Aircraft Design Introduction to Structure Life

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Aircraft Design – Structure Life

Total life design

- Design with stresses lower than
 - Elastic limit (σ_p^0) or
 - Tensile strength ($\sigma_{\rm TS}$)
- ~1860, Wöhler
 - Technologist in the German railroad system
 - Studied the failure of railcar axles
 - Failure occurred
 - After various times in service
 - At loads considerably lower than expected

- Failure due to cyclic loading/unloading
- « Total life » approach
 - Empirical approach of fatigue

 σ

2

• Empirical approach: Total life

- Minimal & maximal stresses: σ_{min} & σ_{max}
- Mean stress: $\sigma_m = (\sigma_{max} + \sigma_{min})/2$
- Amplitude: $\sigma_a = \Delta \sigma/2 = (\sigma_{max} \sigma_{min})/2$
- Load Ratio: $R = \sigma_{\min} / \sigma_{\max}$
- Under particular environmental conditions (humidity, high temperature, ...):
 - Frequency of cycles
 - Shape of cycles (sine, step, ...)

- First kind of total life approach: « stress life » approach
 - For structures experiencing (essentially) elastic deformations
 - For $\sigma_m = 0 \& N_f$ identical cycles before failure
 - For $\sigma_a < \sigma_e$ (endurance limit): infinite life (>10⁷ cycles)
 - For $\sigma_a > \sigma_e$, finite life
 - With $\sigma_e \sim$ [0.35 ; 0.5] σ_{TS}
 - 1910, Basquin Law

$$\frac{\Delta\sigma}{2} = \sigma_a = \sigma_f' \left(2N_f\right)^b$$

- σ_{f} fatigue coefficient (mild steel T_{amb} : ~ [1; 3] GPa)
- *b* fatigue exponent (mild steel T_{amb} : ~ [-0.1; -0.06])
- Parameters resulting from experimental tests

- First kind of total life approach: « stress life » approach (2)
 - For $\sigma_m \neq 0$ and N_f identical cycles, the maximal amplitude is corrected

• Soderberg
$$\sigma_a = \sigma_a|_{\sigma_m=0} \left(1 - \frac{\sigma_m}{\sigma_p}\right) \implies \text{ conservative}$$

• Goodman
$$\sigma_a = \sigma_a|_{\sigma_m=0} \left(1 - \frac{\sigma_m}{\sigma_{TS}}\right)$$

• Gerber $\sigma_a = \sigma_a|_{\sigma_m=0} \left[1 - \left(\frac{\sigma_m}{\sigma_{TS}}\right)^2\right] \Longrightarrow$ only for alloys under tension

Does not account for the sequence in which the cycles are applied

- Second kind of total life approach: « strain life » approach
 - For structures experiencing (essentially)
 - Large plastic deformations
 - Stress concentration
 - High temperatures
 - For N_f identical cycles before failure
 - 1954, Manson-Coffin $\frac{\Delta \bar{\varepsilon}^p}{2} = \varepsilon_f' \left(2N_f\right)^c$
 - ε_{f} ': fatigue ductility coefficient ~ true fracture ductility (metals)
 - c: fatigue ductility coefficient exponent ~ [-0.7, -0.5] (metals)
 - $\Delta \bar{\varepsilon}^p$ plastic strain increment during the loading cycles

- 1952, De Havilland 106 Comet 1, UK (1)
 - First jetliner, 36 passengers, pressurized cabin (0.58 atm)
 - Wrong aerodynamics at high angle of attack (takeoff)
 - 1953, 2 crashes: lift loss due to swept wing and air intakes inefficient

- The fuselage was designed using total life approach
 - 1952, a fuselage was tested against fatigue
 - Static loading at 1.12 atm, followed by
 - 10 000 cycles at 0.7 atm (> cabin pressurization at 0.58 atm)
- Design issue
 - 1953, India, crash during storm
 - « Structural failure » of the stabilizer
 - The pilot does not "feel" the forces due to the fully powered controls (hydraulically assisted)
 - Fatigue due to overstress ?

