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Introduction 
•  Aereolasticity is the study of the interaction of inertial, 

structural and aerodynamic forces on aircraft, buildings, 
surface vehicles etc  

Inertial Forces 

Structural Forces Aerodynamic Forces 

Dynamic 
Aeroelasticity 

Structural dynamics Flight Dynamics 

Static Aeroelasticity 
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Why is it important? 
•  The interaction between these three 

forces can cause several undesirable 
phenomena: 
– Divergence (static aeroelastic 

phenomenon) 
– Flutter (dynamic aeroelastic phenomenon) 
– Limit Cycle Oscillations (nonlinear 

aeroelastic phenomenon) 
– Vortex shedding, buffeting, galloping 

(unsteady aerodynamic phenomena) 
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Static Divergence 
NASA wind tunnel experiment on a forward swept wing 
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Flutter 

Flutter experiment: Winglet under 
fuselage of a F-16. Slow Mach 
number increase. 
 
The point of this experiment was 
to predict the flutter Mach 
number from subcritical test data 
and to stop the test before flutter 
occurs. 
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Wind tunnel flutter 

Low airspeed High airspeed 
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Limit Cycle Oscillations 

Stall flutter 
experiment: 
Rectangular wing 
with pitch and plunge 
degrees of freedom. 
Wind tunnel at 
constant speed. 
Operator applies a 
disturbance. 
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More LCOs 

Stall flutter of a wing at an angle of 
attack 

Torsional LCO of a rectangle 
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These phenomena do not 
occur only in the lab 

Glider Limit Cycle 
Oscillations 

Tacoma Narrows 
Bridge Flutter 

Tail flutter 
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Even on very expensive kit 
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F 117 crash 
In September 1997, a U.S. 
Air Force F-117 "Stealth" 
fighter crashed due to 
flutter excited by the 
vibration from a loose 
elevon. 
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Flutter at a glance 
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A bit of history 
•  The first ever flutter incident occurred on the 

Handley Page O/400 bomber in 1916 in the 
UK. 

•  A fuselage torsion mode coupled with an 
antisymmetric elevator mode (the elevators 
were independently actuated) 

•  The problem was solved by coupling the 
elevators 
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More history 
•  Control surface flutter became a 

frequent phenomenon during World War 
I. 

•  It was solved by placing a mass balance 
around the control surface hinge line 
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Historic examples 
•  Aircraft that experienced aeroelastic 

phenomena 
–  Handley Page O/400 (elevators-fuselage) 
–  Junkers JU90 (fluttered during flight flutter test) 
–  P80, F100, F14 (transonic aileron buzz) 
–  T46A (servo tab flutter) 
–  F16, F18 (external stores LCO, buffeting) 
–  F111 (external stores LCO) 
–  F117, E-6 (vertical fin flutter) 

•  Read ‘Historical Development of Aircraft Flutter’, I.E. 
Garrick, W.H. Reed III, Journal of Aircraft, 18(11), 
897-912, 1981 
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Types of flutter 
•  Binary wing torsion-wing bending flutter 
•  Complex couplings between: 

–  Wing-engine pods or wing-stores 
–  Tailplane-fin 
–  Wing-tailplane-fuselage-fin 

•  Control surface flutter 
–  Coupling of control surfaces with wing, tail, fin 
–  Tab coupled with control surface 

•  Whirl flutter 
•  Stall flutter 
•  Panel flutter  
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How to avoid these 
phenomena? 

•  Simplified aeroelastic analysis 
•  Aeroelastic Design (Divergence, Flutter, 

Control Reversal) 
•  Wind tunnel testing (Aeroelastic scaling) 
•  Ground Vibration Testing (Complete modal 

analysis of aircraft structure) 
•  Flight Flutter Testing (Demonstrate that 

flight envelope is flutter free) 
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Simplified aeroelastic 
analysis 

•  Only for a certain class of aircraft: 
–  Personal type aircraft 
–  Conventional design 
–  No mass concentrations on the wing: 

•  Engines, floats, outboard fuel tanks 
–  No T-tail, V-tail or boom-tail 
–  No unusual mass distribution 
–  No significant sweep 
–  Fixed horizontal and vertical tail 

•  Use Airframe and Equipment Engineering Report 
No. 45, AD-A955 270, 1955. 
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Aeroelastic Design 
•  Aeroelastic design occurs after the general aircraft 

configuration has been fixed. 
•  There are no empirical or statistical design 

methods for aeroelastic design; flutter is a very 
complex phenomenon. 

•  Aeroelastic design begins with the development of 
an aeroelastic mathematical model of the aircraft. 

•  This model is a combination of a structural model 
(usually a Finite Element model) with an 
aerodynamic model (usually a doublet lattice 
model).  
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Aeroelastic modeling 
•  Here is a very simple aeroelastic model for 

a Generic Transport Aircraft 

Finite element model: Bar elements 
with 678 degrees of freedom 

Aerodynamic model: 2500 doublet 
lattice panels 
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Aeroelastic modeling (2) 
•  Even for this very simple aircraft, there are 678 

degrees of freedom. 
•  Modal reduction can be used. In this case, the 

equations of motion are much smaller but the 
aerodynamic forces must be calculated at several 
oscillation frequencies. 

•  The equations of motion are of the form: 

•  Where ρ is the air density, V the airspeed and k the 
reduced frequency, k=fc/V. A, C and E are structural 
mass, damping and stiffness matrices, B and D are 
aerodynamic damping and stiffness matrices.  

A˙ ̇ q + ρVB k( ) + C( ) ˙ q + ρV 2D k( ) + E( )q = F
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Flutter solution 
•  The equations of motion can be solved at several 

airspeeds. 
•  Eigenvalue solutions are obtained in order to 

determine the natural frequencies and damping 
ratios of the system at different airspeeds. 

