Université de Liège Département d'Aérospatiale et de Mécanique

Aircraft Design Conceptual Design

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3 <u>http://www.ltas-cm3.ulg.ac.be/</u> Chemin des Chevreuils 1, B4000 Liège L.Noels@ulg.ac.be

Aircraft Design – Conceptual Design

Goals of the classes

- Design stages
 - Conceptual design
 - Purposes
 - Define the general configuration (tail or canard, high or low wing, ...)
 - Analyze the existing technologies
 - Estimate performances for the different flight stages
 - Accurate estimation of the total weight, fuel weight, engine thrust, lifting surfaces, ...
 - How
 - Limited number of variables (tens): span, airfoil profile, ...
 - Accurate simple formula & abacuses
 - Preliminary study
 - Higher number of variables (hundreds)
 - Starting point: conceptual design
 - Numerical simulations
 - Detailed study
 - Each component is studied in details

Cross-section

- Seat width
 - Economy: ~20 inches* *1 inch = 2.54 cm
 - Business: •
 - First:
- Aisle width
 - Economy:
 - **Business:** •
 - First:
- Fuselage thickness
 - ~ 4% of $H_{\rm int}$

~26.5 inches

~24 inches

- ~19 inches
- ~19 inches
- ~21 inches

- Cross-section (2)
 - Other arrangements
 - Business jets
 - More freedom
 - Elliptic section
 - A380
 - Non-pressurized cabin
 - Rectangular cross-section

Length

- Seat pitch
 - Economy: ~34 inches
 - ~40 inches • First:
- Toilets
 - Length: ~38 inches
 - >1 per 40 passengers
- Pressurized cabin can extend back in the tail
 - Different seat layouts •
 - Shortens the plane length (reduced weight) •

5

- Length (2)
 - Doors
 - Type I: ~36 inches
 - Type II: ~20 inches
 - Type III & IV: ~18 inches

2013-2014

Aircraft Design – Conceptual Design

Université de Liège

7

FuseLength Method Pilot FwdSpace Seat AftSpace NSeats Length Pitch ⊢ Inputs • N_{seats} , layout, N_F , A_F , Outputs CabinLength NoseLength TailConeLength • Shape $height_{fus} = width_{fus} = H_{ext}$ $length_{fus} = length_{body} + height_{fus} * (A_F + N_F)$ $S_{\rm fus, wetted} \simeq \underline{\text{length}_{\rm body} \text{height}_{\rm fus} \pi} + \pi \, \frac{\text{height}_{\rm fus}^2}{4} \sqrt{1 + 4A_F^2} +$ cylindre \hat{cone} $\frac{\pi \operatorname{height}_{\operatorname{fus}}^2}{4} \left(1 + 2N_F \frac{\operatorname{arcsin} \sqrt{1 - \frac{1}{4N_F^2}}}{\sqrt{1 - \frac{1}{4N_F^2}}} \right)$ 1/2 prolate

8

Airfoils

- Which one?
 - Minimum drag during cruise
 - Depends on Reynolds number R = Uc / v
- Properties
 - Airfoil lift coefficient $c_l = c_{l\alpha} \left[\alpha \alpha_{l_0} \right]$
 - Pitching moment
- tching moment Aerodynamic centre $\left. \frac{\partial c_m}{\partial c_l} \right|_{x_{ac}} = 0$

– Moment around ac ~ constant at low attack angle α

• Airfoils (2)

60AC

- Empirical formula
 - Lift coefficient $c_{l\,\alpha}\simeq 6.1$ (if t/c ~10-20 %)
 - Zero-lift angle of attack (in °)
 - $\alpha_{l_0} = \{-\% \text{cambrure}, -4c_{l_i}, -6c_{l_i}\}$ for {NACA-4, 5, 6} airfoils
 - Design coefficient $c_{l\,i}\simeq 0.4$

- Airfoils (3)
 - Numerical methods
 - Do not predict stall velocities
 - Panda (be careful: if $|c_p| > |c_p^*|$ then the solution is not accurate)
 - http://adg.stanford.edu/aa241/airfoils/panda.html
 - <u>http://www.desktopaero.com/manuals/PandaManual/PandaManual.html</u>
 - xfoil
 - <u>http://web.mit.edu/drela/Public/web/xfoil/</u>
 - Experimental methods
 - Curves on next slides

NACA 0009

Aircraft Design – Conceptual Design

Université de Liège

1.6

12

NACA 0012

2013-2014

Aircraft Design - Conceptual Design

• NACA 1410

14

Université de Liège

• NACA 2415

Université de Liège

1.6

1.2

15

• NACA 64208

2013-2014

Aircraft Design – Conceptual Design

NACA 64209

Aircraft Design – Conceptual Design

• NACA 64₁-012

18

Université de Liège

1.2

• NACA 64₁-112

1.2

• NACA 64₁-212

NACA 64₁-412

- NASA SC(2)-0012 (0.8 Mach supercritical)
 - No experiment close to stall
 - <u>http://ntrs.nasa.gov/search.jsp?N=0</u>

• NASA SC(2)-0714 (0.75 Mach - supercritical)

Aircraft Design - Conceptual Design

24

de Liège

- Geometry (3)
 - Aerodynamic center
 - Position x_{ac} depends on

compressibility effects

$$\beta = \sqrt{1-M^2}$$

• Geometry (4)

- Allow to compute
 - Maximum thickness at s/2

$$\frac{\bar{t}}{c} = \frac{3}{10M} \sqrt[3]{\frac{1}{M\cos\Lambda_{1/4}} - M\cos\Lambda_{1/4}} \left[1 - \left(\frac{5 + M^2\cos^2\Lambda_{1/4}}{5 + (M*)^2}\right)^{3.5} \right]^{\frac{2}{3}}$$

