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• Introduction
• Control surfaces
• Geometry of airplane
• Static stability
• Longitudinal stability
• Lateral stability
• Dynamic stability



Stability and Control
Stability = ability to keep the aircraft in the air in the chosen 
        flight attitude and to counteract disturbances

Control = ability to change the flight direction and attitude of 
      the aircraft

Both issues are :  
- Not design criteria (aircraft are designed for performance)
- Investigated in the preliminary design process

Stability and control refer to “Flight Mechanics”

Flight mechanics ensure:
- to design an airplane able to accomplish efficiently a mission
- to make the task of the pilot easier (good handling in flight)
- to avoid unwanted/unexpected phenomena
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Aircraft controls
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Pilot : 
- controls only the flight control system
- tailors the inputs on the FCS by observing aircraft’s response
- always keeping an eye on the task at hand



Aircraft degrees of freedom
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6 DOFs around the center of gravity (c.g.)

3 displacements:
x = horizontal motion
y = side motion
z = vertical motion

3 rotations: 
x = roll
y = pitch
z = yaw



Control surfaces
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Aircraft is controlled via control surfaces and power:
- Ailerons (used in pairs to control roll)
- Elevators (on the tail to control pitch)
- Rudder (on the fin to control yaw)
- Throttle (adjust the thrust of engine(s))

Throttle



Other control surfaces
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Vectored thrust



Combination of control surfaces
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SpoileronDecelerons

Flaperon



Airplane geometry
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Wing geometry
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• Standard mean chord (smc)
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• Mean aerodynamic chord (mac)
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• Wing area : S = 𝑏 ̅𝑐

• Aspect Ratio : AR = 𝑏#/𝑆



Tail geometry 
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• Tailplane area : 𝑆$

• Tailplane moment arm : 𝑙$

• Tailplane volume ratio ( 2𝑉$) is a measure of the 
aerodynamic effectiveness of the tail

  2𝑉$ =
%!&!
% ̿(



Fin geometry
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• Fin moment arm : 𝑙)

• Fin volume ratio / effectiveness : 2𝑉) =
%"&"
% ̿(



Aerodynamic centers
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Centre of pressure (cp)
Position of the aerodynamic resultant force, where no 
aerodynamic moment applies

Quarter-chord = aerodynamic centre (ac)
Point at which aerodynamic force due to angle of attack, 
Fa, acts. Aerodynamic moment, Mo, is independent of 
angle of attack
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Static stability
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Stability conditions: 

• At fixed flight conditions : 

àAll forces and moments around c.g. are balanced

     = TRIM position (adjusted using trim tabs)

• After any small perturbation in flight attitude

à Aircraft returns to its equilibrium position 

Aircraft static stability must be ensured along:
- Longitudinal axis  
- Lateral axis  
   
    



Longitudinal stability

15

cg

mg

€ 

c 

ac

LT

M0

MT

Lw

lT

€ 

hc 

€ 

h0c h = cg position
h0 = position of the aerodynamic center of the wing
lT = (dimensional) position of the aerodynamic center of the tail



Pitching moment equation

16

Assuming: 
- Steady level flight
- Thrust balances drag and both pass by the c.g.

Vertical balance: 

𝐿* + 𝐿$ −𝑚𝑔 = 0

Pitching moment (around c.g.): 

M = 𝑀+ + 𝐿* ℎ − ℎ+ ̿𝑐 − 𝐿$𝑙$ +𝑀$ = 0

   (positive nose-up)



Stability
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Equilibrium point can be stable, unstable or neutrally stable

Stable equilibrium point is characterized by

𝑀 = 0 and  ,-
,.

< 0

A more general condition, taking into account compressibility 
effects, is

𝑀 = 0 and  ,-,/ < 0    or   𝐶0 = 0 and  ,1#,1$
< 0



Degree of stability
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Pitching stability
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Pitching moment equation 

M = 𝑀+ + 𝐿* ℎ − ℎ+ ̿𝑐 − 𝐿$𝑙$ +𝑀$ = 0

Assuming a symmetric tailplane so that 𝑀$ = 0

The equation can be re-written

𝐶0 = 𝐶0% + 𝐶/& ℎ − ℎ+ − 𝐶/! 2𝑉$ = 0

where

𝐶0 = -
'
(23%

(% ̿(
        𝐶/& =

/&
'
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        𝐶/! =

/!
'
(23%
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Pitching stability
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Static stability if ,1#,1$
< 0 or approximately ,1#,1$&

< 0

𝐶0 = 𝐶0% + 𝐶/& ℎ − ℎ+ − 𝐶/! 2𝑉$

à
,1#
,1$&

 = ,1#%
,1$&

+ ℎ − ℎ+ −
,1$!
,1$&

2𝑉$
                   = 0                            must be calculated

Tailplane is impacted by the downwash effect from the wing
à downwash angle 𝛆

V0
V0

ε

Tailplane Wing



Wing-tail flow
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Total angle of attack of the tailplane 

𝛼! = 𝛼 − 𝜀 + 𝜂!