Design using total life approach

- 1952, De Havilland 106 Comet 1, UK (2)
 - More design issues
 - 1954, January, flight BOAC 781 Rome-Heathrow
 - Plane G-ALYP disintegrated above the sea
 - After 1300 flights
 - Autopsies of passengers' lungs revealed explosive decompression
 - Bomb? Turbine failure ?
 - turbine rings with armor plates
 - 1954, April, flight SAA 201 Rome-Cairo
 - Plane G-ALYY disintegrated
 - 1954, April, reconstruction of plane ALYP from the recovered wreckages
 - Proof of fracture, but origin unknown
 - 1954, April, test of fuselage ALYU
 - Water tank for pressurization cycles
 - Rupture at port window after only 3057 pressurization cycles
 - Total life approach failed
 - Fuselages failed well before the design limit of 10000 cycles

Design using total life approach

- 1952, De Havilland 106 Comet 1, UK (3)
 - 1954, August, ALYP roof retrieved from sea
 - Origin of failure at the communication window
 - Use of square riveted windows
 - Punched riveting instead of drill riveting
 - Existence of initial defects
- The total life approach
 - Accounts for crack initiation in smooth specimen
 - Does not account for inherent defects
 - Metal around initial defects could have hardened during the initial static test load of the fatigue tested fuselage
 - Production planes without this static test load ...
- Life time can be improved by
 - "Shoot peening": surface bombarded by small spherical media
 - Compression residual stresses in the surface layer
 - Prevents crack initiation
 - Surface polishing (to remove cracks)
- 1958, Comet 3 et 4
 - Round windows glued
 - Fuselage thicker

FIG. 12. PHOTOGRAPH OF WRECKAGE AROUND ADF AERIAL WINDOWS-G-ALYP.

Université 🚺 🧕

Other examples of fatigue failures

• 1985, B747 Japan Airline 123

- 1978, tail touched the ground
- Pressurization bulkhead repaired with a single row of rivets
- To be safe-life 2 rows are required (Boeing repair manual)

• 1988, B737, Aloha Airlines 243

- 2 fuselage panels not correctly glued
- Salt water inbetween
- Rust and dilatation
- Fatigue of the rivets

2013-2014

• These structures perished by fatigue

- At load lower than ultimate load
- After a large number of cycle

- Limits of the total life approach
 - Does not account for inherent defects
 - What is happening when a defect is present ?
 - Example: Comet
 - Theoretical stress concentration
 - Infinite plane with an ellipsoidal void (1913, Inglis)

$$\sigma_{\max} = \sigma_{yy} \left(a, 0 \right) = \sigma_{\infty} \left(1 + \frac{2a}{b} \right)$$

- b - v $\longrightarrow \sigma_{\max} \to \infty$ preaks for $\sigma_{\infty} \to 0$

» Tensile strength depends on the crack size a and of surface energy γ_s

 $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \, 2\gamma_s}$

- Development of the fracture mechanics field
 - How can we predict failure when a crack exists ?
 - Microscopic observations for cycling loading
 - Crack initiated at stress concentrations (nucleation)
 - Crack growth
 - Failure of the structure when the crack reaches a critical size
 - How can we model this?

- Mechanism of brittle failure
 - (Almost) no plastic deformations prior to the (macroscopic) failure
 - Cleavage: separation of crystallographic planes
 - In general inside the grains
 - Preferred directions: low bonding
 - Between the grains: corrosion, H₂, ...
 - Rupture criterion
 - 1920, Griffith: $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \, 2\gamma_s}$

Brittle / ductile fracture

Singularity at crack tip for linear and elastic materials
 1957, Irwin, 3 fracture modes

- Singularity at crack tip for linear and elastic materials (2)
 - Asymptotic solutions (Airy functions, see fracture mechanics classes)

$$\begin{array}{c} \begin{array}{c} \text{Mode I} & \text{Mode II} & \text{Mode II} \\ \hline \sigma_{xx} = \frac{C}{\sqrt{r}}\cos\frac{\theta}{2}\left[1-\sin\frac{3\theta}{2}\sin\frac{\theta}{2}\right] + \mathcal{O}(r^{0}) \\ \hline \sigma_{yy} = \frac{C}{\sqrt{r}}\cos\frac{\theta}{2}\left[1+\sin\frac{3\theta}{2}\sin\frac{\theta}{2}\right] + \mathcal{O}(r^{0}) \\ \hline \sigma_{yy} = \frac{C}{\sqrt{r}}\cos\frac{\theta}{2}\sin\frac{\theta}{2} + \mathcal{O}(r^{0}) \\ \hline \sigma_{xy} = \frac{C}{\sqrt{r}}$$

