Aeronautics Design Project

Aircraft Performance

T. Andrianne

APRI0004 2025-2026

Content of the course

- Introduction to design performance
- Weight estimates
- Drag estimates
- Flight phases
 - Cruise
 - Take-off
 - Climb
 - Turning
 - Landing
- Flow diagram

Complete procedures in text books:

- D.P. Raymer, "Aircraft Design : A conceptual Approach"
- E. Torenbeek, "Synthesis of Subsonic Airplane Design"

Design for performance

Main requirement for a new aircraft = fulfilment of the mission

→ Performance calculation at the design stage

At the design stage, we choose:

- Size of the wing
- Type and size of the engines

Flight points

- Cruise → first performance analyses for an airliner
- Take off
- Landing
- Climb

Weight and drag

First step is the determination of the weight and drag

Weight → Lift

Drag → Thrust

Weight and drag must be known at several points in the flight envelope (= capabilities of an aircraft in terms of structural loads and speed)

Two methodologies:

- Carry out detailed simulations at the conceptual design stage (very costly)
- Use previous experience: statistical data

Statistics

Enormous amount of data on very similar aircrafts

Source: www.jethrojeff.com

Statistics

Enormous amount of data on very similar aircrafts

Weight estimates

Take off weight, W_{to} expressed as:

$$W_{to} = W_e + W_p + W_f$$

where,

W_e = total empty weight (e.g. airframe, wings, engines)

 W_p = payload weight

W_f = fuel weight

The total empty weight W_e , is $W_e = W_{fix} + W_{var}$

 W_{fix} = fixed empty weight (e.g. engines if pre-selected)

W_{var} = variable empty weight (e.g. fuselage, wings, avionics, equipments, ...)

$$W_{\text{to}} = \frac{W_{\text{p}} + W_{\text{fix}}}{1 - \frac{W_{\text{var}}}{W_{\text{to}}} - \frac{W_{\text{f}}}{W_{\text{to}}}}$$

Weight estimates

Statistic tools are shared between:

- Light aircraft (W_{to} <5670kg) (5670kg=12500lb)
- Heavy aircraft (W_{to}>5670kg)

For <u>light aircraft</u> (from 100 different types):

$$\frac{W_{\text{var}}}{W_{\text{to}}} = \begin{cases} 0.45 & \text{- for normal category with fixed gear} \\ 0.47 & \text{- for normal category with retractable gear} \\ 0.50 & \text{- for utility category} \\ 0.55 & \text{- for acrobatic category} \end{cases}$$

$$\frac{W_{\text{f}}}{W_{\text{to}}} = 0.17 \frac{R}{1000} r_{uc} A R^{-0.5} + 0.35$$

with, R = aircraft's range (in km) AR = Aspect Ratio of the main wing r_{uc} = 1.00-1.35 is the undercarriage drag correction

Undercarriage drag correction

This drag correction is used both in the calculation of:

- the fuel weight (W_f)
- the zero-lift drag (see later)

If the landing gear is fully retractable $\rightarrow r_{uc} = 1$

Otherwise:

 $r_{\rm uc} = \begin{cases} 1.35 \text{ - for fixed gear without streamlined wheel fairings} \\ 1.25 \text{ - for fixed gear with streamlined wheel fairings} \\ 1.08 \text{ - main gear retracted in streamlined fairings on the fuselage} \\ 1.03 \text{ - main gear retracted in engine nacelles} \end{cases}$

Fairings

No wheel fairing

Wheel fairing

Fairings

Fuselage fairings

Engine nacelles

Weight guesstimates

For <u>heavy aircraft</u> (W_{to}>5670kg):

$$\frac{W_{\text{var}}}{W_{\text{to}}} = 0.2$$

$$W_{\text{fix}} = W_{\text{eng}} + 500 + \Delta W_{\text{e}}$$

with, W_{eng} = engine weight ΔW_{e} is a correction factor from the graph

$\Delta W_{\rm e}$

I_f = fuselage length

b_f = fuselage width

h_f = fuselage height

(use metric units)