Lift coefficient of the tailplane 

𝐶"! = 𝛼# + 𝑎$𝛼! + 𝑎%𝜂 + 𝑎&𝛽'



Wing-tail flow
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Downwash on the tailplane, for small disturbances

à 𝜀 is a linear function of wing incidence 𝛼

à 𝜀 = ,4
,.
𝛼

The lift coefficient of the wing is also a linear function of 𝛼

𝐶/& = a α  à 𝛼 = 𝐶/&/𝑎 

So that, 𝛼$ = 𝛼 − 𝜀 + 𝜂$ =
1$&
5 1 − ,4

,. + 𝜂$



Wing-tail flow
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Lift coefficient of the tailplane becomes 

𝐶/! = 𝛼+ + 𝑎6
𝐶/&
𝑎 1 −

𝑑𝜀
𝑑𝛼 + 𝑎6𝜂$ + 𝑎#𝜂 + 𝑎7𝛽8

The derivation over 𝐶/&  yields

,1$!
,1$&

= 5'
5 1 − ,4

,. + 𝑎#
,8
,1$&

+ 𝑎7
,9)
,1$&

   (since 𝛈T is constant)

The derivative of the pitching moment coefficient becomes:
,1#
,1$&

 = ℎ − ℎ+ − 5'
5 1 − ,4

,. + 𝑎#
,8
,1$&

+ 𝑎7
,9)
,1$&

2𝑉$



Controls
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Two manners to control the aircraft: 
- fixed/locked controls à 𝛈 and 𝛃𝛈 are constant
- free controls à 𝛈 and 𝛃𝛈 are variable

à the pitching stability ,1#
,1$&

< 0 will take different forms



Fixed controls
Assuming a trimmed aircraft

What is the effect of a small perturbation (e.g. gust) ?

The pitching moment equation becomes

,1#
,1$&

 = ℎ − ℎ+ − 5'
5 1 − ,4

,. + 𝑎#
,8
,1$&

+ 𝑎7
,9)
,1$&

2𝑉$

à
,1#
,1$&

 = ℎ − ℎ+ − 2𝑉$
5'
5 1 − ,4

,.

Controls fixed stability margin, 𝐾: = − ,1#
,1$&

= ℎ: − ℎ

where hn is the controls fixed neutral point, ℎ( = ℎ# + ,𝑉!
)"
)
1 − *+

*,



Fixed controls
A stable aircraft has a positive stability margin : 𝐾: > 0 

(the more positive, the more stable)

Stable aircraft if the cg position is ahead of the neutral point
à  hn– h > 0

ℎ! ̿𝑐



Fixed controls
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Certification authorities specify that

𝐾: ≥ 0.05  at all times

Too much stability can be a bad thing ! 

Stability margin may change if:
- fuel is burned
- payload is released 
    (missiles, bombs, external fuel tanks, paratroopers, ..) 



Free controls
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Pilots don’t want to hold the controls throughout the flight

à Trim tab (𝛃𝛈) can be adjusted such that if the elevator 
float freely, it will at an angle (𝛈) corresponding to the 
desired trim condition

 = hands-off trim condition
 (pilot does not need to adjust the elevator)

V0

α

ε

αT
ηT

η

βη

Tailplane

Elevator

Trim tab

HElevator hinge



Free controls
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At hands-off trim condition

The derivative of the pitching moment with the wing lift is

,1#
,1$&

 = ℎ − ℎ+ − 2𝑉$
5'
5

1 − ,4
,.