K_i are dependent on both the loading and the geometry

Linear Elastic Fracture Mechanics (LEFM)

• New failure criterion

- 1957, Irwin, crack propagation
 - $\sigma_{max} \rightarrow \infty \implies \sigma \text{ is irrelevant}$
 - If $K_i = K_{iC} \implies$ crack growth
- Toughness (ténacité) K_{Ic}
 - Steel, Al, ... : see figures
 - Concrete: 0.2 1.4 MPa m^{1/2} (brittle failure)

2013-2014

Aircraft Design - Structure Life

Linear Elastic Fracture Mechanics (LEFM)

 σ_{∞}

 σ_{∞}

- Stress Intensity Factor (SIF)
 - Computation of the SIFs K_i
 - Analytical (crack 2a in an infinite plane)

$$\implies \begin{cases} K_I = \sigma_\infty \sqrt{\pi a} \\ K_{II} = \tau_\infty \sqrt{\pi a} \\ K_{III} = \tau_\infty \sqrt{\pi a} \end{cases}$$

• For other geometries or loadings

$$\implies \begin{cases} K_I = \beta_I \sigma_\infty \sqrt{\pi a} \\ K_{II} = \beta_{II} \tau_\infty \sqrt{\pi a} \\ K_{III} = \beta_{III} \tau_\infty \sqrt{\pi a} \end{cases}$$

- β_i obtained by
 - Superposition
 - FEM

》

- Energy approach
 - » Related to Griffith's work

$$\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \left(2\gamma_s + W_{\rm pl}\right)}$$

See next sliges

- For 2 loadings $a \& b: K_I = K_I^a + K_I^b$
 - **BUT** for 2 modes $K \neq K_I + K_{II}$

$$\frac{1}{2a}$$

$$\tau_{\infty}$$

y

X

 $\sigma_{yy} = 0$,

 $u_v \neq 0$

----- *r*

a

- Energy approach
 - Mode I
 - Initial crack 2a

• Crack grows to $2(a+\Delta a)$

$$\begin{cases} \boldsymbol{\sigma}_{yy}^{1} \left(\boldsymbol{\theta} = \pi, \, r = a + \Delta a - x\right) = 0 \\ \boldsymbol{u}_{y}^{1} \left(\boldsymbol{\theta} = \pm \pi, \, r = a + \Delta a - x\right) = \\ \pm \frac{\boldsymbol{\sigma}_{\infty} \left(1 + \nu\right) \left(\kappa + 1\right)}{E\sqrt{2}} \sqrt{a + \Delta a} \sqrt{a + \Delta a - x} \quad \boldsymbol{u}_{y} \neq 0, \quad \boldsymbol{u}_{y} \neq 0 \end{cases} \quad \boldsymbol{u}_{y} \neq 0$$

• Energy is needed for crack to grow by $2\Delta a$ as there is a work done by σ_{yy}

$$\Delta E_{\rm int} = -4dz \int_a^{a+\Delta a} \int_{\boldsymbol{u}_y^0}^{\boldsymbol{u}_y^1} \boldsymbol{\sigma}_{yy} d\boldsymbol{u}_y dx \text{ (x4 as it is for } x > 0, x < 0 \& \text{ for } y < 0, y > 0)$$

2013-2014

r

 Δa

 $\sigma_{yy} \neq 0,$

 $\boldsymbol{u}_{v}=\boldsymbol{0}$

 θ

• Energy approach (2)

• Mode I
• Energy needed for crack to grow by
$$\Delta a \ \Delta E_{int} = -4dz \int_{a}^{a+\Delta a} \int_{u_{y}^{0}}^{u_{y}^{1}} \sigma_{yy} du_{y} dx$$

