

# **Aircraft Design**

Lecture 10: Aeroelasticity G. Dimitriadis



### Introduction

 Aereolasticity is the study of the interaction of inertial, structural and aerodynamic forces on aircraft, buildings, surface vehicles etc





# Why is it important?

- The interaction between these three forces can cause several undesirable phenomena:
  - Divergence (static aeroelastic phenomenon)
  - Flutter (dynamic aeroelastic phenomenon)
  - Limit Cycle Oscillations (nonlinear aeroelastic phenomenon)
  - Vortex shedding, buffeting, galloping (unsteady aerodynamic phenomena)



# Static Divergence

NASA wind tunnel experiment on a forward swept wing





#### Flutter



Flutter experiment: Winglet under fuselage of a F-16. Slow Mach number increase.

The point of this experiment was to predict the flutter Mach number from subcritical test data and to stop the test before flutter occurs.



## Wind tunnel flutter



Low airspeed

High airspeed







Stall flutter experiment: Rectangular wing with pitch and plunge degrees of freedom. Wind tunnel at constant speed. Operator applies a disturbance.



#### More LCOs





#### Stall flutter of a wing at an angle of attack

Torsional LCO of a rectangle







Glider Limit Cycle

Oscillations

Tail flutter

Tacoma Narrows Bridge Flutter Milestones in Flight History Dryden Flight Research Center

PA-30 Twin Commanche Tail Flutter Test April 5, 1966



#### Even on very expensive kit







#### F 117 crash

In September 1997, a U.S. Air Force F-117 "Stealth" fighter crashed due to flutter excited by the vibration from a loose elevon.







#### Flutter at a glance





# A bit of history

- The first ever flutter incident occurred on the Handley Page O/400 bomber in 1916 in the UK.
- A fuselage torsion mode coupled with an antisymmetric elevator mode (the elevators were independently actuated)
- The problem was solved by coupling the elevators





## More history

- Control surface flutter became a frequent phenomenon during World War I.
- It was solved by placing a mass balance around the control surface hinge line



Aeroelasticity

Attachment arm and balance weight on a Navion alleron. View is from the bottom looking toward the wing tip.



# Historic examples

- Aircraft that experienced aeroelastic phenomena
  - Handley Page O/400 (elevators-fuselage)
  - Junkers JU90 (fluttered during flight flutter test)
  - P80, F100, F14 (transonic aileron buzz)
  - T46A (servo tab flutter)
  - F16, F18 (external stores LCO, buffeting)
  - F111 (external stores LCO)
  - F117, E-6 (vertical fin flutter)
- Read 'Historical Development of Aircraft Flutter', I.E. Garrick, W.H. Reed III, Journal of Aircraft, 18(11), 897-912, 1981



# Types of flutter

- Binary wing torsion-wing bending flutter
- Complex couplings between:
  - Wing-engine pods or wing-stores
  - Tailplane-fin
  - Wing-tailplane-fuselage-fin
- Control surface flutter
  - Coupling of control surfaces with wing, tail, fin
  - Tab coupled with control surface
- Whirl flutter
- Stall flutter
- Panel flutter



# How to avoid these phenomena?

- Simplified aeroelastic analysis
- Aeroelastic Design (Divergence, Flutter, Control Reversal)
- Wind tunnel testing (Aeroelastic scaling)
- Ground Vibration Testing (Complete modal analysis of aircraft structure)
- Flight Flutter Testing (Demonstrate that flight envelope is flutter free)



# Simplified aeroelastic analysis

- Only for a certain class of aircraft:
  - Personal type aircraft
  - Conventional design
  - No mass concentrations on the wing:
    - Engines, floats, outboard fuel tanks
  - No T-tail, V-tail or boom-tail
  - No unusual mass distribution
  - No significant sweep
  - Fixed horizontal and vertical tail
- Use Airframe and Equipment Engineering Report No. 45, AD-A955 270, 1955.



# Aeroelastic Design

- Aeroelastic design occurs after the general aircraft configuration has been fixed.
- There are no empirical or statistical design methods for aeroelastic design; flutter is a very complex phenomenon.
- Aeroelastic design begins with the development of an aeroelastic mathematical model of the aircraft.
- This model is a combination of a structural model (usually a Finite Element model) with an aerodynamic model (usually a doublet lattice model).