1 − 5(='
5'=(

where b1, b2 and b3 define the elevator hinge moment

𝐶> = 𝑏6𝛼$ + 𝑏#𝜂 + 𝑏7𝛽8

V0
α

ε

αT
ηT

η

βη

Elevator

Trim tab

H



Free controls
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Controls free stability margin, 𝐾′: = − ,1#
,1$&

= ℎ′: − ℎ
where h’n is the controls free neutral point, 

ℎ′: = ℎ+ + 2𝑉$
5'
5 1 − ,4

,. 1 − 5(='
5'=(

or        ℎ′: = ℎ: − 2𝑉$
5(='
5=(

1 − ,4
,.

• As for fixed controls, 𝐾′: ≥ 0 à stable aircraft

• Centre of gravity position must be ahead of the controls 
free neutral point to have a stable aircraft

• Usually, ℎ′: > ℎ:

• An aircraft that is stable with controls fixed is usually 
also stable controls free



Summary of longitudinal stability
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Lateral stability
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Lateral flight à unsymmetrical flow around the aircraft
  à Sideslip

Roll and yaw are always coupled, because:
• Rolling produces sideslip
• Ailerons cause adverse yaw
• Dihedral
• Wingtip vortices
• Sweepback of wings
• Fin

The stability in yaw and roll must be ensured

Yaw

Roll



Roll stability
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• 𝛗 rotation around longitudinal axis of the aircraft

• No active mechanism for roll control

(such as tailplane/elevator for longitudinal 
stability or rudder for yaw stability)

• Wing dihedral 𝚪 is the only passive mechanism

The higher the dihedral, the more the stable the aircraft
As usual, too much stability can be a bad thing.

G > 0



Roll motion
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L

mg

Steady level flight: L=mg

L

mg

φ

Lcosφ

Lsinφ

v

y
z

At roll angle 𝛗 

àLift is still perpendicular to wings and equal to mg

But along :
- Vertical axis : Lcosφ < mg   à Aircraft moves down
- Horizontal axis : Lsinφ à Aircraft drifts (sideslip)



Dihedral
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Restoring/stabilising moment R

𝑅 = (𝐿$ − 𝐿/)S𝑦

φ
Γ

v
v’

LL>LT
LT

L = Leading
T = Trailing

-R

� 

y 



Fuselage strongly impacts the flow around the wing

àThe position of the wing on the fuselage has a major 
effect: 

- High wing à stabilising moment

- Low wing à destabilising moment

Effect of fuselage
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𝛂low

𝛂high 𝛂low

𝛂high



High wing aircraft: very stable (too much)

à Negative dihedral (anhedral) can be used to reduce 
stability and increase manoeuvrability 

For Low wing aircraft: less stable 

à Positive dihedral ca be used to increase stability 

Dihedral

Harrier

A350



Roll stability
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For a stable aircraft in roll = ,1*,@ < 0 

𝐶"



Roll control via ailerons

On the up/right wing: Increasing the lift increases drag
On the down/left wing: Less lift and drag decrease
àAdverse yaw 
When rolling/turning left, there is a yaw moment to the right

δ1

δ2

More lift, more drag

Less lift, less drag
‘Adverse yaw’



Roll control via spoilers
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Deforming a spoiler on the wing towards which we want to turn

The spoiler decreases lift and increases drag. 
à Resulting yawing moment in the same direction as the roll
     (Proverse yaw)

‘Proverse yaw’

40



Frise ailerons
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Increase (profile) drag on the down/left wing to 
counteract the large drag of the other wing

‘Adverse yaw’



Differential aileron deflection 
• The roll rate of the aircraft depends on the mean aileron 

deflection angle. 

• The individual deflections δ1 and δ2 do not have to be equal

‘Adverse yaw’



Yaw stability
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Yaw angle 𝛃 induces a dissymmetry on the aircraft

Lift on the vertical stabilizer (fin) producing a stabilizing 
moment around z axis

V
b

y

x

LF



Yaw stability
Lift coefficient of the fin :

Moment coefficient of the fin:  

€ 

CLF
= c1αF + c2δ = c1 −β +σ( ) + c2δ

σ = the sidewash velocity

local windspeed component 
induced by the effect of the 
fuselage, wing and possibly 
propellers.