- Divergence is avoided at *M* cruise
- With

$$M* = \{1, 1.05, 1.15\} - \frac{C_L}{4\cos^2 \Lambda_{1/4}}$$

for {normal , peaky, supercritical} airfoils

Geometry (5)

- Allow to compute (2)
 - Fuel volume in the wing

$$V_{\rm fuel} = 0.54 \frac{S^2}{b} \left(\frac{t}{c}\right)_{\rm root} \frac{1 + \lambda\sqrt{\tau} + \lambda^2 \tau}{\left(1 + \lambda\right)^2} \quad \text{with } \tau = \frac{\left(\frac{t}{c}\right)_{\rm tip}}{\left(\frac{t}{c}\right)_{\rm root}}$$

- If too large, use c_{root}, c_{tip}, b & S corresponding to a reduced part of the wing

- Wetted surface
 - Surface in contact with the fluid

$$S_{\text{wetted}\,w} = 2S_{\text{exp}}\left(1 + \frac{1}{4}\frac{(t/c)_{\text{root}} + (t/c)_{\text{tip}}\,\lambda}{1+\lambda}\right)$$

Lift

- Cruise (reduced angle of attack) —
 - Wing lift coefficient

$$C_{Lw} = C_{Lw\alpha} \left[\alpha_{\text{root}} - \alpha_{L_{0_{\text{root}}}} \right] = a \left[\alpha_{\text{root}} - \alpha_{L_{0_{\text{root}}}} \right]$$

 α_{root} : Angle of attack at root of the wing (rad)

- $\alpha_{L_{0_{root}}}$: Angle of attack at root leading to a zero lift of the wing
 - » See next slide
- Slope of wing lift coefficient (rad⁻¹) •

$$\beta = \sqrt{1 - M^2}$$

$$k = \frac{\beta c_{l_{\alpha}}}{2\pi}$$

$$\tan \Lambda_{\beta} = \frac{\tan \Lambda_{1/4}}{\sqrt{1 - M^2}} \qquad \Longrightarrow \qquad \beta a = \frac{2\pi}{\frac{2}{\beta AR} + \sqrt{\left(\frac{1}{k \cos \Lambda_{\beta}}\right)^2 + \left(\frac{2}{\beta AR}\right)^2}}$$

de Liège

m

• Lift (2)

- Cruise (reduced angle of attack) (2)
 - Zero-lift angle of attack at root

$$\alpha_{L_{0_{\text{root}}}} = \alpha_{l_{0_{\text{root}}}} + \alpha_{01} \varepsilon_{a_{\text{tip}}}$$

- Geometrical twist
 - » Example: lofted

$$\varepsilon_g = \varepsilon_{g_{\text{tip}}} \frac{\lambda_s^y}{1 - (1 - \lambda)\frac{y}{s}}$$

– Local aerodynamic twist α_{01}

» $-\alpha_{01}$ see picture

• Lift (3)

- Cruise (reduced angle of attack) (3)
 - Zero-lift angle of attack at root

 $\alpha_{L_{0_{\text{root}}}} = \alpha_{l_{0_{\text{root}}}} + \alpha_{01} \varepsilon_{a_{\text{tip}}}$

- Aerodynamic twist
$$\varepsilon_{a ext{tip}} = \varepsilon_{g_{ ext{tip}}} + \alpha_{l_{0_{ ext{root}}}} - \alpha_{l_{0_{ ext{tip}}}}$$

- » <0 pour un washout
- » Zero-lift angle of attack of the airfoil α_{l0} can change between root and tip if the airfoil has an evolving shape

- Purpose: Stall initiated at ~ 0.4 s

Maximum lift

- Maximum lift coefficient in approach or at takeoff ($M \ll 1$)
 - Curves without high-lift devices

$$C_{L\max} = \cos \Lambda_{1/4} \{ 0.88, \, 0.95 \} \frac{(c_{l\max})_{\text{root}} + (c_{l\max})_{\text{tip}}}{2} \{ \lambda = 1, \lambda \neq 1 \}$$

- Airfoil NACA-4 5 6 digits, see pictures
- Supercritical airfoil with rear loading: 10% larger than NACA-5

- Maximum lift (2)
 - Maximum lift coefficient in approach or at takeoff ($M \ll 1$) (2) _

DOUBLE SLOTTED**

TRIPLE SLOTTED **

PLAIN

FOVLER

SLAT

SLAT

150

20⁰

200

400

50⁰

40°

2.80-3.20

2.00-2.20 2.50-2.90

1.70-1.95 2.30-2.70

2.40-2.70 3.20-3.50

2.30-7.60

MECHANICAL

COMPLEXITY

2.5

∆Cı

2.0

3.0

15

10

- Maximum lift (3)
 - Maximum lift coefficient in approach or at takeoff ($M \ll 1$) (3)
 - With high lift devices (2)
 - Stall (equivalent) velocities $V_{s(0)} =$

$$= \sqrt{\frac{W_{(0)}}{S} \frac{2}{\rho} \frac{1}{1.133C_{L\max(0)}}}$$
Lost of velocity resulting

- V_s : flaps down (out)
- V_{s0} : flaps in approach configuration (weight W_0 at landing)

from a maneuver

HIGH-LIFT DEVICE		TYPICAL FLAP ANGLE		C _L /cosA_25	
TRAILING EDGE	LEADING EDGE	TAKEOFF	LANDING	TAKEOFF	1_ANDING
PLAIN		20"	60°	1.40-1.60	1.70-2.00
SINCLE SLOTTED		20 ⁰	40°	1.50-1.70	1.80-2.20
FOWLER	-	15 ⁰	40 ⁰	2.00-2.20	2.50-2.90
DOUBLE SLOTTED**	-	200	l soº	1.70-1.95	2.30-2.70
	SLAT	[] **		2.30-7.60	2.80-3.20
TRIPLE SLOTTED**	SLAT	200	40°	2.40-2.70	3.20-3.50