Weight estimates

For <u>heavy aircraft</u> (with turboprops):

W_f (fuel weight)

with,

C_p = specific fuel consumption for propeller aircraft

R = Range

A = AR

(use metric units)

Weight estimates

For heavy jet aircraft

W_f (fuel weight)

with,

p = atm. pressure at cruise M = Mach number at cruise θ = T/T₀ cruise/stand. temp. $C_T/\sqrt{\theta}$ = corrected specific fuel consumption at cruise a_0 = speed of sound at sea level $\overline{C_F}$ = mean skin friction coefficient based on wetted area

$$\overline{C_F} = \begin{cases} 0.003 & \text{for large, long range transporters} \\ 0.0035 & \text{for small, short range transporters} \\ 0.004 & \text{for business and executive jets} \end{cases}$$

Skin friction coefficient

- Gives an estimate of the drag force due to air friction over the full surface of the aircraft (= wetted area)
- Can be estimated by Prandtl-Schlichting theory as

$$C_F = \frac{0.455}{\left(\log_{10}(Re_{\rm cr})\right)^{2.58}}$$

where Re_{cr} is based on the cruise conditions and the fuselage length

Skin friction coefficient

$$r_{Re} = C_F(\text{Re})/C_F(10^8)$$

Skin friction

Drag calculation

- Aircraft has several sources of drag
- It is usual to summarize them in the drag polar of the aircraft:

$$C_D = C_{D_0} + \frac{C_L^2}{e\pi AR}$$

with, C_{D0} is the parasitic drag (independent of lift)

e is the Oswald efficiency factor

Drag polar

For high angles of attack, high lift and risk of stall

Drag figures for different aircrafts

Aircraft Type	C_{D0}	e
High-subsonic jet	0.014-0.020	0.75-0.85
Large turboprop	0.018-0.024	0.80-0.85
Twin-engine piston aircraft	0.022-0.028	0.75-0.80
Single-engine piston aircraft with fixed gear	0.020-0.030	0.75-0.80
Single-engine piston aircraft with retractable gear	0.025-0.040	0.65-0.75
Agricultural aircraft without spray system	0.060	0.65-0.75
Agricultural aircraft with spray system	0.070-0.080	0.65-0.75

Compressibility drag

Compressibility effects increase drag

At the early design stage

 \rightarrow Add ΔC_D to C_{D0}

 $\Delta C_D = 0.0005$ for long range cruise conditions $\Delta C_D = 0.002$ for high speed cruise conditions

Different flight phases

Cruise Mach

M_{HS} = Maximum Mach for High-Speed Cruise

Calculation to be repeated at several altitudes For each altitude → a different cruise Mach

Flight envelope

Manoeuvring envelope

V-n diagram

= load factor (n=L/W) on the aircraft at a given speed

Gathers information about **manoeuvre** and **gust**Informs the pilot which flight configurations (speed/altitude) are safe

V_C = Design Cruising speed (resistance to gusts)

V_D = Design Diving speed (max speed the aircraft must resist)

V_A = Manoeuvre speed (max speed with full deflection of control surfaces)

V_S = Stall speed (min speed of the aircraft)

At cruise, flight speed is constant

Lift (L) = Weight (W) = Vertical balance

$$\rightarrow L = W = \frac{1}{2}\rho V^2 C_L S \rightarrow C_L = \frac{W}{\frac{1}{2}\rho V^2 S}$$

 ρ = cruise air density

V = cruise speed

S = wing area

Also, Thrust (T) = Drag (D) = Horizontal balance

$$T = D = \frac{1}{2} \rho V^2 C_D S$$

Thrust to Weight ratio

$$\frac{T}{W} = \frac{D}{W} = \frac{\frac{1}{2}\rho V^2 C_D S}{W} = \frac{1}{2W}\rho V^2 S \left(C_{D0} + \frac{C_L^2}{e\pi AR} \right)$$
$$= \frac{\rho V^2 C_{D0}}{2W/S} + \frac{2W}{e\pi AR\rho V^2 S}$$

The thrust here is the installed thrust, which is 4-8% lower than the un-installed thrust.

