Aircraft Design
Conceptual Design

Ludovic Noels

Computational & Multiscale Mechanics of Materials – CM3
http://www.ltas-cm3.ulg.ac.be/
Chemin des Chevreuils 1, B4000 Liège
L.Noels@ulg.ac.be
Goals of the classes

• Design stages
 – **Conceptual design**
 • Purposes
 – Define the general configuration (tail or canard, high or low wing, …)
 – Analyze the existing technologies
 – Estimate performances for the different flight stages
 – Accurate estimation of the total weight, fuel weight, engine thrust, lifting surfaces, …
 • How
 – Limited number of variables (tens): span, airfoil profile, …
 – Accurate simple formula & abacuses
 – Preliminary study
 • Higher number of variables (hundreds)
 • Starting point: conceptual design
 • Numerical simulations
 – Detailed study
 • Each component is studied in details
Fuselage

- **Cross-section**
 - Seat width
 - Economy: ~20 inches*

 *1 inch = 2.54 cm
 - Business: ~24 inches
 - First: ~26.5 inches
 - Aisle width
 - Economy: ~19 inches
 - Business: ~19 inches
 - First: ~21 inches
 - Fuselage thickness
 - ~4% of H_{int}
Fuselage

- Cross-section (2)
 - Other arrangements
 - Business jets
 - More freedom
 - Elliptic section
 - A380
 - Non-pressurized cabin
 - Rectangular cross-section
Fuselage

- **Length**
 - Seat pitch
 - Economy: ~34 inches
 - First: ~40 inches
 - Toilets
 - Length: ~38 inches
 - >1 per 40 passengers
 - Pressurized cabin can extend back in the tail
 - Different seat layouts
 - Shortens the plane length (reduced weight)

187 passengers (12 first class, 35 business class, 140 economy class)
Fuselage

- **Length (2)**
 - **Doors**
 - Type I: ~36 inches
 - Type II: ~20 inches
 - Type III & IV: ~18 inches
Fuselage

- **Length (3)**
 - Ratio nose length/diameter N_F
 - >1.5 due to pressurization
 - Large enough to avoid divergence
 - Ratio tail length/diameter A_F
 - $\sim 1.8-2$
 - Closure angle $\sim 28-30^\circ$
 - Upsweep $\sim 14^\circ$: rotation during take off

 ![Boeing 777](image)

 - Part of the tail can be pressurized and used for the payload

 ![187 passengers](image)
Fuselage

- **Method**
 - **Inputs**
 - N_{seats}, layout, N_F, A_F,
 - **Outputs**
 - **Shape**

\[
\begin{align*}
\text{height}_{\text{fus}} &= \text{width}_{\text{fus}} = H_{\text{ext}} \\
\text{length}_{\text{fus}} &= \text{length}_{\text{body}} + \text{height}_{\text{fus}} \times (A_F + N_F) \\
S_{\text{fus,wetted}} &\approx \text{length}_{\text{body}} \text{height}_{\text{fus}} \pi + \pi \frac{\text{height}_{\text{fus}}^2}{4} \sqrt{1 + 4A_F^2} + \frac{\pi \text{height}_{\text{fus}}^2}{4} \left(1 + 2N_F \frac{\arcsin \sqrt{1 - \frac{1}{4N_F^2}}}{\sqrt{1 - \frac{1}{4N_F^2}}} \right) \end{align*}
\]

1/2 prolate
Wing

- **Airfoils**
 - Which one?
 - Minimum drag during cruise
 - Depends on Reynolds number $R = \frac{Uc}{\nu}$
 - Properties
 - Airfoil lift coefficient $c_l = c_{l\alpha} [\alpha - \alpha_{l0}]$
 - Pitching moment
 - Aerodynamic centre
 \[\frac{\partial c_m}{\partial c_l} \bigg|_{\alpha_{ac}} = 0 \]
 - Moment around $ac \sim$ constant at low attack angle α

2013-2014 Aircraft Design – Conceptual Design
Wing

- **Airfoils (2)**
 - Empirical formula
 - Lift coefficient: \(c_{l\alpha} \approx 6.1 \) (if \(t/c \sim 10-20\% \))
 - Zero-lift angle of attack (in °):
 \[\alpha_{l0} = \{-\% cambrure, -4c_{Li}, -6c_{Li} \} \]
 for \{NACA-4, 5, 6\} airfoils
 - Design coefficient: \(c_{Li} \approx 0.4 \)
 - Moment (low \(\alpha \)):
 \[c_m \approx -\pi \frac{c_{\text{max}}}{c} \]
• **Airfoils (3)**

 – **Numerical methods**

 • Do not predict stall velocities

 • Panda (be careful: if \(|c_p| > |c_p^*|\) then the solution is not accurate)

 • xfoil

 – **Experimental methods**

 • Curves on next slides

2013-2014 Aircraft Design – Conceptual Design 11
Wing

- NACA 0009
Wing

• **NACA 0012**
Wing

- **NACA 1410**
Wing

- NACA 2415
- **NACA 64208**

![Graphs showing lift and moment coefficients against section angle of attack and lift coefficient.](image)
- NACA 64209
Wing

- NACA 641-012
Wing

- NACA 64₁-112
• NACA 64\textsubscript{1}-212
• NACA 64₁-412
• NASA SC(2)-0012 (0.8 Mach - supercritical)
 – No experiment close to stall
 – http://ntrs.nasa.gov/search.jsp?N=0
Wing

- NASA SC(2)-0714 (0.75 Mach - supercritical)
Wing

- **Geometry**
 - **Main parameters**
 - Span \(b = 2s \)
 - Aspect ratio \(AR = \frac{b^2}{S} \sim 7-9 \)
 - Total (gross) area \(S \)
 - Taper ratio \(\lambda = \frac{c_{tip}}{c_{root}} \)
 - Quarter chord sweep \(A_{1/4} \)
 \[
 \tan \Lambda_{e2} = \tan \Lambda_{e1} + \frac{4}{AR} \frac{1 - \lambda}{1 + \lambda} (\varepsilon_1 - \varepsilon_2)
 \]
 - Geometrical twist \(\varepsilon_{g\,\text{tip}} \)
Wing

- **Geometry (2)**
 - Aerodynamic center

\[
\text{MAC} = \bar{c} = \frac{2}{S} \int_{0}^{\frac{b}{2}} c^2 \, dy
\]

\[
y_{ac} = \frac{2}{S} \int_{0}^{\frac{b}{2}} c \, y \, dy
\]
Wing

• Geometry (3)
 – Aerodynamic center
 • Position x_{ac} depends on compressibility effects

 $$\beta = \sqrt{1 - M^2}$$

 ![Diagram showing wing geometry and aerodynamic center position](image)

 - $\beta AR = 10$
 - $\beta AR = 8$
 - $\beta AR = 6$
 - $\beta AR = 4$
 - $\beta AR = 2$
• **Geometry (4)**

 – Allow to compute

 • Maximum thickness at \(s/2 \)

 \[
 \frac{\bar{t}}{c} = \frac{3}{10M} \sqrt[3]{\frac{1}{M \cos \Lambda_{1/4}}} - M \cos \Lambda_{1/4} \left[1 - \left(\frac{5 + M^2 \cos^2 \Lambda_{1/4}}{5 + (M^*)^2} \right)^{3.5} \right]^{\frac{2}{3}}
 \]

 – Divergence is avoided at \(M \) cruise

 – With

 \[
 M^* = \{1, 1.05, 1.15\} - \frac{C'_L}{4 \cos^2 \Lambda_{1/4}}
 \]

 for \{normal, peaky, supercritical\} airfoils
Wing

• Geometry (5)
 – Allow to compute (2)
 • Fuel volume in the wing
 \[V_{\text{fuel}} = 0.54 \frac{S^2}{b} \left(\frac{t}{c} \right)_{\text{root}} \frac{1 + \lambda \sqrt{\tau} + \lambda^2 \tau}{(1 + \lambda)^2} \quad \text{with} \quad \tau = \frac{(t/c)_{\text{tip}}}{(t/c)_{\text{root}}} \]
 – If too large, use \(c_{\text{root}}, c_{\text{tip}}, b \) & \(S \) corresponding to a reduced part of the wing