€ 

Cn = CLF
V F ,  where V F =

SF lF

Sc 



Yaw stability
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Stability condition for yaw : ,1+,9 < 0

which is equivalent to 2𝑉) −𝑐6 + 𝑐6
,B
,9 + 𝑐#

,C
,9 < 0

In this case, it makes no sense to differentiate the yawing 
moment by the lift since the two are independent

The sidewash factor dσ/dβ, is very difficult to estimate

Three main contributions to the sidewash:
• Fuselage, which acts as a lifting body when at a yaw angle
• Wing, around which the flow is asymmetric. The resulting 

sidewash is more pronounced for low AR sweptback wings
• Propeller, which creates more asymmetric in its wake



Yaw control
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Yaw angle must be zero during most flight conditions to 
minimize drag

Rudder deflection used to control yaw

Rudder power      = rate of change of fin moment 
                 with rudder angle 
   = ,1+

,C
= 2𝑉)

,1$"
,C

= 𝑐# 2𝑉)

This quantity must be large enough to maintain zero yaw in 
the most extreme flight conditions.



Take off and landing
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During cruise, aircraft tend to turn towards the wind to 
minimize drag. 

The objective is to achieve zero yaw.

At take-off and landing, this is not possible : 

The aircraft must be aligned with the runway even in 
presence of a very strong sidewind. 

à Rudder must be able to provide enough moment to keep 
the aircraft aligned with the runway



Summary on control surfaces:
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Elevators: contribute to pitch stability and control pitch angle

Rudder: contribute to yaw stability and control yaw angle

Ailerons: do not contribute to stability but control roll rate, not 
roll angle.

Elevons = ailerons that can also move up or down in unison

Flaperons = ailerons moving downwards only (like flaps)

Spoilerons = ailerons that can also move upwards only (like 
spoilers)

    contribute to stability and control both pitch and roll 



Dynamic stability
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A flying aircraft has several modes of vibration:

• Longitudinal modes:
– Short period oscillation
– Long period oscillation (Phugoid)

• Lateral modes
– Spiral mode
– Roll subsidence
– Dutch roll

à These dynamic modes must be considered



Short period oscillations
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Driven by angle of attack

Take place because of abrupt input changes

Speed changes are negligible

Period of oscillation decreases
with airspeed/Mach

Boeing 747

Nhalf= number of periods until 
the amplitude is halved



Phugoid
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= Long period oscillations in longitudinal direction

Angle of attack is constant: aircraft climbs and descends in 
an oscillatory manner

Low damping of the motion

Phugoid period: 
• microlight aircraft: 15-25s
• light aircraft: overs 30s
• jet aircraft: minutes

Neutralized by re-trimming the aircraft in a new flight 
configuration



Phugoid videos
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Phugoid estimates
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Lanchester approximations of damping and frequency: 

€ 

ζ pω p =
gCD

CLV0

,    ω p =
g 2
V0



Phugoid 
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Phugoid period increases with airspeed
Phugoid damping slightly increase with airspeed

Boeing 747



Spiral mode
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= yaw movement with a little of roll

Spiral mode can be stable or unstable

Non-oscillatory mode with large time constant

Typical half-life of spiral mode ~ a minute

Spiral movement is usually stopped by a corrective control 
input



Spiral mode video
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Roll subsidence
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An impulse aileron à initiate aircraft rolling

In general the aircraft will stop rolling with time
(i.e. the roll rate becomes zero after sufficient time)

The aircraft will find itself at a roll angle which depends on 
how fast the roll rate tends to zero.

This phenomenon is called roll subsidence.



Roll subsidence video
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Dutch roll
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Dutch roll = Roll-Yaw coupling

Roll stability is stronger than Yaw stability because wing is 
bigger than the fin

Name from ice skating in Holland

Solution : 
Yaw damper = computer connected to the rudder to 
mitigate yaw motion

Dutch roll dangerous ? No, but : there were incidence due 
to improper reaction by pilots (putting rudder input too late)



Dutch roll video
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Dutch roll video
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Lateral modes of Boeing 747
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Altitude Mach
Spiral Dutch Roll
Half-life Period Nhalf

0 0.45 35.7 5.98 0.87
0 0.65 34.1 4.54 0.71
20,000 0.5 76.7 7.3 1.58
20,000 0.65 64.2 5.89 1.33
20,000 0.8 67.3 4.82 1.12
40,000 0.7 -296 7.99 1.93
40,000 0.8 94.9 6.64 3.15
40,000 0.9 -89.2 6.19 1.18



Summary 
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Stability = ability to keep the aircraft in the air in the chosen 
flight attitude

àAircraft returns to the equilibrium position after a         
perturbation.

àStability must be ensured but not oversized ! 

Control = ability to change the flight direction and attitude of 
      the aircraft

Static stability in :
- Pitch à Longitudinal
- Yaw/Roll à Lateral

Dynamic stability to avoid dangerous phenomena 