34

- Longitudinal balance
 - Lift

•
$$C_L = C_{Lw} + C_{LT} \frac{S_T}{S} \Longrightarrow C_L = (C_{L\alpha})_{\text{plane}} \left(\alpha_f - (\alpha_{L0})_f \right)$$

- Angle of attack of the fuselage α_f
- Zero-lift angle of attack of the fuselage $(\alpha_{L0})_f$

35

Stability

- Longitudinal balance (2)
 - Moment
 - Moment around gravity center

$$C_m = C_{m0} + C_{Lw} \frac{x_{cg} - x_{acw}}{\overline{c}} + C_{mT} - C_{LT} \frac{S_T l_T}{\overline{c}S}$$

• Pitching moment of the wing $C_{m0} = \frac{2}{S \,\overline{\bar{c}}} \int_0^{\frac{v}{2}} c_m c^2 dy$

36
- Trimmed configuration
 - Equations

•
$$C_L = C_{Lw} + C_{LT} \frac{S_T}{S}$$

• $C_m = C_{m0} + C_{Lw} \frac{x_{cg} - x_{acw}}{\overline{c}} + C_{mT} - C_{LT} \frac{S_T l_T}{\overline{c}S}$

At equilibrium (steady flight)

•
$$C_m = 0 \implies C_L = C_{Lw} + C_{LT} \frac{S_T}{S} = C_{Lw} \left(1 + (h - h_0) \frac{\overline{c}}{l_T} \right) + \frac{\overline{c}}{l_T} C_{m0}$$

- Trimmed configuration (2)
 - Angle of incidence of the wing i_w
 - Angle between the fuselage and the root chord
 - In cruise
 - $\alpha_f \sim 0$ so the fuselage is horizontal
 - Lift is known from the weight $C_L (\alpha_f = 0) = C_{L0}$

- Trimmed configuration (3)
 - Angle of incidence of the wing i_w (2)
 - Equations

$$\begin{cases} C_L \left(\alpha_f = 0\right) = C_{L0} \\ C_L = C_{Lw} + C_{LT} \frac{S_T}{S} = C_{Lw} \left(1 + (h - h_0) \frac{\bar{c}}{l_T}\right) + \frac{\bar{c}}{l_T} C_{m0} \\ C_{Lw} = a \left[\alpha_{\text{root}} - \alpha_{L_{0_{\text{root}}}}\right] \\ \alpha_{\text{root}} = \alpha_f + i_w \\ \alpha_{L_{0_{\text{root}}}} = \alpha_{l_{0_{\text{root}}}} + \alpha_{01} \varepsilon_{a \text{tip}} \\ \end{cases}$$

$$\begin{cases} i_w = \frac{C_{Lw}^*}{a} + \alpha_{01} \varepsilon_{a \text{tip}} + (\alpha_{l0})_{\text{root}} \\ C_{Lw}^* = \frac{C_{L0} - \frac{\bar{c}}{l_T} C_{m0}}{1 + (h - h_0) \frac{\bar{c}}{l_T}} \end{cases}$$

- Trimmed configuration (4)
 - Value $\alpha_f = 0$ is obtained for one single value of the lift, so for a given weight
 - But weight changes during flight, as well as the cg location
 - To define i_w , values of $C_{L0} \& x_{cg}$ are taken for
 - 50% of maximum payload
 - 50% of fuel capacity
 - Lift curve of a trimmed aircraft

$$\begin{cases} C_L = C_{Lw} + C_{LT} \frac{S_T}{S} = C_{Lw} \left(1 + (h - h_0) \frac{\overline{c}}{l_T} \right) + \frac{\overline{c}}{l_T} C_{m0} \\ C_L = (C_{L\alpha})_{\text{plane}} \left(\alpha_f - (\alpha_{L0})_f \right) \end{cases}$$

$$\left\{ \begin{aligned} (\alpha_{L0})_f &= -\frac{C_{L0}}{C_{L\alpha \text{plane}}} \\ C_{L\alpha \text{plane}} &= \left(1 + (h - h_0) \, \frac{\bar{c}}{l_T} \right) a \end{aligned} \right.$$

- Stick-fixed neutral point $x_n = h_n \overline{c}$
 - CG position for which ____

$$rac{\partial C_m}{\partial C_{Lw}} = 0$$
 with elevators blocked
blocked, stability requires $rac{\partial C_m}{\partial lpha} < 0$

• When elevators are blocked, stability requires

• As $C_L \sim$ proportional to α , the stability limit is approximated by $\frac{\partial C_m}{\partial C_{Lw}} = 0$

• But as
$$C_m = C_{m0} + C_{Lw} \frac{x_{cg} - x_{acw}}{\overline{\overline{c}}} + C_{mT} - C_{LT} \frac{S_T l_T}{\overline{\overline{c}}S}$$

the stability depends on the cg position

Neutral point is the position of the cg leading to •

$$\frac{\partial C_m}{\partial C_{Lw}} = 0$$

- Stick-fixed neutral point $x_n = h_n \overline{c}$ (2)
 - Definition

• As
$$C_m = C_{m0} + C_{Lw} \frac{x_{cg} - x_{acw}}{\overline{c}} + C_{mT} - C_{LT} \frac{S_T l_T}{\overline{c}S}$$

 $\implies h_n = h_0 + \frac{dC_{LT}}{dC_{Lw}} \frac{l_T S_T}{\overline{c}S}$

But this not correct as fuselage is destabilizing (low momentum but high derivative)