• Wetted surface
 – Surface in contact with the fluid
 \[S_{\text{wetted}} = 2S_{\text{exp}} \left(1 + \frac{1}{4} \left(\frac{t/c}{c_{\text{root}}} + \frac{t/c}{c_{\text{tip}} \lambda} \right) \right) \]
Wing

- **Lift**
 - Cruise (reduced angle of attack)
 - Wing lift coefficient
 \[C_{Lw} = C_{Lw\alpha} \left[\alpha_{\text{root}} - \alpha_{L0_{\text{root}}} \right] = a \left[\alpha_{\text{root}} - \alpha_{L0_{\text{root}}} \right] \]
 - \(\alpha_{\text{root}} \): Angle of attack at root of the wing (rad)
 - \(\alpha_{L0_{\text{root}}} \): Angle of attack at root leading to a zero lift of the wing
 » See next slide
 - Slope of wing lift coefficient \((\text{rad}^{-1})\)

\[
\beta = \sqrt{1 - M^2} \\
k = \frac{\beta c_{l\alpha}}{2\pi} \\
\tan \Lambda_{\beta} = \frac{\tan \Lambda_{1/4}}{\sqrt{1 - M^2}}
\]

\[
\beta a = \frac{2}{\beta AR} + \sqrt{\left(\frac{1}{k \cos \Lambda_{\beta}} \right)^2 + \left(\frac{2}{\beta AR} \right)^2}
\]
Wing

• Lift (2)
 – Cruise (reduced angle of attack) (2)
 • Zero-lift angle of attack at root
 \[\alpha_{L_{0\text{root}}} = \alpha_{l_{0\text{root}}} + \alpha_{01} \varepsilon_{atip} \]
 – Geometrical twist
 » Example: lofted
 \[\varepsilon_{g} = \varepsilon_{g_{\text{tip}}} \frac{\lambda \frac{y}{s}}{1 - (1 - \lambda) \frac{y}{s}} \]
 – Local aerodynamic twist \(\alpha_{01} \)
 » \(-\alpha_{01}\) see picture
Wing

- **Lift (3)**
 - Cruise (reduced angle of attack) (3)
 - Zero-lift angle of attack at root
 \[\alpha_{L0_{\text{root}}} = \alpha_{l0_{\text{root}}} + \alpha_{01}\varepsilon_{a_{\text{tip}}} \]
 - Aerodynamic twist \[\varepsilon_{a_{\text{tip}}} = \varepsilon_{g_{\text{tip}}} + \alpha_{l0_{\text{root}}} - \alpha_{l0_{\text{tip}}} \]
 - <0 pour un washout
 - Zero-lift angle of attack of the airfoil \(\alpha_{l0} \) can change between root and tip if the airfoil has an evolving shape
 - Purpose: Stall initiated at \(\sim 0.4 \) s
• **Maximum lift**
 - Maximum lift coefficient in approach or at takeoff ($M << 1$)
 - Curves without high-lift devices
 \[
 C_{L_{\text{max}}} = \cos \Theta_{1/4} \left\{ 0.88, 0.95 \right\} \frac{(C_{l_{\text{max}}})_{\text{root}} + (C_{l_{\text{max}}})_{\text{tip}}}{2} \quad \{ \lambda = 1, \lambda \neq 1 \}
 \]
 - Airfoil NACA-4 5 6 digits, see pictures
 - Supercritical airfoil with rear loading: 10% larger than NACA-5
Wing

- **Maximum lift (2)**
 - Maximum lift coefficient in approach or at takeoff \(M \ll 1 \) (2)
 - With high lift devices
 - Device & angle depend on
 - Approach
 - Landing
 - Takeoff (drag has to be reduced)

Table: High-Lift Device Parameters

<table>
<thead>
<tr>
<th>HIGH-LIFT DEVICE</th>
<th>TYPICAL FLAP ANGLE</th>
<th>(\frac{C_{l_{max}}}{\cos \alpha} \times 0.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAILING EDGE</td>
<td>LEADING EDGE</td>
<td>TAKEOFF</td>
</tr>
<tr>
<td>PLAIN</td>
<td>-</td>
<td>20°</td>
</tr>
<tr>
<td>SINGLE SLOTTED</td>
<td>-</td>
<td>20°</td>
</tr>
<tr>
<td>FOWLER*</td>
<td>-</td>
<td>15°</td>
</tr>
<tr>
<td>DOUBLE SLOTTED**</td>
<td>-</td>
<td>20°</td>
</tr>
<tr>
<td>TRIPLE SLOTTED**</td>
<td>SLAT</td>
<td>20°</td>
</tr>
<tr>
<td></td>
<td>SLAT</td>
<td>20°</td>
</tr>
</tbody>
</table>
Wing

- Maximum lift (3)
 - Maximum lift coefficient in approach or at takeoff ($M << 1$) (3)
 - With high lift devices (2)
 - Stall (equivalent) velocities
 $$V_s(0) = \sqrt{\frac{W(0)}{S} \frac{2}{\rho} \frac{1}{1.133C_{L_{\max}}(0)}}$$
 - V_s: flaps down (out)
 - V_{s0}: flaps in approach configuration (weight W_0 at landing)

Table: High-Lift Devices and Typical Flap Angles

<table>
<thead>
<tr>
<th>HIGH-LIFT DEVICE</th>
<th>TYPICAL FLAP ANGLE</th>
<th>$C_{L_{\max}} / \cos \alpha_{25}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LEADING EDGE</td>
<td>TAKEOFF</td>
</tr>
<tr>
<td>TRAILING EDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAIN</td>
<td>-</td>
<td>20°</td>
</tr>
<tr>
<td>SINGLE SLOTTED</td>
<td>-</td>
<td>20°</td>
</tr>
<tr>
<td>FOWLER*</td>
<td>-</td>
<td>15°</td>
</tr>
<tr>
<td>DOUBLE SLOTTED**</td>
<td>-</td>
<td>20°</td>
</tr>
<tr>
<td></td>
<td>SLAT</td>
<td></td>
</tr>
<tr>
<td>TRIPLE SLOTTED**</td>
<td>SLAT</td>
<td>20°</td>
</tr>
</tbody>
</table>

Lost of velocity resulting from a maneuver
Stability

- **Longitudinal balance**

 - Lift

 \[C_L = C_{Lw} + C_{LT} \frac{S_T}{S} \quad \Rightarrow \quad C_L = (C_{L\alpha})_{plane} \left(\alpha_f - (\alpha_{L0})_f \right) \]

 - Angle of attack of the fuselage \(\alpha_f \)
 - Zero-lift angle of attack of the fuselage \((\alpha_{L0})_f \)
Stability

- **Longitudinal balance (2)**
 - Moment
 - Moment around gravity center
 \[
 C_m = C_{m0} + C_{L_w} \frac{x_{cg} - x_{acw}}{\bar{c}} + C_{mT} - C_{LT} \frac{S_T l_T}{\bar{c}S}
 \]
 - Pitching moment of the wing
 \[
 C_{m0} = \frac{2}{S \bar{c}} \int_0^{\frac{\alpha}{2}} c_m c^2 dy
 \]
 Zero for symmetrical airfoils
Stability

• Trimmed configuration
 – Equations

 \[C_L = C_{Lw} + C_{LT} \frac{S_T}{S} \]

 \[C_m = C_{m0} + C_{Lw} \frac{x_{cg} - x_{acw}}{\bar{c}} + C_{MT} - C_{LT} \frac{S_T l_T}{\bar{c} S} \]

 – At equilibrium (steady flight)

 \[C_m = 0 \quad \Rightarrow \quad C_L = C_{Lw} + C_{LT} \frac{S_T}{S} = C_{Lw} \left(1 + (h - h_0) \frac{\bar{c}}{l_T} \right) + \frac{\bar{c}}{l_T} C_{m0} \]
Stability