This equation can be used to choose an engine for the cruise condition

Minimum Thrust

The Thrust-to-Weight ratio can be minimized w.r.t. W/S

→ The minimum Thrust is required when

$$\frac{W}{S} = \frac{1}{2} \rho V^2 \sqrt{d_1 e \pi A R}$$

where, $d_1 = 0.008 - 0.010$ for an aircraft with retractable undercarriage

→ The minimum Thrust to Weight ratio is then:

$$\left(\frac{T}{W}\right)_{min} = \frac{C_{D0} + \sqrt{d_1}}{\sqrt{d_1 e \pi A R}}$$

Engine Thrust

The thrust of an engine at cruise can be determined from:

- Manufacturer's data
- Approximate relationship to the take off thrust:

$$\frac{T}{T_{\text{to}}} = 1 - \frac{0.454(1+\lambda)}{\sqrt{1+0.75\lambda}}M + \left(0.6 + \frac{0.13\lambda}{G}\right)M^2$$

where, λ is the bypass ratio

M is the cruise Mach number

G = 0.9 for low bypass engines

G = 1.1 for high bypass engines

Range

The range of an aircraft can be estimated from the Bréguet equation:

$$R = \frac{V}{C_T} \frac{L}{D} \ln \left(\frac{W_i}{W_i - W_f} \right)$$

which is applicable in cruise conditions only.

with, L/D = cruise Lift-to-Drag ratio

V =the cruise airspeed [m/s]

 C_T = specific fuel consumption [1/s]

 W_i = weight of the aircraft at the beginning of cruise [kg]

 W_f = cruise fuel weight [kg]

Attention to units (imperial/SI) of C_T in reference books!

Maximizing range

The range equation can also be written as

$$\frac{R}{a_0} = \frac{ML/D}{C_T/\sqrt{\theta}} \ln \left(\frac{W_i}{W_i - W_f} \right)$$

where, M is the cruise Mach number a_0 is the speed of sound at sea level

The range can be maximized by maximizing L/D or ML/D

To maximize
$$L/D$$
: $C_L = \sqrt{C_{D_0} e \pi AR}$

To maximize *ML/D*:
$$C_L = \sqrt{\frac{1}{3}C_{D_0}}e\pi AR$$

Lift-to-Drag ratio

Example of Lift-to-Drag ratio variation with Lift, Angle of attack and deployment of slats/flaps

Range design

At the early design stage, the designer must choose a favourable combination of:

- Speed
- Altitude
- Airplane geometry
- Engine

→ best range performance or fuel efficiency

Depending on the **objective**, most important consideration is:

Fuel efficiency → for long-haul aircraft Engine weight \rightarrow for short-haul aircraft

- Constraints: Cruise fuel is not the only part of the fuel weight
 - Engine thrust often determined by take off field
 - Air Traffic Controls decide the allowable cruise altitudes
 - An aircraft can have more than one engine

Reserve fuel

ATA (Air Transport Association) regulation claims that the airliner must carry enough reserve fuel to:

- Continue flight for time equal to 10% of basic flight time at normal cruise conditions
- Execute missed approach and climb at the destination airport
- Fly to alternate airport 370km distant
- Hold at alternate airport for 30 min at 457m (1500ft) above the ground
- Descend and land at alternate airport

Approximate formula: $W_{\rm f_{\rm res}}$ / $W_{\rm to}$ = $0.18C_T$ / $\sqrt{\theta AR}$

 θ = T/T₀ cruise/stand. temp.