•  The dependence of the equations on frequency 
requires the solution of a nonlinear eigenvalue 
problem. 

•  Flutter occurs when at least one of the system 
damping ratios is equal to zero. The airspeed at 
which this happens is the flutter airspeed 
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Flutter requirements 
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1.5% 

Vclce 

Civil aircraft: Vclce=VF/1.25 
Military aircraft:Vclce=VF/1.15 
Minimum damping ratio = 1.5%  

VF/1.15 
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Basic Flutter Requirements 
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Wind Tunnel Testing 

•  Aeroelastically scaled wind tunnel models. 
•  Aeroelastic scaling includes both 

aerodynamic, inertial and elastic scaling. 
•  It is so difficult to achieve that several 

exotic solutions exist: 
– Very heavy metals, e.g. lead and gold. 
– Heavy gases, e.g. freon. 

•  There are very few wind tunnel 
installations that cater for aeroelastic tests. 
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Wind Tunnel Testing 

¼ scale F-16 flutter model 

F-22 buffet  
Test model 
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Ground Vibration Testing 

•  Purpose: 
•  Measure structural modes (frequency and mode shape).  
•  Validate the theoretical model (Stiffness & Mass). 

•  Performed on components and total aircraft: 
•   Components - ‘Fixed Root’ or ‘Free Free’   
•   Aircraft- supported on low frequency air springs or deflated tyres. 

•  Excitation:  Electromagnetic Exciters 

•  Response:  Array of Accelerometers 

•  Analysis:  Modal Analysis 
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Ground Vibration Testing 
GVT of F-35 aircraft 

Space Shuttle horizontal GVT 

GVT of A340 
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Modeshape 1: Wing bending 
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Modeshape 2: Wing torsion 
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Flight Flutter Testing 
•  Purpose  

•  Measure mode frequency and damping trends  
•  Validate the theoretical model (Including Aerodynamics). 
•  Expand the flight envelope. 

•  Performed 
•  Critical Flight Conditions 
•  Critical Configurations 

•  Testing  
•  1g trimmed straight and level conditions within the limits  
•  VEAS±5 kts, Mach ±0.02 and load factor 0.75g to 1.5g. 
•  ‘Aerial GVT’ 
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Flight Flutter Testing 
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Real test data example 
Data obtained 
during a flight 
flutter test. 
 
Three dwells 
between 5Hz and 
6Hz and one 
sweep from 5Hz 
to 7Hz. 
 
Excitation is 
control surface 
deflection. 
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Flight matching 
Foreplane Flutter M0.8, Flight Test cf Flight-Matched Prediction
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Excitation mechanism 

FCC 

‘FBI’ Command 
Digital Signal 

Actuator 

Control 
Surface 
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A full flutter programme 

Aircraft 
Specification Mil-A-8870 JAR-25 Structural 

Design Criteria 

Flutter 
Specification 

Qualification 
Programme Plan 

Aircraft 
Ground Tests Flutter 

Calculations Flight Test 
Requirements 

Initial Flutter 
Clearance 

Flutter 
Calculations 

Flight Test 

Full Flutter 
Clearance 

Aircraft 
Requirement 

Project 
Definition 

Design & 
Initial 

Clearance 

Validation 
& 

Verification 20 Years 
in Total! 
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Project Definition 

•  Planform Shapes: LE/TE sweeps, Aspect Ratio, t/
c. 

•  Structural Properties: Beam estimates (EI/GJ). 
•  Flutter Criterion: VF in terms of AR, T/R, L.E. 

sweep. 
•  Buzz Requirement. 
•  Backlash Requirements. 
•  Store Carriage Requirements. 
•  Experience from previous designs. 
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Design and initial clearance 
•   Model – based 
•   Iterative 
•  ‘Feedback Loop’  
•   Sensitivity Studies 
•   Major Components – Wing, Fin, Foreplane 
•   Full Aircraft – Clean 
•   Full Aircraft – Stores 
•   Flight Control System 
•  Initial Ground Test  
•   Initial Flight Clearances and Flight Test Predictions 
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Flight Flutter Test 
•  Pre-test: 

–  Identification of flutter critical conditions 
–  Test plan: number of flight conditions, excitation 

frequencies, number and position of transducers etc 
•  During test: 

–  Start at safe condition. Apply excitation and analyze 
responses. Determine if next flight condition is safe. 

–  Proceed to next flight condition and repeat. Stop test if 
next flight condition is unsafe or if the flight envelope has 
been cleared. 

•  Post-test: 
–  Model matching/validation 
–  Sensitivity studies 
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Final flutter clearance 

•  Verification of flutter performance against 
specification flutter requirements 

•  Formal presentation to the project’s technical 
representatives. 

•  Acceptance, service release. 

•  If the aircraft cannot be cleared, there are two 
solutions: 
–  Redesign, repeat GVT and flight flutter tests 

–  Restrict the flight envelope 
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The future of aeroelastic design 

•  Aeroelasticity is a very vibrant research topic. 
Several improvements to aeroelastic design 
processes are being developed: 
–  Very large, fully coupled CFD/CSD aeroelastic 

models: Random Averaged Navier Stokes, Large 
Eddy Structures, nonlinear Finite Elements. 

–  Aeroelastic tailoring: include aeroelastic calculations 
in the preliminary design process. Optimize aircraft 
while observing aeroelastic constraints. 

–  Active aeroelastic structures: flexible aircraft 
structures that can be deformed actively or passively 
to optimize aerodynamic characteristics. 