- **Trimmed configuration (2)**
 - Angle of incidence of the wing i_w
 - Angle between the fuselage and the root chord
 - In cruise
 - $\alpha_f \approx 0$ so the fuselage is horizontal
 - Lift is known from the weight $C_L (\alpha_f = 0) = C_{L0}$
Stability

- **Trimmed configuration (3)**
 - Angle of incidence of the wing i_w (2)

- **Equations**

\[
\begin{align*}
C_L (\alpha_f = 0) &= C_{L0} \\
C_L &= C_{Lw} + C_{LT} \frac{S_T}{S} = C_{Lw} \left(1 + (h - h_0) \frac{\bar{c}}{l_T} \right) + \frac{\bar{c}}{l_T} C_{m0} \\
C_{Lw} &= a \left[\alpha_{\text{root}} - \alpha_{L0,\text{root}} \right] \\
\alpha_{\text{root}} &= \alpha_f + i_w \\
\alpha_{L0,\text{root}} &= \alpha_{l0,\text{root}} + \alpha_{01} \varepsilon_{a \text{tip}} \\
i_w &= \frac{C_{Lw}^*}{a} + \alpha_{01} \varepsilon_{a \text{tip}} + (\alpha_{l0})_{\text{root}} \\
C_{Lw}^* &= \frac{C_{L0} - \frac{\bar{c}}{l_T} C_{m0}}{1 + (h - h_0) \frac{\bar{c}}{l_T}}
\end{align*}
\]
Stability

- Trimmed configuration (4)
 - Value $\alpha_f = 0$ is obtained for one single value of the lift, so for a given weight
 - But weight changes during flight, as well as the cg location
 - To define i_w, values of C_{L0} & x_{cg} are taken for
 - 50% of maximum payload
 - 50% of fuel capacity
 - Lift curve of a trimmed aircraft

\[
\begin{align*}
C_L &= C_{Lw} + C_{LT} \frac{S_T}{S} = C_{Lw} \left(1 + (h - h_0) \frac{\bar{c}}{l_T} \right) + \frac{\bar{c}}{l_T} C_{m0} \\
C_L &= (C_{L\alpha})_{plane} \left(\alpha_f - (\alpha_{L0})_f \right) \\
\frac{(\alpha_{L0})_f}{C_{L\alpha_{plane}}} &= - \frac{C_{L0}}{C_{L\alpha_{plane}}} \\
C_{L\alpha_{plane}} &= \left(1 + (h - h_0) \frac{\bar{c}}{l_T} \right) a
\end{align*}
\]
Stability

• **Stick-fixed neutral point** \(x_n = h_n \bar{c} \)
 - CG position for which \(\frac{\partial C_m}{\partial C_{Lw}} = 0 \) with elevators blocked

• When elevators are blocked, stability requires \(\frac{\partial C_m}{\partial \alpha} < 0 \)

• As \(C_L \sim \text{proportional to } \alpha \), the stability limit is approximated by \(\frac{\partial C_m}{\partial C_{Lw}} = 0 \)

• But as \(C_m = C_{m0} + C_{Lw} \frac{x_{cg} - x_{acw}}{\bar{c}} + C_{mT} - C_{LT} \frac{S_T l_T}{\bar{c} S} \)

 the stability depends on the cg position

• Neutral point is the position of the cg leading to \(\frac{\partial C_m}{\partial C_{Lw}} = 0 \)
Stability

- **Stick-fixed neutral point** \(x_n = h_n \bar{c} \) (2)

 - **Definition**

 - As
 \[
 C_m = C_{m0} + C_{Lw} \frac{x_{cg} - x_{acw}}{\bar{c}} + C_{mT} - C_{LT} \frac{S_T l_T}{\bar{c}S}
 \]

 \[
 h_n = h_0 + \frac{dC_{LT}}{dC_{Lw}} \frac{l_T S_T}{\bar{c}S}
 \]

 - But this not correct as fuselage is destabilizing (low momentum but high derivative)
Stability

- **Stick-fixed neutral point** \(x_n = h_n \bar{c} \) (3)
 - Definition (2)
 - Fuselage effect

\[
C_m = C_{m0} + C_{Lw} \frac{x_{cg} - x_{acw}}{\bar{c}} + C_{mT} - C_{LT} \frac{S_T l_T}{\bar{c} S} + C_{m_{fus}}
\]

\[
h_n = h_0 + \frac{dC_{LT}}{dC_{Lw}} \frac{l_T S_T}{\bar{c} S} - \frac{dC_{m_{fus}}}{dC_{Lw}}
\]
Stability

- **Stick-fixed neutral point** \(x_n = h_n \bar{c} \)

 - Position \(h_n = h_0 + \frac{dC_{LT}}{dC_{Lw}} l_T S_T - \frac{dC_{m_{fus}}}{dC_{Lw}} \)

- **Stick-fixed tail lift slope** \((\eta, \beta_\eta \text{ constant})\)

- **Tail lift** \(C_{LT} = a_1 (\alpha_T - \alpha_{T0}) + a_2 \eta + a_3 \beta_\eta \)

- **Attack angle of horizontal tail in terms of downwash** \(\varepsilon\): \(\alpha_T = \alpha_{\text{root}} - \varepsilon + \eta_T \)

 with \(\varepsilon \approx \frac{d\varepsilon}{d\alpha} (\alpha_{\text{root}} - \alpha_{L0\text{root}}) \)

- **As** \(C_{Lw} = a (\alpha_{\text{root}} - \alpha_{L0\text{root}}) \Rightarrow \alpha_T \approx \frac{C_{Lw}}{a} \left(1 - \frac{d\varepsilon}{d\alpha}\right) + \alpha_{L0\text{root}} + \eta_T \)

- **Eventually** \(\left(\frac{dC_{LT}}{dC_{Lw}}\right)^{\text{stick-fixed}} = \frac{a_1}{a} \left(1 - \frac{d\varepsilon}{d\alpha}\right) \)
Stability

- **Stick-fixed neutral point** \(x_n = h_n \bar{c} \) \((5) \)

 - **Downwash**

 - **Gradient of downwash resulting from the wing vortex**

 \[
 \frac{\partial \varepsilon}{\partial \alpha} = 1.75 \frac{a}{\pi AR \left(\frac{2\lambda l_t}{b} \right)^{\frac{1}{4}} (1 + |m|)}
 \]

 \(l_t = rb/2 \)

 \(l_t = \) distance between ac of wing and ac of horizontal tail
Stability

- Stick-fixed neutral point \(x_n = h_n \bar{c} \) (6)
- Fuselage effect
 - Empirical method NACA TR711

\[
\frac{dC_{m_fus}}{dC_{Lw}} = \frac{k_{fus width_fus}^2 length_fus}{S \bar{c} a}
\]

<table>
<thead>
<tr>
<th>(m_{fus})</th>
<th>(k_{fus})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.115</td>
</tr>
<tr>
<td>0.2</td>
<td>0.172</td>
</tr>
<tr>
<td>0.3</td>
<td>0.344</td>
</tr>
<tr>
<td>0.4</td>
<td>0.487</td>
</tr>
<tr>
<td>0.5</td>
<td>0.688</td>
</tr>
<tr>
<td>0.6</td>
<td>0.888</td>
</tr>
<tr>
<td>0.7</td>
<td>1.146</td>
</tr>
</tbody>
</table>
Stability

- Stability margin
 - Stability requires \(\frac{\partial C_m}{\partial \alpha} < 0 \)
 - The stability is measured by the stability margin
 \[K_n = \frac{x_n - x_{cg}}{c} = h_n - h > 0 \]
 - FAA requirement
 - Stable enough \(\iff \) \(K_n > 5\% \)
 - Enough maneuverability
 - \(K_n <~ 10\% \)
 - If T tail, in order of avoiding deep stall: \(10\% <~ K_n < 20\% \)
Stability