 C_T = specific fuel consumption at cruise

Range for propeller aircraft

For propeller aircraft, the Bréguet range equation is

$$R = \frac{\eta_p}{C_P} \frac{L}{D} \ln \left(\frac{W_i}{W_i - W_f} \right)$$

where η_P is the propeller efficiency C_P is the specific fuel consumption

Range can be maximized by:

- Minimizing the airplane drag
- Minimizing the engine power

Payload-range diagram

Payload-range diagram

Two flight cases:

- High-Speed Cruise → Low Range
- Long-Range Cruise → Low Speed

Example: A-300B

Take off

Take off

- Take off starts at time t_0 , with airspeed V_0 and the runway may have an angle to horizontal of).
- Lift off occurs at time t_g , after a distance of x_g , usually at speed $V_{\rm LOF}$.
- Take off is completed when the aircraft has reached sufficient height to clear an obstacle 35ft high (50ft for military aircraft)
- Finally, the climb out phase takes the aircraft to 500ft at the climb throttle setting.

Ground run

- Start at V₀ (equal to zero or not)
- Angle of attack is defined w.r.t. the thrust line

Tricycle landing gear

Low AoA

→ For sufficient speed, nose is lifted up to the optimal AoA

Tailwheel landing gear

High AoA

- → Control surfaces (when effective) are used to decrease the angle of attack
 - → Decrease of drag and increase of speed

Lift off

As seen in Lecture 1 of Aerodynamics:

Vertical balance:
$$L = \frac{1}{2} \rho_{\square} V_{\square}^2 S C_L = W$$

$$V_{\text{stall}} = \sqrt{\frac{2W}{\rho_{\square}SC_{L,\text{max}}}}$$

In practice (for safety reasons), Lift off speed is defined as

$$V_{LOF} = k_1 V_{stall}$$

where,

 k_1 varies with the type of aircraft $k_1 = 1.1$ is an indicative value

Rotation and transition

→ Aircraft **rotation** = deflection of the velocity from nearly horizontal to a few degrees upward

very short stage (few seconds)

→ **Transition** stage follows up to obstacle clearance

speed at clearance: $V_2 = k_2 V_{stall}$ with $k_2=1.2$

Take off details

V_1 = **Decision speed** (for multi-engine aircraft)

For $V < V_1$, if one engine fails, take off is aborted \rightarrow The runway is long enough to stop the aircraft

For $V > V_1$, if one engine fails, take off is continued \rightarrow Decision will be taken in the air

Take off completed at ~ 500ft and once flaps are retracted

Equations of motion

Force balance parallel to the runway:

$$F = T - \mu R - D = ma$$

Aircraft acceleration,
$$a = \frac{dV}{dt}$$

Aircraft velocity,
$$v = \frac{dx}{dt}$$

Then,
$$\frac{V}{a} = \frac{dx}{dt} \frac{dt}{dV} = \frac{dx}{dV} \rightarrow \frac{dx}{dV} = \frac{V}{a}$$

The displacement is obtained by integration w.r.t. V:

$$x_g = \int_0^{V_{LOF}} \frac{V}{a} dV$$

Friction force

Friction force is proportional to the vertical force:

Friction =
$$\mu R$$
 with $R = W - L = W - \frac{1}{2}\rho V^2 SC_L$

(assuming the runway's inclination is small)

The total horizontal balance becomes:

$$ma = T - \mu W - \frac{1}{2}\rho V^2 S(C_D - \mu C_L)$$

Runway type	μ
Concrete, asphalt	0.02
Hard turf	0.04
Field with short grass	0.05
Field with long grass	0.1
Soft field, sand	0.1-0.3

Approximate solutions

Ground run x_g

$$x_g \approx \frac{V_{LOF}^2/2g}{\overline{T}} - \mu'$$

where,
$$\bar{T}$$
 = Thrust at $\frac{V_{LOF}}{\sqrt{2}} \approx 0.75 \frac{5+\lambda}{4+\lambda} T_{TO}$
 $C_L = \mu e \pi A R$
 $\mu' = \mu + 0.72 \frac{C_{D0}}{C_{Lmax}}$

Air run
$$x_a$$

$$x_a \approx \frac{V_{LOF}^2}{g\sqrt{2}} + \frac{h}{\gamma_{LOF}}$$

where,
$$\gamma_{LOF} = \left(\frac{T-D}{W}\right)_{LOF} \approx 0.9 \frac{\bar{T}}{W_{TO}} - \frac{0.3}{\sqrt{AR}}$$