42

Université de Liège

- Stick-fixed neutral point $x_n = h_n \overline{c}$ (3)
 - Definition (2)
 - Fuselage effect

$$C_m = C_{m0} + C_{Lw} \frac{x_{cg} - x_{acw}}{\overline{c}} + C_{mT} - C_{LT} \frac{S_T l_T}{\overline{c}S} + C_{mfus}$$
$$\implies h_n = h_0 + \frac{dC_{LT}}{dC_{Lw}} \frac{l_T S_T}{\overline{c}S} - \frac{dC_{mfus}}{dC_{Lw}}$$

43

Université de Liège

• Stick-fixed neutral point $x_n = h_n \overline{c}$ (4)

- Position
$$h_n = h_0 + \frac{dC_{LT}}{dC_{Lw}} \frac{l_T S_T}{\overline{c}S} - \frac{dC_{m \text{ fus}}}{dC_{Lw}}$$

• Stick-fixed tail lift slope (η , β_{η} constant)

- Tail lift
$$C_{LT} = a_1 \left(\alpha_T - \alpha_{T0} \right) + a_2 \eta + a_3 \beta_\eta$$

- Attack angle of horizontal tail in terms of downwash ε : $\alpha_T = \alpha_{root} - \varepsilon + \eta_T$

with
$$\varepsilon \simeq \frac{d\varepsilon}{d\alpha} \left(\alpha_{\text{root}} - \alpha_{L0 \text{root}} \right)$$

- As $C_{Lw} = a \left(\alpha_{\text{root}} - \alpha_{L0 \text{root}} \right) \Longrightarrow \alpha_T \simeq \frac{C_{Lw}}{a} \left(1 - \frac{d\varepsilon}{d\alpha} \right) + \alpha_{L0 \text{root}} + \eta_T$

• Eventually
$$\left(\frac{dC_{LT}}{dC_{Lw}}\right)^{\text{stick-fixed}} = \frac{a_1}{a} \left(1 - \frac{d\varepsilon}{d\alpha}\right)$$

44 Université Ug

- Stick-fixed neutral point $x_n = h_n \overline{c}$ (5)
 - Downwash _
 - Gradient of downwash resulting from the wing vortex

tail

Université 🛛 🖉 de Liège

- Stick-fixed neutral point $x_n = h_n \overline{c}$ (6)
 - Fuselage effect
 - Empirical method NACA TR711

$m_{\rm fus}$	$k_{ m fus}$
0.1	0.115
0.2	0.172
0.3	0.344
0.4	0.487
0.5	0.688
0.6	0.888
0.7	1.146

• Stability margin

- Stability requires $\frac{\partial C_m}{\partial \alpha} < 0$

- The stability is measured by the stability margin

•
$$K_n = \frac{x_n - x_{cg}}{\overline{\overline{c}}} = h_n - h > 0$$

- FAA requirement
 - Stable enough $\implies K_n > 5\%$
- Enough maneuverability
 - *K_n* <~ 10%
 - If T tail, in order of avoiding deep stall: $10\% < K_n < 20\%$

300 r

• Stability margin (2)

$$-K_n = \frac{x_n - x_{cg}}{\overline{\bar{c}}} = h_n - h > 0$$

- Flight conditions
 - *h*₀ depends on velocity
 - CG location
 - Depends on payload
 - Changes during the flight as fuel is burned
- Whatever the flight condition is K_n should remains > 5%

Stability margin (3)

• Angle of incidence of horizontal tail i_T

$$- \text{ Tail lift should be equal to } C_{LT} = a_1 \left[\frac{C_{Lw}}{a} \left(1 - \frac{d\epsilon}{d\alpha} \right) + \eta_T + \alpha_{L0 \text{ root}} \right] \text{ for}$$

$$\text{trimmed cruise } (\alpha_f = 0) \& \alpha_{T0} = 0, \text{ with } \begin{cases} C_L = C_{L0} = -C_{L\alpha \text{ plane }} (\alpha_{L0})_f \\ C_{Lw} = C_{Lw}^* = \frac{C_{L0} - \frac{\bar{c}}{\bar{l}_T} C_{m0}}{1 + (h - h_0) \frac{\bar{c}}{\bar{l}_T}} \\ C_{LT} = \left[C_{m0} + C_{Lw}^* (h - h_0) \right] \frac{S\bar{c}}{S_T l_T} \end{cases}$$

• Angle of incidence of horizontal tail $i_T(2)$

$$\begin{cases} C_{LT} = a_1 \left[\frac{C_{Lw}}{a} \left(1 - \frac{d\epsilon}{d\alpha} \right) + \eta_T + \alpha_{L0 \text{ root}} \right] \\ i_w = \frac{C_{Lw}^*}{a} + \alpha_{01} \varepsilon_{a \text{tip}} + (\alpha_{l0})_{\text{root}} \\ C_{Lw} = C_{Lw}^* = \frac{C_{L0} - \frac{\bar{c}}{l_T} C_{m0}}{1 + (h - h_0) \frac{\bar{c}}{l_T}} \\ C_{LT} = \left[C_{m0} + C_{Lw}^* \left(h - h_0 \right) \right] \frac{S\bar{c}}{S_T l_T} \end{cases}$$

Equations

- Tail incidence angle

• Generally i_T such that $\alpha_T < \alpha_{root}$

Horizontal tail

Geometry

- Parameters
 - Span $b_T = 2s_T$
 - Aspect ratio $AR_T = b_T^2/S_T \sim 3-6$
 - Taper ratio $\lambda_T = c_{T \text{ tip}} / c_{T \text{ root}} \sim 0.3 0.5$ - Reduced weight
 - Sweep angle $\Lambda_{T1/4}$
 - 5° more than wings in
 - order to avoid shock waves
 - Airfoil: symmetrical, reduced thickness (e.g. NACA0012)
- Design criteria
 - Longitudinal static equilibrium
 - Longitudinal stability
 - Damping for short period & Phugoïd modes
 - Powerful enough to allow maneuvers
 - Rotation at take off
 - Should stall after the wing