- Stability margin (2)
 - \[K_n = \frac{x_n - x_{cg}}{c} = h_n - h > 0 \]
 - Flight conditions
 - \(h_0 \) depends on velocity
 - CG location
 - Depends on payload
 - Changes during the flight as fuel is burned
 - Whatever the flight condition is \(K_n \) should remains > 5%
Stability

- **Stability margin (3)**

 \[K_n = \frac{x_n - x_{cg}}{c} = h_n - h > 0 \]

- In general during cruise
 - CG close to 0.25 \bar{c}
 - Allows reducing the drag due to the tail
 - Tail can act in negative lift (can reach 5% of the weight)
Stability

• Angle of incidence of horizontal tail i_T

 - Tail lift should be equal to $C_{LT} = a_1 \left[\frac{C_L}{a} \left(1 - \frac{d\varepsilon}{d\alpha}\right) + \eta_T + \alpha_{L0root}\right]$ for trimmed cruise ($\alpha_f = 0$) & $\alpha_{T0} = 0$, with

\[
\begin{align*}
C_L &= C_{L0} = -C_{L\alpha\text{plane}}(\alpha_{L0})_f \\
C_{Lw} &= C_{Lw}^* = \frac{C_{L0} - \frac{\bar{c}}{l_T} C_{m0}}{1 + (h - h_0) \frac{\bar{c}}{l_T}} \\
C_{LT} &= [C_{m0} + C_{Lw}^* (h - h_0)] \frac{S\bar{c}}{S_T l_T}
\end{align*}
\]
Stability

• Angle of incidence of horizontal tail \(i_T \) (2)

\[
C_{LT} = a_1 \left[\frac{C_{Lw}}{a} \left(1 - \frac{d \varepsilon}{d \alpha} \right) + \eta_T + \alpha_{L0\text{root}} \right]
\]

\[
i_w = \frac{C_{Lw}^*}{a} + \alpha_{01} \varepsilon_{atip} + (\alpha_{t0})_{\text{root}}
\]

\[
C_{Lw} = C_{Lw}^* = \frac{C_{L0} - \frac{c}{l_T} C_{m0}}{1 + (h - h_0) \frac{c}{l_T}}
\]

\[
C_{LT} = \left[C_{m0} + C_{Lw}^* (h - h_0) \right] \frac{S \bar{c}}{S_T l_T}
\]

- Equations

- Tail incidence angle

 • From \(\eta_T \)

\[
\eta_T = i_T - i_w = i_T - \frac{C_{Lw}^*}{a} - \alpha_{L0\text{root}}
\]

\[
i_T = \frac{C_{m0} + C_{Lw}^* (h - h_0)}{a_1 \frac{S_T l_T}{S \bar{c}}} + \frac{d \varepsilon}{d \alpha} C_{Lw}^*
\]

- Generally \(i_T \) such that \(\alpha_T < \alpha_{\text{root}} \)
Horizontal tail

- **Geometry**
 - Parameters
 - Span \(b_T = 2s_T \)
 - Aspect ratio \(AR_T = b_T^2/S_T \approx 3-6 \)
 - Taper ratio \(\lambda_T = c_{T \text{tip}}/c_{T \text{root}} \approx 0.3-0.5 \)
 - Reduced weight
 - Sweep angle \(\Lambda_{T1/4} \)
 - 5° more than wings in order to avoid shock waves
 - Airfoil: symmetrical, reduced thickness (e.g. NACA0012)
 - Design criteria
 - Longitudinal static equilibrium
 - Longitudinal stability
 - Damping for short period & Phugoïd modes
 - Powerful enough to allow maneuvers
 - Rotation at take off
 - Should stall after the wing
Horizontal tail

- **Outputs**
 - Proceed as for wings
 - Thickness to remain below critical Mach number
 - Lift coefficient slope as for wing
 - Lift coefficient
 - Should account for wing downwash effect

\[
C_{LT} = a_1 \left[\frac{C_{Lw}}{a} \left(1 - \frac{d\epsilon}{d\alpha} \right) + \eta T + \alpha L_{0\text{root}} \right]
\]

 - if symmetrical airfoil

- Aerodynamic center computed as for wing
- No pitching moment if symmetrical airfoil
- No aerodynamic twist (neglected)
• **Quick design**

 − Stability depends mainly on $S_T/S \sim 0.2-0.4$
 − Maneuverability depends mainly on $\frac{l_T S_T}{c S} \sim 0.5-1.2$

• Approach velocity $V_a = 1.3 V_{so}$
• Geometry
 – Parameters
 • Span b_F
 • Aspect ratio $AR_F = b_F^2/S_F$
 – ~ 0.7
 – For T tail ~ 2
 • Taper ratio $\lambda_F = c_{F_{\text{tip}}} / c_{F_{\text{root}}}$
 • Sweep angle $\Lambda_{F_{1/4}} : 30$ to 40°
 – Airfoil
 – Symmetrical
 – Low thickness (e.g. NACA0012)
 – No twist
 • Distance between cg and fin ac l_F
 – Design criteria
 • No stall at maximum rudder deflection
 • Maneuverability ensured after engine failure
 • Landing with side wind of 55 km/h
 • Lateral static & dynamic stabilities (Dutch roll)
Fin

- **Loadings**
 - Lift coefficient: \(C_{LF} = \frac{L_F}{\frac{1}{2} \rho V^2 S_F} \)
 - Yaw coefficient: \(C_N = C_{LF} \frac{S_F l_F}{S_b} \)
 - Slope with respect to yaw angle \(\beta \): \(C_{N\beta} = \partial_{\beta} C_N \)
Fin

- **Quick design**
 - Lateral stability (most severe criterion for engines attached on fuselage)
 \[
 C_{N\beta_f} = -K_{\beta} \frac{S_{fs} length_{fus}}{Sb} \left(\frac{h_{f1}}{h_{f2}} \right)^{\frac{1}{2}} \left(\frac{b_{f2}}{b_{f1}} \right)^{\frac{1}{3}}
 \]
 \[
 K_{\beta} = 0.3 \frac{l_{cg}}{length_{fus}} + 0.75 \frac{h_{f_{max}}}{length_{fus}} - 0.105
 \]
 - {High, mid, low}-mounted wing effect
 \[
 C_{N\beta_i} = \{-0.017, 0.012, 0.024\}
 \]

[Diagram showing aircraft design with annotations for fuselage effect and lateral stability criteria.]
• **Quick design (2)**
 - Engine failure (most severe criterion for wing-mounted engines)
 - Takeoff configuration (critical as larger thrust)
 - Engine thrust ΔT_e at Y_e from fuselage axis
 - Maximal rudder deflection $\delta_{r,\text{max}} \sim 30^\circ$
 - Effect of rudder measured by $k_{\delta r}$
Fin

- Quick design (3)
 - Engine failure (wing-mounted engines) (2)
 - Effect of fin: $k_v = 1.1$ for T-tail, 1 for other tails

Thrust & weight in kg or N

\[
Y_e \left[\Delta T e C_{L\text{max}} \right]_{\text{take off}} = \frac{1}{l_F} \left(W_{\text{to}} - W_{\text{payload}} \right)_{\text{max}}
\]
Drag

• In cruise
 – Cruise drag is critical to compute
 • Required thrust
 • Fuel consumption
 – Detailed method
 • Compute contribution of each aircraft component on
 – Induced drag (due to vortex)
 – Profile drag (friction & pressure)
 – Interference drag
 » Interaction between components
 » Account for $C_{Lw} \neq C_L$ during normalization
 – Polar of the aircraft
 • Drag can be plotted in term of lift
 • $C_D = C_{D0} + \frac{C_{L\text{plane}}^2}{e\pi AR}$
Drag

- In cruise (2)
 - Quick method
 \[C_D = C_{D0} + \frac{C_{L}^2 \text{plane}}{e\pi AR} \]
 - With \(e \) and \(C_{D0} \) from statistics

- Meaningful only if the design is correct
 - A wrong design would lead to higher drag
 - This would not appear with this method