• Assumption: σ_{yy} linear in terms of $u_{y} \implies \Delta E_{int} = -2dz \int_{a}^{a+\Delta a} \sigma_{yy}^{0} u_{y}^{1} dx$
• Change of variable $x = a + \Delta a \cos^{2} \theta$
 $\implies \Delta E_{int} = -\frac{dz \sigma_{\infty}^{2} \sqrt{a (a + \Delta a)} (1 + \nu) (1 + \kappa)}{2E} \pi \Delta a$
• G : energy release rate for a straight ahead growth
 $\implies G = -\frac{dE_{int}}{dA} = -\lim_{\Delta a \to 0} \frac{\Delta E_{int}}{2\Delta a dz} = \frac{\pi a \sigma_{\infty}^{2}}{4E} (1 + \nu) (\kappa + 1) = \frac{\pi a \sigma_{\infty}^{2}}{E'} = \frac{K_{I}^{2}}{E'}$

$$\frac{dA}{E'} = \frac{4E}{(1+\nu)(\kappa+1)} = \begin{cases} E & P\sigma \\ \frac{E}{1-\nu^2} & P\varepsilon \end{cases}$$

- The crack has been assumed lying in an infinite plane. But

 $G = \frac{K_I^2}{E'} \text{ still holds for other expressions of } K_I \text{ (see fracture mechanics)}$ 2013-2014 Aircraft Design - Structure Life 19

- Energy approach (3)
 - 1920, Griffith, energy conservation: $E=E_{\rm int}+\Gamma$
 - Total energy E is the sum of the internal (elastic) energy E_{int} with the energy

 Γ needed to create surfaces $A \implies \frac{\partial E}{\partial A} = \frac{\partial E_{\text{int}}}{\partial A} + \frac{\partial \Gamma}{\partial A} = 0$

• If γ_s is the surface energy (material property of brittle material)

$$\implies \text{crack growth if} \quad G = G_c = -\frac{dE_{\text{int}}}{dA} = \frac{d\Gamma}{dA} = 2\overline{\gamma_s} \stackrel{\text{A crack creates 2}}{\text{surfaces } A}$$

– Mode I, infinite plane

• Strength
$$G = \frac{\pi a \sigma_{\infty^2}}{E'} = \frac{K_I^2}{E'} \implies \sigma_{\rm TS} = \sqrt{\frac{2\gamma_s E}{\pi a}} \xrightarrow{\text{Depend on the crack size}}$$

- Glass: $G_c = 2 \gamma_s \sim 2 \text{ Jm}^{-2}$, E = 60 GPa
- Steel: G_c = plast. dissipation ~ 200 kJm⁻², E = 210 GPa $\implies \sigma_{\rm TS} \sqrt{a} = 115 {\rm MPa} {\rm m}^{\frac{1}{2}}$
- Straight ahead propagation for general loading
 - Proceeding as for mode I: $G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{(1+\nu)K_{III}^2}{E}$

20

 $\implies \sigma_{\rm TS} \sqrt{a} = 195 {\rm kPa} {\rm m}^{\frac{1}{2}}$

- Example: Liberty ships (WWII)
 - Steel at low T° : brittle
 - $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \, 2\gamma_s}$ with $\gamma_s \sim 3400 \, {\rm J} \, {\rm m}^{-2}$

- Steel at room T° : ductile

• $\sigma_{\rm TS} \sqrt{a} \div \sqrt{E \left(2 \gamma_s + W_{\rm pl}\right)}$ with $2\gamma_s + W_{pl} \sim 200 \text{ kJ m}^{-2}$

- Use of low-grade steel
 - In cold weather: •

DBTT ~ water temperature

- When put in water existing cracks lead to failure
- 30% of the liberty ships suffered from fracture

2013-2014

- Energy approach: J-integral
 - Energy release rate
 - Straight ahead propagation for linear elasticity $G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{(1+\nu)K_{III}^2}{E}$
 - Should be related to the energy flowing toward the crack tip

• J-integral
$$J = \int_{\Gamma} \left[U(\boldsymbol{\varepsilon}) \, \boldsymbol{n}_x - \boldsymbol{u}_{,x} \cdot \boldsymbol{T} \right] dl$$

- Defined even for non-linear materials
- Is path independent if the contour
 - \varGamma embeds a straight crack tip
- BUT no assumption on subsequent growth direction
- If crack grows straight ahead $\longrightarrow G=J$

- If linear elasticity
$$\implies J = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}$$

- Can be extended to plasticity if no unloading (see fracture mechanics)
- Advantages
 - Efficient numerical computation of the SIFs
 - Useful for non perfectly brittle materials

Direction of crack grow

 Assumptions: the crack will grow in the direction where the SIF related to mode I in the new frame is maximal