Université 🛛 🖉

Outputs

- Proceed as for wings
 - Thickness to remain below critical Mach number
 - Lift coefficient slope as for wing
 - Lift coefficient
 - Should account for wing downwash effect

-
$$C_{LT} = a_1 \left[\frac{C_{Lw}}{a} \left(1 - \frac{d\epsilon}{d\alpha} \right) + \eta_T + \alpha_{L0_{\text{root}}} \right]$$
 if symmetrical airfoil

- Aerodynamic center computed as for wing
- No pitching moment if symmetrical airfoil
- No aerodynamic twist (neglected)

Horizontal tail

Quick design

- Stability depends mainly on $S_T / S \sim 0.2-0.4$
- Maneuverability depends mainly on $\frac{l_T S_T}{\overline{c}S}$ ~ 0.5-1.2
 - Approach velocity $V_a = 1.3 V_{so}$

Fin

Université 🛛 🦉

56

U

• Quick design

- Lateral stability (most severe criterion for engines attached on fuselage)

Fin

• Fuselage effect

$$\begin{cases} C_{N\beta f} = -K_{\beta} \frac{S_{fs} \text{length}_{\text{fus}}}{Sb} \left(\frac{h_{f1}}{h_{f2}}\right)^{\frac{1}{2}} \left(\frac{b_{f2}}{b_{f1}}\right)^{\frac{1}{3}} \\ K_{\beta} = 0.3 \frac{l_{cg}}{\text{length}_{\text{fus}}} + 0.75 \frac{h_{f\max}}{\text{length}_{\text{fus}}} - 0.105 \end{cases}$$

{High, mid, low}-mounted wing effect

Ct
$$C_{N\beta_i} = \{-0.017, 0.012, 0.024\}$$

• Quick design (2)

- Engine failure (most severe criterion for wing-mounted engines)

Fin

- Takeoff configuration (critical as larger thrust)
- Engine thrust ΔT_e at Y_e from fuselage axis
- Maximal rudder deflection $\delta_{r \max} \sim 30^{\circ}$
- Effect of rudder measured by $k_{\delta r}$

58

Université de Liège

• In cruise

- Cruise drag is critical to compute
 - Required thrust
 - Fuel consumption
- Detailed method
 - Compute contribution of each
 aircraft component on
 - Induced drag (due to vortex)
 - Profile drag (friction & pressure)
 - Interference drag
 - » Interaction between components
 - » Account for $C_{Lw} \neq C_L$ during normalization
- Polar of the aircraft
 - Drag can be plotted in term of lift

•
$$C_D = C_{D0} + \frac{C_L^2_{\text{plane}}}{e\pi AR}$$

60 Université de Liège

- In cruise (2)
 - Quick method

•
$$C_D = C_{D0} + \frac{C_L^2_{\text{plane}}}{e\pi AR}$$

• With e and C_{D0} from statistics

0

	с _р	e		
high-subsonic jet				
aircraft	.014020	.7585*		
large turbopropel-				
ler aircraft	.018024	.8085		
twin-engine pis-				
ton aircraft	.022028	.7580		
small single en-				
gine aircraft				
retractable gear	.020030	.7580		
fixed gear	.025040	.6575		
agricultural air-				
craft:				
-spray system re-				
moved	.060	.6575		
-spray system in-				
stalled	.070080	.6575		

* The higher the sweep angle, the lower the e-factor

- Meaningful only if the design is correct
 - A wrong design would lead to higher drag
 - This would not appear with this method

- In cruise (3)
 - Compressibility effect
 - Low if correct wing design
 - Divergence Mach larger than cruise Mach (t/c small enough)
 - In this case, add, to the drag coefficient, the compressibility effect obtained by

 $- \Delta_{\rm comp} C_D = \begin{cases} 0.0005 & \text{long range conditions} \\ 0.002 & \text{high speed conditions} \end{cases}$

20 r

SLATS & FLAPS

RETRACTED

L.πAe/C

UNDERCARRIAGE UP,

- Landing & takeoff
 - Low velocity drag (flaps down) is critical to compute
 - •
 - •

- Landing & takeoff (2)
 - Plane velocity
 - Takeoff & landing safety speed
 - At 35 ft altitude

$$-V_2 = 1.2 V_{s(0)}$$

- Polar

•
$$C_{DV_2} = C_0 + \frac{C_L V_2}{E \pi A R}$$

- Slats out
 - $C_0 = 0.018$
 - *E* =0.7
- Slats in
 - $C_0 = 0.005$
 - *E* =0.61
- *C_L* with high lift devices

HIGH-LIFT DEVICE		TYPICAL FLAP ANGLE		CL /cosh.25		
TRAILING EDGE	LEADING EDGE	TAKEOFF	LANDING	TAKEOFF	LANDING	
PLAIN	-	20 ⁰	60°	1.40-1.60	1.70-2.00	
SINCLE SLOTTED		20 ²⁹	40°	1.50-1.70	1.80-2.20	
FOWLER	-	15 ^{°°}	40 ⁰	2.00-2.20	2.50-2.90	
DOUBLE SLOTTED**	-	0 c	500	1.70-1.95	2.30-2.70	
	SLAT			2.30-7.60	2.80-3.20	
TRIPLE SLOTTED**	SLAT	200	40°	2.40-2.70	3.20-3.50	
		1				