<table>
<thead>
<tr>
<th></th>
<th>(C_{D0})</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>high-subsonic jet</td>
<td>.014 - .020</td>
<td>.75 - .85*</td>
</tr>
<tr>
<td>aircraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>large turbopropeller</td>
<td>.018 - .024</td>
<td>.80 - .85</td>
</tr>
<tr>
<td>aircraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>twin-engine piston</td>
<td>.022 - .028</td>
<td>.75 - .80</td>
</tr>
<tr>
<td>aircraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>small single engine</td>
<td>.020 - .030</td>
<td>.75 - .80</td>
</tr>
<tr>
<td>aircraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>retractable gear</td>
<td>.025 - .040</td>
<td>.65 - .75</td>
</tr>
<tr>
<td>fixed gear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>agricultural aircraft:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- spray system removed</td>
<td>.060</td>
<td>.65 - .75</td>
</tr>
<tr>
<td>- spray system installed</td>
<td>.070 - .080</td>
<td>.65 - .75</td>
</tr>
</tbody>
</table>

* The higher the sweep angle, the lower the e-factor
Drag

- In cruise (3)
 - Compressibility effect
 - Low if correct wing design
 - Divergence Mach larger than cruise Mach (t/c small enough)
 - In this case, add, to the drag coefficient, the compressibility effect obtained by
 \[
 \Delta_{\text{comp}} C_D = \begin{cases}
 0.0005 & \text{long range conditions} \\
 0.002 & \text{high speed conditions}
 \end{cases}
 \]
Drag

- Landing & takeoff
 - Low velocity drag (flaps down) is critical to compute
 - Thrust required at takeoff
 - Maximum payload
 - Can depend on the airport
 - Temperature
 - Runaway
Drag

- **Landing & takeoff (2)**
 - Plane velocity
 - Takeoff & landing safety speed
 - At 35 ft altitude
 - $V_2 = 1.2 \ V_s(0)$
 - Polar

\[C_{DV_2} = C_0 + \frac{C_{L}^2 V_2^2}{E \pi AR} \]

- Slats out
 - $C_0 = 0.018$
 - $E = 0.7$

- Slats in
 - $C_0 = 0.005$
 - $E = 0.61$

- C_L with high lift devices

<table>
<thead>
<tr>
<th>HIGH-LIFT DEVICE</th>
<th>TYPICAL FLAP ANGLE</th>
<th>$C_{L_{\max}} / \cos \alpha_{\text{25}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAILING EDGE</td>
<td>LEADING EDGE</td>
<td>TAKEOFF</td>
</tr>
<tr>
<td>Plain</td>
<td>-</td>
<td>20°</td>
</tr>
<tr>
<td>Single Slotted</td>
<td>-</td>
<td>20°</td>
</tr>
<tr>
<td>Fowler</td>
<td>-</td>
<td>15°</td>
</tr>
<tr>
<td>Double Slotted</td>
<td>-</td>
<td>20°</td>
</tr>
<tr>
<td>Triple Slotted</td>
<td>SLAT</td>
<td>20°</td>
</tr>
<tr>
<td></td>
<td>SLAT</td>
<td></td>
</tr>
</tbody>
</table>
Drag

- **Takeoff with one engine**
 - Corrected polar

 \[C_{D_{V_2}} = C_0 + \frac{C_L^2}{E \pi AR} \]

- If low thrust (landing)
 - Reduce \(E \) by
 - 4% for wing-mounted engines
 - 2% for engines on the fuselage

- If high thrust (takeoff)
 - Compute explicitly effects of
 - Wind-milling
 - Drag due to the rudder
Drag

• **Takeoff with one engine (2)**
 - Method to compute the drag leads to coefficients of the form $C_D S$
 - Has to be divided by the gross wing area S to get back to C_D
 - The terms have to be added to the C_D obtained

 \[C_{DV_2} = C_0 + \frac{C_{L_2V_2}^2}{E \pi AR} \]

 - 2 parts: wind-millings and rudder
 \[(C_D S)_{ef} = (C_D S)_{wm} + (C_D S)_{rud} \]

 - Wind-milling
 - \[(C_D S)_{wm} \approx 0.0785 D_{inlet}^2 \]
Drag

- **Takeoff with one engine (3)**
 - **Rudder**
 - Moment due to
 - Thrust unbalance ΔT_e
 - Acting at Y_e from fuselage axis
 - Balanced by rudder load
 \[C_{Y_F} = \frac{\Delta T_e \cdot Y_e}{qS_F \cdot l_F} \]
 - Leads to a drag
 - Induced part (vortex)
 \[(C_D S)_{v_r u d} = \frac{C_{Y_F}^2 \cdot S_F}{\pi A R_F} \]
 - Profile part (friction & pressure)
 \[(C_D S)_{p_r u d} = \frac{2.3}{\pi A R_F^{\frac{4}{3}}} \sqrt{S_F S_r} \left(\cos \Lambda_F \frac{1}{4} \right)^{\frac{1}{3}} C_{Y_F}^2 \]
Engine performance

- **Data**

<table>
<thead>
<tr>
<th>Engine</th>
<th>SLS thrust (KN)</th>
<th>Cruise thrust (KN)</th>
<th>SLS specific fuel consumption (sfc) (kg/daN.h)</th>
<th>Cruise specific fuel consumption (sfc) (kg/daN.h)</th>
<th>By pass ratio</th>
<th>Diameter (mm)</th>
<th>Length (mm)</th>
<th>Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF6-80C2</td>
<td>262.4</td>
<td>46.7</td>
<td>0.356</td>
<td>0.585</td>
<td>5.09</td>
<td>2362</td>
<td>4036</td>
<td>4058</td>
</tr>
<tr>
<td>CF34-3A</td>
<td>41</td>
<td>6.8</td>
<td>0.357</td>
<td>0.718</td>
<td>6.2</td>
<td>1118</td>
<td>2616</td>
<td>737</td>
</tr>
</tbody>
</table>

- **Sea Level Static**
 - $M = 0$
 - Standard atmospheric conditions at sea level
 - SLS thrust: T_{to} (to is for takeoff)

 \[\frac{T}{T_{to}} \simeq 1 - \frac{0.45M (1 + BPR)}{\sqrt{1 + 0.75BPR}} + (0.6 + 0.11BPR) M^2 \]

- **Cruise**
 - Standard atmosphere at a given altitude

- **Specific Fuel Consumption**
 - Fuel consumption
 - Per unit of thrust and
 - Per unit of time
• **Component weight can be estimated**
 – For conceptual design
 – Based on statistical results of traditional aluminum structures
 – Example: wing

![Comparative Wing Weights](image-url)
Structural weight

- **Structural weight [lbs]**
 - **Wing with ailerons**

 \[W_w = 4.22 S + 1.642 \times 10^{-6} \frac{n_{ultim} b^3 \sqrt{W_{to} ZFW}}{t/c_{avg}} \sqrt{1 + 2\lambda} \left(1 + \frac{\Lambda}{S}\right) \]

 \(S \): gross area of the wing [ft\(^2\)]
 \(W_{to} \): take off weight [lb]
 \(ZFW \): zero fuel weight [lb]
 \(b \): span [ft]
 \(\Lambda \): sweep angle of the structural axis
 \(\lambda \): taper (\(c_{tip}/c_{root} \)),
 \(t \): airfoil thickness [ft]

 - **Horizontal empennage & elevators**

 \[W_T = 5.25 S_{T_{exp}} + 0.8 \times 10^{-6} \frac{n_{ultim} b_T^3 W_{to} \bar{c}}{t_T/c_T_{avg}} \sqrt{S_{T_{exp}}^{3/2}} \sqrt{1 + \frac{\Lambda_T}{l_T} \frac{S_T^2}{S_{T_{exp}}^{3/2}}} \]