• Crack growth if
$$\left(\sqrt{2\pi r}\boldsymbol{\sigma}_{\theta\theta}\left(r,\,\theta*\right)\right) \geq K_{C}$$
 with $\partial_{\theta}\boldsymbol{\sigma}_{\theta\theta}|_{\theta^{*}} = 0$

From direction of loading, one can compute the propagation direction

2013-2014

Université 🛛 🖉

Cyclic loading

• Fatigue failure

- Tests performed with different $\Delta P = P_{\text{max}} P_{\text{min}}$
- Nucleation: cracks initiated for $K < K_c$
 - Surface: deformations result from dislocations motion along slip planes

 Can also happen around a bulk defect

Cyclic loading

- Fatigue failure (2)
 - Stage I fatigue crack growth:
 - Along a slip plane
 - Stage II fatigue crack growth:
 - Across several grains
 - Along a slip plane in each grain
 - Straight ahead macroscopically
 - Striation of the failure surface: corresponds to the cycles

Cyclic loading

- There is ΔK_{th} such that if $\Delta K \sim \Delta K_{\text{th}}$:
 - The crack has a growth rate lower than one atomic spacing per cycle (statistical value)
 - Dormant crack

Université U Ø

- Depends on the geometry, the loading, the frequency
- Steel: $\Delta K_{\text{th}} \sim 2-5 \text{ MPa } m^{1/2}$, $C \sim 0.07-0.11 \ 10^{-11} \text{ [m (MPa m^{1/2})^{-m}]}$, $m \sim 4$

- Steel in sea water: $\Delta K_{\text{th}} \sim 1-1.5 \text{ MPa m}^{1/2}$, *C* ~ 1.6 10⁻¹¹ [idem], *m* ~ 3.3

• Be careful: K depends on $a \implies$ integration required to get $a(N_f)$

- Mode I:
$$K_I = \sigma_{\infty} \sqrt{\pi a} \implies \Delta K = (\sigma_{\infty, \max} - \sigma_{\infty, \min}) \sqrt{\pi a}$$

- Zone III

- Rapid crack growth until failure
- Static behavior (cleavage) due to the effect of $K_{max}(a)$
- There is failure once a_f is reached, with a_f such that $K_{max}(a_f) = K_c$

27

Université 🔰 🧕

Fatigue design

- « Infinite life design »
 - $\sigma_a < \sigma_e$: « infinite » life
 - Economically deficient
- « Safe life design »
 - No crack before a determined number of cycles
 - At the end of the expected life the component is changed even if no failure has occurred
 - Emphasis on prevention of crack initiation
 - Approach theoretical in nature
 - Assumes initial crack free structures
 - Use of $\sigma_a N_f$ curves (stress life)
 - Add factor of safety
 - Components of rotating structures vibrating with the flow cycles (blades)
 - Once cracks form, the remaining life is very short due to the high frequency of loading

« Fail safe design »

- Even if an individual member of a component fails, there should be sufficient structural integrity to operate safely
- Load paths and crack arresters
- Mandate periodic inspection
- Accent on crack growth rather than crack initiation
- Example: 1988, B737, Aloha Airlines 243
 - 2 fuselage plates not glued
 - Sea water > rust and volume increased
 - Fatigue of the rivets
 - The crack followed a predefined path allowing a safe operation

2013-2014

« Damage tolerant design »

- Assume cracks are present from the beginning of service
- Characterize the significance of fatigue cracks on structural performance
 - Control initial crack sizes through manufacturing processes and (non-destructive) inspections
 - Estimate crack growth rates during service (Paris-Erdogan) & plan conservative inspection intervals (e.g. every so many years, number of flights)
 - Verify crack growth during these inspections
 - Predict end of life (a_f)
 - Remove old structures from service before predicted end-of-life (fracture) or implement repair-rehabilitation strategy
- Non-destructive inspections
 - Optical
 - X-rays
 - Ultrasonic (reflection on crack surface)

30

References

Lecture notes

 Lecture Notes on Fracture Mechanics, Alan T. Zehnder, Cornell University, Ithaca,

Other references

- « on-line »
 - Fracture Mechanics, Piet Schreurs, TUe, http://www.mate.tue.nl/~piet/edu/frm/sht/bmsht.html
- Book
 - Fracture Mechanics: Fundamentals and applications, D. T. Anderson. CRC press, 1991.

