**
 - 1944, Lippisch P13a
 - Experiments in wind tunnels:
 - Stable until Mach 2.6
 - Glider prototype (DM1)
 - Captured by the USA
 - Ramjet (coal dust)
 - 1948, Lippisch worked for Convair
 - Prototype Convair XF92
 - Yeager flew at Mach 1.04
 - Landed with
 - A high angle of attack
 - A low velocity (100 km/h)
Annex 12: Groundbreaking concepts during WWII: aerodynamics

- **Swept wing (2)**
 - 1935, Volta conference
 - Busemann, Germany pioneered the concept of swept wing
 - Normal Mach number lower than aircraft Mach number
 - 1945, Jones drew the same conclusions (US)
 - 1944, Me P1011
 - Wing with sweep angle of 30, 40 or 45° (to be changed on the ground)
 - Research on swept angle effect
 - Prototype captured and sent to Bell
Annex 13: Supersonic military aircrafts

• Volume drag
 – Area rule, Whitcomb, NACA
 • 1943, Junker already applied it
 • For supersonic flow there is a drag depending on the volume
 – ~1950, Sears-Haack, volume drag
 minimum for $r/r_0=(1-x^2)^{3/2}$
 – ~ Mach 1: volume drag is similar to the body of revolution with the same cross-sectional areas
 – M > 1: one has to consider the area along the Mach cone (and not cross-sectional)
Annex 13: Supersonic military aircrafts

- **Volume drag (2)**
 - 1953, Convair YF 102
 - Original design unable to reach Mach 1
 - Design correction
 - Coke bottle
 - Called in France “taille de guêpe”
 - Nowadays, engines have enough thrust
 - Cabin design for transport aircraft would be too complex