 \(S_{T_{exp}} \): exposed empennage area [ft\(^2\)]
 \(l_T \): distance plane CG to empennage CP [ft]
 \(\bar{c} \): average aerodynamic chord of the wing [ft]
 \(S_T \): gross empennage area [ft\(^2\)]
 \(b_T \): empennage span [ft]
 \(t_T \): empennage airfoil thickness [ft]
 \(c_T \): empennage chord [ft]
 \(\Lambda_T \): sweep angle of empennage structural axis
Structural weight

- **Structural weight [lbs]** (2)
 - **Fin without rudder**
 \[W_{F'} = 2.62 \, S_F + 1.5 \times 10^{-5} \, n_{\text{ultim}} \, b_F^3 \left(8 + 0.44 \frac{W_\infty}{S} \right) \frac{t_F}{c_F} \, \text{avg} \, \cos^2 \Lambda_F \]

 \(S_F \): fin area [ft\(^2\)]

 \(t_F \): fin airfoil thickness [ft]

 \(\Lambda_F \): sweep angle of fin structural axis

 \(b_F \): fin height [ft]

 \(c_F \): fin chord [ft]

 \(S \): gross surface of wing [ft\(^2\)]

 \(W \): weight

 \(S \): gross surface

 \(L \): sweep angle of fin structural axis

 \(W \): weight

 \(S \): gross surface

- **Rudder:** \(\frac{W_r}{S_r} \sim 1.6 \, W_{F'}/S_F \)

- **Fuselage**
 - **Pressure index**
 \[I_p = 1.5 \times 10^{-3} \, \Delta p_{\text{max}} \, \text{width}_{\text{fus}} \]

 \(\Delta p \) [lb/ft\(^2\)] (cabin pressure \(\sim 2600 \text{m} \))

 \(\text{width}_{\text{fus}} \): fuselage width

 \(\text{height}_{\text{fus}} \): fuselage height

 \(n_{\text{limit}} \) at ZFW

 \(ZFW = W_w - W_{\text{wing-mounted engines}} \)

 \(W_{\text{fus}} \): fuselage weight

 \(S_{\text{fus, wetted}} \): fuselage wetted surface

 \(I_{\text{fus}} \): fuselage index

- **Bending index**

 \[I_b = 1.91 \times 10^{-4} \, n_{\text{limit}} \, \text{at ZFW} \, (ZFW - W_w - W_{\text{wing-mounted engines}}) \frac{\text{length}_{\text{fus}}}{\text{height}_{\text{fus}}^2} \]

- **Weight depends on wetted area** \(S_{\text{wetted}} \) [ft\(^2\)] (area in direct contact with air)

 \[W_{\text{fus}} = (1.051 + 0.102 \, I_{\text{fus}}) \, S_{\text{fus, wetted}} \]

 \(I_{\text{fus}} \): fuselage index

 \[I_{\text{fus}} = \begin{cases}
 I_p & \text{if } I_p > I_b \\
 \frac{I_p^2 + I_b^2}{2I_b} & \text{if } I_p < I_b
 \end{cases} \]

 \(I_p \): pressure index

 \(I_b \): bending index
Structural weight

- **Structural weight [lbs] (3)**
 - **Systems**
 - Landing gear
 - Hydromechanical system of control surfaces
 \[W_{SC} = I_{SC} (S_{Texp} + S_F) \]
 \[I_{sc} \text{ [lb/ft}^2\text{]} : 3.5, 2.5 \text{ or } 1.7 \text{ (fully, partially or not powered)} \]
 - Propulsion
 \[W_{prop} = 1.6W_{eng} \sim 0.6486 \ T_{to}^{0.9255} \]
 \[T_{to} : \text{Static thrust (M 0) at sea level [lbf], } *1lbf \sim 4.4 \text{ N} \]
 - **Propulsion**
 - APU
 - Instruments (business, domestic, transatlantic)
 - Hydraulics
 - Electrical
 - Electronics (business, domestic, transatlantic)
 - Furnishing if < 300 seats
 \[W_{furn} \sim (43.7-0.037 \ N_{seats}) \ N_{seats} + 46 \ N_{seats} \]
 if > 300 seats
 \[W_{furn} \sim (43.7-0.037*300) \ N_{seats} + 46 \ N_{seats} \]
 - AC & deicing
 - **Payload** (\(W_{payload}\))
 - Operating items (class dependant)
 - Flight crew
 - Flight attendant
 - Passengers (people and luggage)
 - **Definitions**
 - ZFW: Sum of these components
 \[ZFW = \Sigma W_i \]
Structural weight

- **Examples**

<table>
<thead>
<tr>
<th>Aircraft System</th>
<th>CITATION-500</th>
<th>MDAT-30</th>
<th>MDAT-50</th>
<th>F-28</th>
<th>MDAT-70</th>
<th>DC-9-10</th>
<th>BAC-111</th>
<th>DC-9-30</th>
<th>737-200</th>
<th>727-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing System</td>
<td>1,020</td>
<td>3,143</td>
<td>4,360</td>
<td>7,526</td>
<td>5,910</td>
<td>9,366</td>
<td>9,817</td>
<td>11,391</td>
<td>11,164</td>
<td>17,682</td>
</tr>
<tr>
<td>Tail System</td>
<td>288</td>
<td>1,010</td>
<td>1,193</td>
<td>1,477</td>
<td>1,505</td>
<td>2,619</td>
<td>2,470</td>
<td>2,790</td>
<td>2,777</td>
<td>4,148</td>
</tr>
<tr>
<td>Body System</td>
<td>930</td>
<td>4,276</td>
<td>5,692</td>
<td>6,909</td>
<td>7,118</td>
<td>9,452</td>
<td>11,274</td>
<td>11,118</td>
<td>11,920</td>
<td>17,589</td>
</tr>
<tr>
<td>Alighting Gear System</td>
<td>425</td>
<td>1,379</td>
<td>1,874</td>
<td>2,564</td>
<td>2,440</td>
<td>3,640</td>
<td>3,465</td>
<td>4,182</td>
<td>4,038</td>
<td>7,244</td>
</tr>
<tr>
<td>Nacelle System</td>
<td>241</td>
<td>948</td>
<td>1,294</td>
<td>866</td>
<td>1,684</td>
<td>1,462</td>
<td>1,191</td>
<td>1,462</td>
<td>1,515</td>
<td>2,226</td>
</tr>
<tr>
<td>Propulsion System (less Dry Engine)</td>
<td>340</td>
<td>1,140</td>
<td>1,338</td>
<td>988</td>
<td>1,702</td>
<td>1,478</td>
<td>1,788</td>
<td>2,190</td>
<td>1,721</td>
<td>3,052</td>
</tr>
<tr>
<td>Flight Controls System (less Auto Pilot)</td>
<td>196</td>
<td>600</td>
<td>699</td>
<td>1,404</td>
<td>805</td>
<td>1,102</td>
<td>1,655</td>
<td>1,434</td>
<td>2,325</td>
<td>2,836</td>
</tr>
<tr>
<td>Auxiliary Power System</td>
<td>0</td>
<td>343</td>
<td>400</td>
<td>320</td>
<td>460</td>
<td>805</td>
<td>719</td>
<td>817</td>
<td>855</td>
<td>0</td>
</tr>
<tr>
<td>Instrument System</td>
<td>76</td>
<td>300</td>
<td>300</td>
<td>267</td>
<td>300</td>
<td>490</td>
<td>504</td>
<td>575</td>
<td>518</td>
<td>723</td>
</tr>
<tr>
<td>Hydraulic and Pneumatic System</td>
<td>94</td>
<td>257</td>
<td>300</td>
<td>406</td>
<td>345</td>
<td>681</td>
<td>1,391</td>
<td>753</td>
<td>835</td>
<td>1,054</td>
</tr>
<tr>
<td>Electrical System</td>
<td>361</td>
<td>617</td>
<td>825</td>
<td>953</td>
<td>1,040</td>
<td>1,631</td>
<td>1,610</td>
<td>1,715</td>
<td>2,156</td>
<td>2,988</td>
</tr>
<tr>
<td>Avionics System (incl. Auto Pilot)</td>
<td>321</td>
<td>586</td>
<td>586</td>
<td>923</td>
<td>586</td>
<td>1,039</td>
<td>1,368</td>
<td>1,108</td>
<td>1,100</td>
<td>1,844</td>
</tr>
<tr>
<td>Furnishings and Equipment System</td>
<td>794</td>
<td>2,657</td>
<td>3,548</td>
<td>3,353</td>
<td>4,772</td>
<td>6,690</td>
<td>7,771</td>
<td>8,594</td>
<td>9,119</td>
<td>11,962</td>
</tr>
<tr>
<td>Air Conditioning System</td>
<td>188</td>
<td>325</td>
<td>435</td>
<td>520</td>
<td>550</td>
<td>1,016</td>
<td>1,062</td>
<td>1,110</td>
<td>1,084</td>
<td>1,526</td>
</tr>
<tr>
<td>Anti-icing System</td>
<td>101</td>
<td>384</td>
<td>448</td>
<td>520</td>
<td>511</td>
<td>472</td>
<td>234</td>
<td>474</td>
<td>113</td>
<td>639</td>
</tr>
<tr>
<td>Load and Handling System</td>
<td>2</td>
<td>20</td>
<td>20</td>
<td>--</td>
<td>20</td>
<td>19</td>
<td>9</td>
<td>57</td>
<td>--</td>
<td>15</td>
</tr>
</tbody>
</table>