- Takeoff with one engine
 - Corrected polar

•
$$C_{DV_2} = C_0 + \frac{C_L V_2}{E \pi A R}$$

- If low thrust (landing)
 - Reduce *E* by
 - » 4 % for wing-mounted engines
 - » 2 % for engines on the fuselage
- If high thrust (takeoff)
 - Compute explicitly effects of
 - » Wind-milling
 - » Drag due to the rudder

- Takeoff with one engine (2)
 - Method to compute the drag leads to coefficients of the form $C_D S$
 - Has to be divided by the gross wing area S to get back to C_D
 - The terms have to be added to the C_D obtained

with high lift devices out, $C_{DV_2} = C_0 + \frac{C_L V_2}{E \pi A R}$

• 2 parts: wind-millings and rudder

$$(C_D S)_{ef} = (C_D S)_{wm} + (C_D S)_{rud}$$

- Wind-milling
 - $(C_D S)_{wm} \simeq 0.0785 D_{\mathrm{inlet}}^2$

- Takeoff with one engine (3)
 - Rudder
 - Moment due to
 - Thrust unbalance ΔT_e
 - Acting at Y_e from fuselage axis
 - Balanced by rudder load

$$C_{YF} = \frac{\Delta T_e}{qS_F} \frac{Y_e}{l_F}$$

- Leads to a drag
 - Induced part (vortex)

$$(C_D S)_{vrud} = \frac{C_Y F^2 S_F}{\pi A R_F}$$

- Profile part (friction & pressure)

$$(C_D S)_{p_{rud}} = \frac{2.3}{\pi A R_F^{\frac{4}{3}}} \sqrt{S_F S_r} \left(\cos \Lambda_{F\frac{1}{4}} \right)^{\frac{1}{3}} C_Y F^2_F$$

67

Université de Liège

Engine performance

• Data

Engine	SLS thrust (KN)	Cruise thrust (KN)	SLS specific fuel consumption (sfc) (kg/daN.h)	Cruise specific fuel consumption (sfc) (kg/daN.h)	By pass ratio	Diameter (mm)	Length (mm)	Weight (kg)
CF6- 80C2	262.4	46.7	0.356	0.585	5.09	2362	4036	4058
CF34- 3A	41	6.8	0.357	0.718	6.2	1118	2616	737

– Sea Level Static

- M = 0
- Standard atmospheric conditions at sea level
- SLS thrust: *T*_{to} (to is for takeoff)

• Correction for
$$M > 0$$
 $\frac{T}{T}$

$$0 \quad \frac{T}{T_{\rm to}} \simeq 1 - \frac{0.45M \left(1 + \text{BPR}\right)}{\sqrt{1 + 0.75\text{BPR}}} + \left(0.6 + 0.11\text{BPR}\right) M^2$$

- Cruise
 - Standard atmosphere at a given altitude
- Specific Fuel Consumption
 - Fuel consumption
 - Per unit of thrust and
 - Per unit of time

- Component weight can be estimated
 - For conceptual design
 - Based on statistical results of traditional aluminum structures
 - Example: wing

- Structural weight [lbs]
 - Wing with ailerons

$$\begin{split} W_w &= 4.22\,S + 1.642\,10^{-6}\,\frac{n_{\rm ultim}b^3\sqrt{W_{\rm to}{\rm ZFW}(1+2\lambda)}}{\frac{t}{c}\big|_{\rm avg}\cos^2\Lambda\,S\,(1+\lambda)}\\ \text{S: gross area of the wing [ft^2]} & W_{\rm to}: \text{take off weight [lb]}\\ \text{ZFW: zero fuel weight [lb]} & b: \text{span [ft]}\\ \Lambda: \text{ sweep angle of the structural axis}} & \lambda: \text{taper } (c_{\rm tip}/c_{\rm root}),\\ t. \text{ airfoil thickness [ft]} & c: \text{ chord [ft]} \end{split}$$

Horizontal empennage & elevators

$$W_T = 5.25 S_{T \exp} + 0.8 \, 10^{-6} \, \frac{n_{\text{ultim}} b_T^3 W_{\text{to}} \bar{\bar{c}} \sqrt{S_{T \exp}}}{\frac{t_T}{c_T} \Big|_{\text{avg}} \cos^2 \Lambda_T \, l_T \, S_T^{\frac{3}{2}}}$$

 $S_{T \exp}$: exposed empennage area [ft²]

 I_{T} : distance plane CG to empennage CP [ft]

 b_{T} : empennage span [ft]

 c_{τ} : empennage chord [ft]

 $ar{ar{c}}$: average aerodynamic chord of the wing [ft]

- S_T : gross empennage area [ft²]
- t_{T} : empennage airfoil thickness [ft]
- Λ_{T} : sweep angle of empennage structural axis

- Structural weight [lbs] (2)
 - Fin without rudder

$$W_{F'} = 2.62 S_F + 1.5 \, 10^{-5} \, \frac{n_{\text{ultim}} b_F^3 \left(8 + 0.44 \frac{W_{\text{to}}}{S}\right)}{\frac{t_F}{c_F} \Big|_{\text{avg}} \cos^2 \Lambda_F}$$

 $b_{\rm F}$: fin height [ft]

 $c_{\rm F}$: fin chord [ft]

S: gross surface of wing [ft²]

 S_{F} : fin area [ft²] t_{F} : fin airfoil thickness [ft] Λ_{F} : sweep angle of fin structural axis

- Rudder:
$$W_r / S_r \sim 1.6 W_{F'} / S_F$$

- Fuselage
 - Pressure index $I_{\rm p} = 1.5 \, 10^{-3} \, \Delta p_{\rm max} {
 m width}_{
 m fus}$
 - ∠p [lb/ft²] (cabin pressure ~2600m)
 - Bending index