Airspeed at take off
$$V_2 = V_{LOF} \sqrt{1 + \gamma_{LOF} \sqrt{2}}$$

Increases with

- Aircraft Weight (W_{TO})
- Altitude
- Temperature
- Rolling friction
- Positive runway slope

Decreases with

- Thrust
- High lift devices

Climb

- Immediately follows take off
- Objective: reach the cruising altitude
- Usually performed in a vertical plane → no turning
- Short phase \rightarrow aircraft's weight is assumed constant
- Small variations of speed and flight path → constant speed climb 51

Climb

Climb performances:

- Operational requirements, e.g.
 - Rate of climb at sea level
 - Service ceiling altitude for a maximum rate of climb of 0.5m/s
- Airworthiness requirements
 - Minimum climb gradient at take off, in cruise, at landing
 - Rate of climb at a specified altitude with one engine inoperative

Climb diagram

- · Thrust line is not necessarily aligned with flight path
- Constant speed V → the aircraft does not accelerate
- Thrust and lift equations: $T = \frac{1}{2}\rho SV^2C_D + W\sin\gamma$

(assuming
$$\varepsilon = 0$$
)

$$W\cos\gamma = \frac{1}{2}\rho SV^2 C_L$$

Thrust and Power

Thrust equation can be expressed in terms of Power

$$T = \frac{1}{2}\rho SV^2 C_D + W \sin \gamma \qquad \rightarrow \quad TV = \frac{1}{2}\rho SV^3 C_D + WV \sin \gamma$$

Defining, the available power for Climb : $P_a = TV$ the power required for <u>level flight</u> : $P_r = \frac{1}{2} \rho SV^3 C_D$

the rate of climb $V_z = V \sin \gamma$

Then,
$$V_z = \frac{P_a - P_r}{W}$$
 and $\sin \gamma = \frac{P_a - P_r}{VW}$

Climb of a jet aircraft

For a jet aircraft:

- the power available for climb varied linearly with airspeed
- the power required for level flight varies non-linearly with airspeed
- → There is an optimum airspeed to maximize the rate of climb

$$V_z = \frac{P_a - P_r}{W}$$

 \rightarrow Maximize $P_a - P_r$

This airspeed is not necessarily the one corresponding to the minimum value of P_r

Climb of a jet aircraft

Below V_2 and above $V_1 \rightarrow$ Aircraft cannot climb

Maximum climb rate

Using the drag polar and assuming a small rate of climb

→ Equation for the rate of climb can be written as

$$V_{z} = \frac{P_{a} - P_{r}}{W} = \frac{1}{W} \left(TV - \frac{1}{2} \rho SV^{3} C_{D0} - \frac{2kW^{2}}{\rho SV} \right)$$

where,
$$k = \frac{1}{e\pi AR}$$

The maximum climb rate is found for $\frac{\partial V_z}{\partial V} = 0$

Maximum climb rate

Solving this quartic equation

$$\frac{3\rho SC_D}{W}V^4 - 2\frac{T}{W}V^2 - \frac{4kW}{\rho S} = 0$$

one gets,

where,
$$\tau = E_{max}^{T}/_{W}$$
 and $E_{max} = \left(\frac{c_{L}}{c_{D}}\right)_{max}$

- → The maximum climb rate depends on:
 - Thrust available
 - Weight
 - Altitude
 - Wing surface

Climb rate vs. altitude

Climb gradient vs. altitude

Climb rate requirements

PHASE OF FLIGHT TAKEOFF CLIMB POTENTIAL ("first segment")		AIRPLANE CONFIGURATION					MINIMUM CLIMB GRADIENT			
		flap u.c. setting		engine speed thrust (power)		altitude	N _e ≖2	N _e =3	N _e =4	
		t.o.	+		t.o.	v _{LOF}	0+h _{uu} 1)	0	. 3	. 5
TAKEOFF FLIGHT PATH	"second segment"	t.o.	+	engine out	t.o.	v ₂ ²⁾	h _{uu} +400 ft	2.4	2.7	3.0
	final takeoff ("third segment")	en route	+		max.	V≽1.25V _S	400+1,500ft	1,2	1.5	1.7
APPROACH CL	IMB POTENTIAL	approach ³) +	oue	t.o.	v≤1.5v _s	01)	2.1	2.4	2.7
LANDING CLIMB POTENTIAL lan		landing	+	all engines takeoff ⁴⁾		V≤1.3V _S	01)	3.2	3.2	3.2