Empty Weight (less Dry Engine)	5,377	17,985	23,312	29,178	29,748	41,962	46,328	49,770	51,240	75,528
Dry Engine Weight	1,002	2,480	3,373	4,327	4,392	6,113	5,434	6,160	6,212	9,322
Empty Weight (M.E.W.)	6,379	20,465	26,685	33,505	34,140	48,075	51,762	55,930	57,452	84,850
Takeoff Gross Weight	11,650	34,480	46,850	62,000	61,000	86,300	99,650	108,000	104,000	161,000
Structural weight

Examples

<table>
<thead>
<tr>
<th>Aircraft System</th>
<th>727-200</th>
<th>707-320</th>
<th>DC-8-55</th>
<th>DC-8-62</th>
<th>DC-10-10</th>
<th>L-1011</th>
<th>DC-10-40</th>
<th>747</th>
<th>SCAT-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing System</td>
<td>18,529</td>
<td>28,647</td>
<td>34,909</td>
<td>36,247</td>
<td>48,990</td>
<td>47,401</td>
<td>57,748</td>
<td>88,741</td>
<td>83,940</td>
</tr>
<tr>
<td>Tail System</td>
<td>4,142</td>
<td>6,004</td>
<td>4,952</td>
<td>4,930</td>
<td>13,657</td>
<td>8,570</td>
<td>14,454</td>
<td>11,958</td>
<td>8,590</td>
</tr>
<tr>
<td>Body System</td>
<td>22,415</td>
<td>22,299</td>
<td>22,246</td>
<td>23,704</td>
<td>44,790</td>
<td>49,432</td>
<td>46,522</td>
<td>68,452</td>
<td>54,322</td>
</tr>
<tr>
<td>Lighting Gear System</td>
<td>7,948</td>
<td>11,216</td>
<td>11,682</td>
<td>11,449</td>
<td>18,581</td>
<td>19,923</td>
<td>25,085</td>
<td>32,220</td>
<td>28,720</td>
</tr>
<tr>
<td>Nacelle System</td>
<td>2,225</td>
<td>3,176</td>
<td>4,644</td>
<td>6,648</td>
<td>8,493</td>
<td>8,916</td>
<td>9,328</td>
<td>10,830</td>
<td>15,650</td>
</tr>
<tr>
<td>Propulsion System (less Dry Engine)</td>
<td>3,022</td>
<td>5,306</td>
<td>9,410</td>
<td>7,840</td>
<td>7,673</td>
<td>8,279</td>
<td>13,503</td>
<td>9,605</td>
<td>6,310</td>
</tr>
<tr>
<td>Flight Controls System (less Auto Pilot)</td>
<td>2,984</td>
<td>2,139</td>
<td>2,035</td>
<td>2,098</td>
<td>5,120</td>
<td>5,068</td>
<td>5,198</td>
<td>6,886</td>
<td>10,777</td>
</tr>
<tr>
<td>Auxiliary Power Plant System</td>
<td>849</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,589</td>
<td>1,202</td>
<td>1,592</td>
<td>1,797</td>
<td>--</td>
</tr>
<tr>
<td>Instrument System</td>
<td>827</td>
<td>550</td>
<td>1,002</td>
<td>916</td>
<td>1,349</td>
<td>1,016</td>
<td>1,645</td>
<td>1,486</td>
<td>3,400</td>
</tr>
<tr>
<td>Hydraulic and Pneumatic Group</td>
<td>1,147</td>
<td>1,557</td>
<td>2,250</td>
<td>1,744</td>
<td>4,150</td>
<td>4,401</td>
<td>4,346</td>
<td>5,067</td>
<td>10,670</td>
</tr>
<tr>
<td>Electrical System</td>
<td>2,844</td>
<td>3,944</td>
<td>2,414</td>
<td>2,752</td>
<td>5,366</td>
<td>5,490</td>
<td>5,293</td>
<td>5,305</td>
<td>6,002</td>
</tr>
<tr>
<td>Avionics System (incl. Auto Pilot)</td>
<td>1,896</td>
<td>1,815</td>
<td>1,870</td>
<td>2,058</td>
<td>2,827</td>
<td>2,801</td>
<td>3,186</td>
<td>4,134</td>
<td>4,178</td>
</tr>
<tr>
<td>Furnishings and Equipment System</td>
<td>14,702</td>
<td>16,875</td>
<td>15,884</td>
<td>15,340</td>
<td>38,072</td>
<td>32,829</td>
<td>33,114</td>
<td>48,007</td>
<td>20,615</td>
</tr>
<tr>
<td>Air Conditioning System</td>
<td>1,802</td>
<td>1,602</td>
<td>2,388</td>
<td>2,296</td>
<td>2,386</td>
<td>3,344</td>
<td>2,527</td>
<td>3,634</td>
<td>2,820</td>
</tr>
<tr>
<td>Anti-icing System</td>
<td>666</td>
<td>626</td>
<td>794</td>
<td>673</td>
<td>416</td>
<td>296</td>
<td>555</td>
<td>413</td>
<td>210</td>
</tr>
<tr>
<td>Load and Handling System</td>
<td>19</td>
<td>--</td>
<td>55</td>
<td>54</td>
<td>62</td>
<td>--</td>
<td>62</td>
<td>228**</td>
<td>--</td>
</tr>
</tbody>
</table>

| Empty Weight (less Dry Engine) | 86,017 | 105,756 | 116,535 | 118,749 | 203,521 | 198,968 | 224,148 | 297,867 | 256,204 |
| Dry Engine Weight | 9,678 | 19,420 | 16,936 | 17,316 | 23,229 | 30,046 | 25,587 | 35,700 | 45,020 |

| Empty Weight (M.E.W.) | 95,695 | 125,176 | 133,471 | 136,065 | 226,750 | 229,014 | 249,735 | 333,567 | 301,224 |
| Takeoff Gross Weight | 175,000 | 312,000 | 325,000 | 335,000 | 430,000 | 430,000 | 565,000 | 775,000 | 631,000 |
Structural weight

• CG locations
 – Wing: 30% chord at wing MAC
 – Horizontal tail: 30% chord at 35% semi-span
 – Fin: 30% chord at 35% of vertical height
 – Surface controls: 40% chord on wing MAC
 – Fuselage: 45% of fuselage length
 – Main gear: located sufficiently aft of aft c.g. to permit 5% - 8% of load on nose gear
 – Hydraulics: 75% at wing c.g., 25% at tail c.g.
 – AC / deicing: End of fuse nose section
 – Propulsion: 50% of nacelle length for each engine
 – Electrical: 75% at fuselage center, 25% at propulsion c.g.
 – Electronics and Instruments: 40% of nose section
 – APU: Varies
 – Furnishings, passengers, baggage, cargo, operating items, flight attendants: From layout. Near 51% of fuselage length
 – Crew: 45% of nose length
 – Fuel: Compute from tank layout
Fuel weight