 $I_{\rm b} = 1.91 \, 10^{-4} n_{\rm limit \ at \ ZFW} \left(\text{ZFW} - W_w - W_{\rm wing-mounted \ engines} \right) \frac{\text{length}_{\rm fus}}{\text{height}_{\rm fus}^2}$

• Weight depends on wetted area S_{wetted} [ft²] (area in direct contact with air)

$$W_{\rm fus} = (1.051 + 0.102 I_{\rm fus}) S_{\rm fus, wetted}$$
$$I_{\rm fus} = \begin{cases} I_{\rm p} & \text{if } I_{\rm p} > I_{\rm b} \\ \frac{(I_{\rm p}^2 + I_{\rm b}^2)}{2I_{\rm b}} & \text{if } I_{\rm p} < I_{\rm b} \end{cases}$$

- Structural weight [lbs] (3)
 - Systems
 - Landing gear
 - Hydromechanical system of control surfaces
 - $I_{\rm sc}$ [lb/ft²] : 3.5, 2.5 or 1.7 (fully, partially or not powered)
 - Propulsion
 - T_{to} : Static thrust (M 0) at sea level [lbf], *1lbf ~ 4.4 N
 - Equipment
 - APU
 - Instruments (business, domestic, transatlantic)
 - Hydraulics
 - Electrical
 - Electronics (business, domestic, transatlantic)
 - Furnishing if < 300 seats
 if > 300 seats
 - AC & deicing
 - Payload (W_{payload})
 - Operating items (class dependant)
 - Flight crew
 - Flight attendant
 - Passengers (people and luggage)
 - Definitions
 - ZFW: Sum of these components

 $W_{\text{gear}} = 0.04 W_{\text{to}}$ $W_{\text{SC}} = I_{\text{SC}} (S_{T \exp} + S_F)$

 $W_{\rm prop} = 1.6 W_{\rm eng} \sim 0.6486 \ T_{\rm to}^{-0.9255}$

- $W_{APU} = 7 N_{seats}$ transatlantic) $W_{inst} = 100, 800, 1200$ $W_{inst} = 0.65 S$ $W_{elec} \sim 13 N_{seats}$ transatlantic) $W_{etronic} = 300, 900, 1500$ $W_{furn} \sim (43.7 0.037 N_{seats}) N_{seats} + 46 N_{seats}$ $W_{furn} \sim (43.7 0.037 * 300) N_{seats} + 46 N_{seats}$ $W_{AC} = 15 N_{seats}$
 - $W_{\text{oper}} = [17 40] N_{\text{pass}}$ $W_{\text{crew}} = (190 + 50) N_{\text{crew}}$ $W_{\text{attend}} = (170 + 40) N_{\text{atten}}$ $W_{\text{pax}} = 225 N_{\text{pass}}$
 - $ZFW = \Sigma W_i$

Structural weight

Structural weight [lbs] (4) ٠

Examples —

Aircraft System	CITATION-500	MDAT-30	NDAT-50	¥-28	HDAT-70	DC-9-10	MC-111	DC-9-30	737-200	727-100
Wing System Tail System Body System Alighting Gear System Nacelle System	1,020 288 930 425 241	3,143 1,010 4,276 1,379 948 1,140	4,360 1,193 5,692 1,874 1,294 1,338	7,526 1,477 6,909 2,564 866 988	5,910 1,505 7,118 2,440 1,684 1,702	9,366 2,619 9,452 3,640 1,462 1,478	9,817 2,470 11,274 3,465 1,191 1,788	11,391 2,790 11,118 4,182 1,462 2,190	11,164 2,777 11,920 4,038 1,515 1,721	17,682 4,148 17,589 7,244 2,226 3,052
Propulsion System (less Dry Engine) Plight Controls System (less Auto Pilot) Auxiliary Power System Instrument System Hydraulic and Pneumatic System Electrical System Avionics System (incl. Auto Pilot) Furnishings and Equipment System Air Conditioning System Load and Handling System	196 - 0 76 94 361 321 794 188 101 2	600 343 300 257 617 586 2,657 325 384 20	400 300 300 825 586 3,548 435 448 20	1,404- 320 267 406 953 923 3,535 520 520	805 460 300 345 1,040 586 4,772 550 511 20	1,102 805 490 681 1,631 1,039 6,690 1,016 472 19	1,785 719 504 1,391 1,610 1,368 7,771 1,062 234 9	1,434 817 575 753 1,715 1,108 8,594 1,110 474 57	2,325 855 518 835 2,156 1,100 9,119 1,084 113	2,836 0 723 1,054 2,988 1,844 11,962 1,526 639 15
Empty Weight (less Dry Engine) Dry Engine Weight Empty Weight (M.E.W.) Takeoff Gross Weight	5,377 1,002 	17,985 2,480 20,465 34,480	23,312 3,373 26,685 46,850	29,178 4,327 33,505 62,000	29,748 4,392 34,140 61,000	41,962 6,113 48,075 86,300	46,328 5,434 51,762 99,650	49,770 6,160 55,930 108,000	51,240 6,212 57,452 104,000	75,528 9,322 84,850 161,000

Manufacturer empty weight

• Structural weight [lbs] (5)