Nomenclature:

V_{LOF} - liftoff speed

V, - takeoff safety speed

V_R - rotation speed

V_S - stalling speed

u.c. - undercarriage position

h_{un} - height at which u.c.

retraction is completed

N_e - number of engines per a/c

- 1) out of ground effect
- defined in Section 2 of Appendix K
- 3) flap setting such that $V_S \le 1.10 V_S$ for landing
- 4) more precisely: the engine power (thrust) available 8 seconds after throttle opening to takeoff rating
- 5) takeoff requirements are at actual weight, other requirements at landing (touchdown) weight

In a general turn:

- all angles (pitch, roll and yaw) are involved
- altitude changes too

In the following, let's assume turns in a horizontal plane → no change of altitude

- Horizontal turn $\rightarrow \gamma = 0$
- Constant speed $\rightarrow dV/dt = 0$

Assuming the thrust is aligned with the flight path

→ Equilibrium equations are simply:

$$L\cos\phi = W$$

$$L\sin\phi = \frac{mV^2}{R}$$

$$T = D$$

where, R is the radius of the circular turn

Load factor n is defined as the ratio, $n = \frac{L}{W}$

During a turn, the load factor can be so high to:

- harm the pilot
- damage the aircraft's structure

From the balance equation in the vertical direction:

$$n = \frac{1}{\cos \phi}$$

During a turn, the lift must balance:

- the weight
- the centrifugal force

Turning radius

For a given load factor, the turning radius is expressed as

$$L\cos\phi = W$$

$$L\sin\phi = \frac{mV^2}{R} \longrightarrow R = \frac{V^2}{g\tan\Phi} = \frac{V^2}{g\sqrt{n^2 - 1}}$$

Expressing the airspeed V in terms of the load factor and lift coefficient

$$nW = \frac{1}{2}\rho SV^{2}C_{L} \longrightarrow V^{2} = \frac{2nW}{\rho SC_{L}}$$

$$\longrightarrow R = \frac{2W}{\rho gSC_{L}} \frac{n}{\sqrt{n^{2} - 1}}$$

Low turn radius R if : large C_L, low altitude, high load factor, low wing loading (W/S)

Maximum turning rate

The turning rate can be expressed as

$$\frac{d\psi}{dt} = g \sqrt{\frac{\rho SC_L}{2W} \left(\frac{n^2 - 1}{n}\right)}$$

- The lift coefficient cannot exceed C_{Lmax}
- The maximum load factor is n_{max}

Then, the maximum turning rate is

$$\left(\frac{d\psi}{dt}\right)_{max} = g\sqrt{\frac{\rho SC_{Lmax}}{2W}\left(\frac{n_{max}^2 - 1}{n_{max}}\right)}$$

Rear View of Turn

Top View of Turn

High turn rate if large C_L , low altitude, high load factor, low wing loading (W/S), i.e. same than low turn radius

Lift required for turning

From the turn diagram:

$$nW = \sqrt{(mg)^2 + \left(\frac{mV^2}{R}\right)^2}$$

Furthermore, L = nW

Hence the required lift is simply:

$$nW = \frac{1}{2}\rho SV^2 C_L$$

Thrust required for turning

From the drag polar:

$$C_D = C_{D0} + \frac{C_L^2}{e\pi AR} = C_{D0} + \frac{1}{e\pi AR} \left(\frac{2nW}{\rho SV^2}\right)^2$$

The require thrust is then given by

$$T = \frac{1}{2}\rho SV^{2}C_{D} = \frac{1}{2}\rho SV^{2}\left(C_{D0} + \frac{1}{e\pi AR}\left(\frac{2nW}{\rho SV^{2}}\right)^{2}\right)$$