For a given mission

- Taxi & takeoff
 \[W_{\text{taxi}} = 0.0035 \, W_{\text{to}} \]
- Landing & taxi
 \[W_{\text{land}} = 0.0035 \, W_{\text{to}} \]
- Reserve
 - Should allow
 - Deviations from the flight plan
 - Diversion to an alternate airport
 - Airliners
 - \[W_{\text{res}} \sim 0.08 \, \text{ZFW} \]
 - Business jet
 - \[W_{\text{res}} \] fuel consumption for \(\frac{3}{4} \)-h cruise
 - Climbing (angle of \(\sim 10^\circ \))
 \[\frac{W_{\text{climb}}}{W_{\text{TO}}} \approx \frac{1}{100} \left[\frac{\text{cruise altitude}}{31600 \, [\text{ft}]} \right] + \frac{1}{2} \, M_{\text{cruise}}^2 \]
 - Descend: \(\sim \) same fuel consumption than cruise
 - Take Off Weight (TOW):
 \[W_{\text{to}} = \text{ZFW} + W_{\text{res}} + W_f \]
 - Landing weight:
 \[\text{ZFW} + W_{\text{res}} + 0.0035 \, W_{\text{to}} \]
Fuel weight

• For a given mission (2)
 – Cruise
 • Bréguet equation
 \[R_{\text{cruise}} = \int_{W_i}^{W_i - W_{\text{cruise}}} V \, dt = - \int_{W_i}^{W_i - W_{\text{cruise}}} \frac{V}{C_T T} dW = - \int_{W_i}^{W_i - W_{\text{cruise}}} \frac{V L}{C_T D W} dW \]
 – Specific Fuel Consumption \(C_T \)
 » Consumption (of all the engines) per unit of thrust (of all the engines) per unit of time
 – Initial weight \(W_i = W_{\text{to}} - W_{\text{taxi}} - W_{\text{climb}} \)
 – Final weight \(W_i - W_{\text{cruise}} = ZFW + W_{\text{land}} + W_{\text{res}} \)
 • Flight with ratio \(C_D / C_L \sim \) constant
 \[\frac{R_{\text{cruise}}}{a_0} = \frac{M_{\text{cruise}} C_L}{C_D} \frac{C_T}{\sqrt{\theta}} \ln \frac{W_i}{W_i - W_{\text{cruise}}} \]

Sound speed at SL

Temperature/Temperature SL

– Fuel weight (without reserve) \(W_f = W_{\text{taxi}} + W_{\text{climb}} + W_{\text{cruise}} + W_{\text{land}} \)
- Maximum range depends on the payload
 - 3 zones: Max Payload, M.T.O.W. (structural), fuel capacity

Payload-range diagram

- Max Z.F.W.
- Z.F.W.
- M.E.W.
- Maximum range
- Maximum payload range

Range

Weight

Maximum
payload
range

2013-2014 Aircraft Design – Conceptual Design
Payload-range diagram

- Maximum range depends on the payload (2)
 - First step: add required fuel for the range at maximum payload

![Diagram showing weight vs. range with labels M.E.W., Max Z.F.W., W_f, and W_res.]
• Maximum range depends on the payload (3)
 – Second step: Threshold resulting from the maximum allowed TOW

Why ?:
- Structure designed for a given payload and a given range
- Performances should allow for takeoff
• Maximum range depends on the payload (4)
 – Third step: Keep same M.T.O.W. and reduce payload when range increases

Payload is replaced by fuel
Payload-range diagram

- Maximum range depends on the payload (5)
 - Fourth step: Maximum fuel tank capacity reached

![Graph showing the relationship between weight and range]

- M.T.O.W.
- Max Z.F.W.
- M.E.W.
- Weight
- Range
- W_{to}
- W_{f}
- W_{res}
- W_{max}
• Maximum range depends on the payload (6)
 – Fifth step: Maximum range deduced at zero payload

![Payload-range diagram](image)

- Maximum payload range
- Maximum range at maximum passengers number
- Maximum number of passengers + luggage
- Design point of the project
- Theoretical as no payload is transported

<table>
<thead>
<tr>
<th>Weight</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.T.O.W.</td>
<td>Design point of the project</td>
</tr>
<tr>
<td>Max Z.F.W.</td>
<td>Design point of the project</td>
</tr>
<tr>
<td>M.E.W.</td>
<td>Design point of the project</td>
</tr>
</tbody>
</table>

Maximum range at maximum passengers number

2013-2014 Aircraft Design – Conceptual Design
Undercarriage

- Takeoff

NOTES:

a. All-engine takeoff distance = distance to 35 ft x 1.15
b. All-engine takeoff run = distance to point equidistance between lift off and 35 ft, factored by 1.15

Accelerate-stop distance

Required runway length

Stopway and clearway available

Required runway length when no clearway is present

Takeoff path
Undercarriage

• Angles at takeoff
 – Only the wheels can be in contact with the ground
 • Plane geometry leads to maximum values of
 – Pitch angle θ
 – Roll angle ϕ
• Angles at takeoff (2)
 – Example:
 • Wing tip should not touch the ground during rotation θ even if the plane is experiencing a roll ϕ
 • Geometric considerations

$$\tan \phi = \tan \Gamma + \frac{2h_g}{b - t} - \tan \theta \tan \Lambda$$

• Roll angle ϕ of 8° should be authorized
• e_s: static deflection of shock absorber (e_s et $l_1 \sim 0$ as first approximation)
Angles at takeoff (3)

- Pitch angle at takeoff

\[\theta_{\text{LOF}} = \alpha_{\text{LOF}} + \frac{d\theta}{dt} \left(\frac{2l_1}{V_{\text{LOF}}} + \sqrt{\frac{l_2 C_{\text{LLOF}}}{ga}} \right) \]

- Pitch rate of climb

- Pitch angle at takeoff

\[\alpha_{\text{LOF}} = \frac{1}{C_{L\alpha}} \left[(C_{L_{\text{max}}}^{\text{cruise}} - C_{L_{\text{cruise}}} - p(C_{L_{\text{max}}}^{\text{to}}) \right] \]

- Lift coefficient for maximum lift expected during takeoff

- Margin

\[p \sim 0.15 \]

Lift off velocity:

\[V_{\text{LOF}} \sim 1.15 V_{s0} \]
Undercarriage

• **Landing**
 - Impact point of rear wheels behind projection of cg on the ground
 - If not, the plane would fall backward
 - Touchdown angle: $\theta_{TD} \sim \theta_{LOF}$
 - Distance l_m between cg and rear wheels

\[
l_m \geq (|z_{cg}| + e_s) \tan \theta_{TD}
\]

 - e_s: static deflection of shock absorber
 - z_{CG}: distance from cg to the ground

• **Front wheels**
 - About 8 to 15% of MTOW supported by front wheels
 - Lower than 8%: direction is not effective
 - More than 15%: difficulties at breaking
 - Now new devices are allowing to get more than 15%
 - CG location can change with the payload
Design steps

INPUTS
- Mission
 - Payload
 - Range
 - Cruise altitude
 - Cruise speed
- Configuration
 - Wing + Tail
 - Engines wing/fuselage mounted
- Technology
 - Airfoils
 - Engines
 - …

Fuselage

Statistical guess
- ZFW & MTOW

Wing design
- Choice of engine

Equilibrium
- Weight and cg location of the groups
- Wing position
- Evolution of cg in terms of payload
- Horizontal tail
- Evolution of cg in terms of fuel consumed (distance)
- Fin

Mission
- Cruise velocity
- Payload-range diagram

Outputs
- Undercarriage
- Plane drawing
- Static margin evolution in terms of payload, range & fuel consumed
- Polar

Performances ?
- yes

ZFW & MTOW correct ?
- yes
- no
References

• Reference of the classes

• Other
 – Book