- Examples

Aircraft System	727-200	707-320	DC-8-55	DC-8-62	DC-10-10	L-1011	DC-10-40	747	SCAT-15
Wing System	18,529	28,647	34,909	36,247	48,990	47,401	57,748	88,741	83,940
Tall System	4,142	6,004	4,952	4,930	13,657	8,570	14,454	11,958	8,590
Body System	22,415	22,299	22,246	23,704	44,790	49,432	46,522	68,452	54,322
Alighting Gear System	7,948	11,216	11,682	11,449	18,581	19,923	25,085	32,220	28,720
Nacelle System	2,225	3,176	4,644	6,648	8,493	8,916	9,328	10,830	15,650
Propulsion System (less Dry Engine)	3,022	5,306	9,410	7,840	7,673	8,279	13,503	9,605	6,310
Flight Controls System (less Auto Pilot)	2,984	2,139	2,035	2,098	5,120	5,068	5,188	6,886	10,777
Auxiliary Power Plant System	849	0	0	0	1,589	1,202	1,592	1,797	~-
Instrument System	827	550	1,002	916	1,349	1,016	1,645	1,486	3,400
Hydraulic and Pneumatic Group	1,147	1,557	2,250	1,744	4,150	4,401	4,346	5,067	10,670
Electrical System	2,844	3,944	2,414	2,752	5,366	5,490	5,293	5,305	6,002
Avionics System (incl. Auto Pilot)	1,896	1,815	1,870	2,058	2,827	2,801	3,186	4,134	4,178
Furnishings and Equipment System	14,702	16,875	15,884	15,340	38,072	32,829	33,114	48,007	20,615
Air Conditioning System	1,802	1,602	2,388	2,296	2,386	3,344	2,527	3,634	2,820
Anti-icing System	666	626	794	673	416	296	555	413	210
Load and Handling System	19		55	54	62		62	228.	
								-896	
Empty Meight (less Dry Engine)	86.017	105 756	116 535	118 749	203 521	198 968	224 148	297 867	256 204
Dry Engine Weight	9.678	19,420	16,936	17,316	23,229	30,046	25.587	35,700	45 020
bij engine neight	1,010	1.1,120	10,000			30,040	10,007	33,700	45,010
Empty Weight (M.E.W.)	95,695	125,176	133,471	136,065	226,750	229,014	249,735	333,567	301,224
Takeoff Gross Weight	175,000	312,000	325,000	335,000	430,000	430,000	565,000	775,000	631,000

Manufacturer ¹ empty weight

CG locations

- Wing: 30% chord at wing MAC
- Horizontal tail: 30% chord at 35% semi-span
- Fin: 30% chord at 35% of vertical height
- Surface controls: 40% chord on wing MAC
- Fuselage: 45% of fuselage length
- Main gear: located sufficiently aft of aft c.g. to permit 5% 8% of load on nose gear
- Hydraulics: 75% at wing c.g., 25% at tail c.g.
- AC / deicing: End of fuse nose section
- Propulsion: 50% of nacelle length for each engine
- Electrical: 75% at fuselage center, 25% at propulsion c.g.
- Electronics and Instruments: 40% of nose section
- APU: Varies
- Furnishings, passengers, baggage, cargo, operating items, flight attendants: From layout. Near 51% of fuselage length
- Crew: 45% of nose length
- Fuel: Compute from tank layout

Fuel weight

Fuel weight

- For a given mission (2)
 - Cruise
 - Bréguet equation

$$R_{\rm cruise} = \int_{W_i}^{W_i - W_{\rm cruise}} V dt = -\int_{W_i}^{W_i - W_{\rm cruise}} \frac{V}{C_T T} dW = -\int_{W_i}^{W_i - W_{\rm cruise}} \frac{VL}{C_T DW} dW$$

- Specific Fuel Consumption C_T
 - » Consumption (of all the engines) per unit of thrust (of all the engines) per unit of time
- Initial weight $W_i = W_{to} W_{taxi} W_{climb}$
- Final weight $W_i W_{\text{cruise}} = \text{ZFW} + W_{\text{land}} + W_{\text{res}}$
- Flight with ratio $C_D / C_L \sim \text{constant}$

- Fuel weight (without reserve) $W_{\rm f} = W_{\rm taxi} + W_{\rm climb} + W_{\rm cruise} + W_{\rm land}$

Université de Liège

77

78

Université de Liège

- Maximum range depends on the payload
 - 3 zones: Max Payload, M.T.O.W. (structural), fuel capacity

- Maximum range depends on the payload (2)
 - First step: add required fuel for the range at maximum payload

79

- Maximum range depends on the payload (3)
 - Second step: Threshold resulting from the maximum allowed TOW

de Liège

• Maximum range depends on the payload (4)

Aircraft Design - Conceptual Design

Maximum range depends on the payload (5)

82 Université de Liège

Undercarriage

• Takeoff

2013-2014

Aircraft Design – Conceptual Design

Université de Liège

Angles at takeoff

- Only the wheels can be in contact with the ground
 - Plane geometry leads to maximum values of
 - Pitch angle θ
 - Roll angle φ

Undercarriage

86

Université Ug

Undercarriage

- Angles at takeoff (3)
 - Pitch angle at takeoff

Landing

- Impact point of rear wheels behind projection of cg on the ground
 - If not, the plane would fall backward
 - Touchdown angle: $\theta_{TD} \sim \theta_{LOF}$
 - Distance l_m between cg and rear wheels

 $l_m \ge (|z_{cg}| + e_s) \tan \theta_{TD}$

- e_s : static deflection of shock absorber
- z_{CG} : distance from cg to the ground
- Front wheels
 - About 8 to 15% of MTOW supported by front wheels
 - Lower than 8%: direction is not effective
 - More than 15%: difficulties at breaking
 - Now new devices are allowing to get more than 15%
 - CG location can change with the payload

Université 🚺 🖉

Design steps

- Reference of the classes
 - Aircraft Design: Synthesis and Analysis, Ilan Kroo, Stanford University, <u>http://adg.stanford.edu/aa241/AircraftDesign.html</u>
- Other
 - Book
 - Synthesis of Subsonic Airplane Design, Egbert Torenbeek, Delft University Press, Kluwer Academic Publishers, The Netherlands, ISBN 90-246-2724-3, 1982.