Alternatively,
$$T = D = \frac{LD}{L} = nW \frac{C_D}{C_L}$$

Assuming constant Lift/Drag ratio → Thrust proportional to load factor

Maximum load factor

Load factor cannot exceed:

- The aircraft structural limits
- The user (pilot, passenger) limits

It must be verified that the turn radius R corresponds to a load factor lower than n_{max}

$$nW = \sqrt{(mg)^2 + \left(\frac{mV^2}{R}\right)^2} \rightarrow n_{max} = \frac{\sqrt{(mg)^2 + \left(\frac{mV^2}{R}\right)^2}}{W}$$

where, n_{max} is usually 2.5 for commercial transports n_{max} can be 6 or higher for aerobatic aircraft

Turn diagram

WING AREA	300 Sq Ft	(28 Sq M)		
EMPTY WEIGHT	16131 Lbs	(7317 Kg)		
INTERNAL FUEL	.1073 US Gal	(4060 Liter)		
	6972 Lbs	(3162 Kg)		
TAKEOFF WEIGHT		, , , , , , , , , , , , , , , , , , , ,		
WITH (2) IR + GUN	24361 Lbs	(11065 Kg)		
MAX EXTERNAL FUEL .	.1465 US Gal	(5545 Liter)		
	9522 Lbs	(4318 Kg)		
COMBAT WEIGHT	20875 Lbs			
MAX A/B THRUST		, ,,		
AT SEA LEVEL	23744 Lbs	(10770 Kg)		
(F100-PW-220NSI)		106 KN		
MAX MIL PWR THRUST				
AT SEA LEVEL	.14601 Lbs	(6623 Kg)		
		65 KN		
COMBAT T/W				
RATIO	1.14			
COMBAT WING	55151923 (m)			
LOADING	70 Lb/Sa Ft	(340 Ka/Sa M		
MAX TOGW		(17010 Kg)		
MAX SUBSONIC DSGN.		(*******)		
LOAD FACTOR	9.3 a's			

TURN PERFORMANCE AT 15000 FT (4572 m) Utilizing Maximum Afterburner (Wet) Power

Landing consists in two phases:

- Approach above a hypothetical obstacle to touch-down
- Ground run to full stop

 x_3 = approach distance

 x_2 = rotation distance

 x_1 = deceleration distance

Approach

- Aircraft makes an approach along the axis of the runway
- A glide angle γ ranges between -2.5° and -3.5°
- The speed is $V_2 = 1.2 V_{stall}$
- The height of the hypothetical object is h_{obj}
- The rotation height is h_r
- The approach distance is $x_3 = \frac{h_{obj} h_r}{\tan \gamma}$
- The approach time is $t_3 = \frac{x_3}{v_2 \cos \gamma}$

Rotation

- Aircraft follows an arc with radius R
- Similarly to take off, $R = \frac{V_2^2}{g(n-1)}$
- The rotation distance is $x_2 = R \sin \gamma$
- The rotation time is $t_2 = \frac{\gamma V_2}{g(n-1)}$

Ground run

- After touch-down, aircraft speed must drop from V_{TD} to 0
- Distance of ground run can be approximated by

$$x_g = \frac{V_{TD}^2}{2\bar{a}}$$

where \bar{a} is the mean deceleration

$$\overline{a} = \begin{cases} 0.30 - 0.35 \text{ for light aircraft with simple brakes} \\ 0.35 - 0.45 \text{ for turboprop aircraft without reverse propeller thrust} \\ 0.40 - 0.50 \text{ for jets with spoilers, anti-skid devices, speed brakes} \\ 0.50 - 0.60 \text{ as above, with nosewheel breaks} \end{cases}$$

Parametric design

Design for performance is an optimization process

Objective: satisfy or exceed all performance requirements

How: by finding the optimal combination of parameters:

Powerplant

- Take off thrust
- number of engines
- engine type
- engine configuration

Wing

- Wing area
- Aspect ration
- High lift devices

Flow diagram