# Aeroelastic modeling

 Here is a very simple aeroelastic model for a Generic Transport Aircraft





Finite element model: Bar elements with 678 degrees of freedom

Aerodynamic model: 2500 doublet lattice panels



- Even for this very simple aircraft, there are 678 degrees of freedom.
- Modal reduction can be used. In this case, the equations of motion are much smaller but the aerodynamic forces must be calculated at several oscillation frequencies.
- The equations of motion are of the form:

$$\mathbf{A}\ddot{\mathbf{q}} + (\rho V \mathbf{B}(k) + \mathbf{C})\dot{\mathbf{q}} + (\rho V^2 \mathbf{D}(k) + \mathbf{E})\mathbf{q} = \mathbf{F}$$

 Where ρ is the air density, V the airspeed and k the reduced frequency, k=fc/V. A, C and E are structural mass, damping and stiffness matrices, B and D are aerodynamic damping and stiffness matrices.



## Flutter solution

- The equations of motion can be solved at several airspeeds.
- Eigenvalue solutions are obtained in order to determine the natural frequencies and damping ratios of the system at different airspeeds.
- The dependence of the equations on frequency requires the solution of a nonlinear eigenvalue problem.
- Flutter occurs when at least one of the system damping ratios is equal to zero. The airspeed at which this happens is the flutter airspeed





#### **Basic Flutter Requirements**



ipa1\_envelope.xls



# Wind Tunnel Testing

- Aeroelastically scaled wind tunnel models.
- Aeroelastic scaling includes both aerodynamic, inertial and elastic scaling.
- It is so difficult to achieve that several exotic solutions exist:
  - Very heavy metals, e.g. lead and gold.
  - Heavy gases, e.g. freon.
- There are very few wind tunnel installations that cater for aeroelastic tests.



## Wind Tunnel Testing





1/4 scale F-16 flutter model



F-22 buffet Test model



# **Ground Vibration Testing**

- Purpose:
  - Measure structural modes (frequency and mode shape).
  - Validate the theoretical model (Stiffness & Mass).

#### • Performed on components and total aircraft:

- Components 'Fixed Root' or 'Free Free'
- Aircraft- supported on low frequency air springs or deflated tyres.
- **Excitation:** Electromagnetic Exciters
- **Response:** Array of Accelerometers
- Analysis: Modal Analysis





GVT of A340

**Aeroelasticity** 



Space Shuttle horizontal GVT











# Flight Flutter Testing

#### Purpose

- Measure mode frequency and damping trends
- Validate the theoretical model (Including Aerodynamics).
- Expand the flight envelope.

#### Performed

- Critical Flight Conditions
- Critical Configurations

#### Testing

- 1g trimmed straight and level conditions within the limits
- $V_{EAS}$ ±5 kts, Mach ±0.02 and load factor 0.75g to 1.5g.
- 'Aerial GVT'



#### Flight Flutter Testing





#### Real test data example

Data obtained during a flight flutter test.

Three dwells between 5Hz and 6Hz and one sweep from 5Hz to 7Hz.

Excitation is control surface deflection.





#### Flight matching

Foreplane Flutter M0.8, Flight Test cf Flight-Matched Prediction









## A full flutter programme





# **Project Definition**

- Planform Shapes: LE/TE sweeps, Aspect Ratio, t/ c.
- Structural Properties: Beam estimates (EI/GJ).
- Flutter Criterion: V<sub>F</sub> in terms of AR, T/R, L.E. sweep.
- Buzz Requirement.
- Backlash Requirements.
- Store Carriage Requirements.
- Experience from previous designs.



# Design and initial clearance

- Model based
- Iterative
- 'Feedback Loop'
- Sensitivity Studies
- Major Components Wing, Fin, Foreplane
- Full Aircraft Clean
- Full Aircraft Stores
- Flight Control System
- Initial Ground Test
- Initial Flight Clearances and Flight Test Predictions



# Flight Flutter Test

- Pre-test:
  - Identification of flutter critical conditions
  - Test plan: number of flight conditions, excitation frequencies, number and position of transducers etc
- During test:
  - Start at safe condition. Apply excitation and analyze responses. Determine if next flight condition is safe.
  - Proceed to next flight condition and repeat. Stop test if next flight condition is unsafe or if the flight envelope has been cleared.
- Post-test:
  - Model matching/validation
  - Sensitivity studies



## Final flutter clearance

- Verification of flutter performance against specification flutter requirements
- Formal presentation to the project's technical representatives.
- Acceptance, service release.
- If the aircraft cannot be cleared, there are two solutions:
  - Redesign, repeat GVT and flight flutter tests
  - Restrict the flight envelope



- Aeroelasticity is a very vibrant research topic. Several improvements to aeroelastic design processes are being developed:
  - Very large, fully coupled CFD/CSD aeroelastic models: Random Averaged Navier Stokes, Large Eddy Structures, nonlinear Finite Elements.
  - Aeroelastic tailoring: include aeroelastic calculations in the preliminary design process. Optimize aircraft while observing aeroelastic constraints.
  - Active aeroelastic structures: flexible aircraft structures that can be deformed actively or passively to optimize aerodynamic characteristics.