Aeronautics Design Project

Aircraft Performance

T. Andrianne

APRI0004 2024-2025

Content of the course

- Introduction to design performance
- Weight estimates
- Drag estimates
- Flight phases
 - Cruise
 - Take-off
 - Climb
 - Turning
 - Landing
- Flow diagram

Design for performance

Main requirement for a new aircraft = fulfilment of the mission

 \rightarrow Performance calculation at the design stage

At the design stage, we choose:

- Size of the wing
- Type and size of the engines

Flight points

- Cruise \rightarrow first performance design for an airliner
- Take off
- Landing
- Climb

First step is the determination of the weight and drag

Weight → Lift

Drag \rightarrow Thrust

Weight and drag must be known at several points in the flight envelope (= capabilities of an aircraft in terms of structural loads and speed)

Two methodologies:

- Carry out detailed simulations at the conceptual design stage (very costly)
- Use previous experience: **statistical** data

Statistics

Source: www.jethrojeff.com

Statistics

Enormous amount of data on very similar aircrafts

Source: www.a13x.com.au/aircraft-size-comparison/

Weight estimates

Take off weight, W_{to} expressed as:

$$W_{\text{to}} = \frac{W_{\text{p}} + W_{\text{fix}}}{1 - \frac{W_{\text{var}}}{W_{\text{to}}} - \frac{W_{\text{f}}}{W_{\text{to}}}}$$

where,

 W_p = payload weight W_f = fuel weight W_{fix} = fixed empty weight (e.g. engines) ~ 5-6% of W_{to} W_{var} = variable empty weight

The **total empty weight W**_e, is simply $W_e = W_{fix} + W_{var}$

Weight estimates

Statistic tools are shared between:

- Light aircraft (W_{to}<5670kg)
- Heavy aircraft (W_{to}>5670kg)

For <u>light aircraft</u> (from 100 different types):

 $\frac{W_{\text{var}}}{W_{\text{to}}} = \begin{cases} 0.45 & -\text{ for normal category with fixed gear} \\ 0.47 & -\text{ for normal category with retractable gear} \\ 0.50 & -\text{ for utility category} \\ 0.55 & -\text{ for acrobatic category} \end{cases}$ $\frac{W_{\rm f}}{W_{\rm to}} = 0.17 \frac{R}{1000} r_{uc} A R^{-0.5} + 0.35$ with, R = aircraft's rangeAR = Aspect Ratio of the main wing r_{uc} = 1.00-1.35 is the undercarriage drag correction

(5670kg=12500lb)

8

Undercarriage drag correction

This drag correction is used both in the calculation of:

- the fuel weight (W_f)
- the zero-lift drag (see later)

If the landing gear is fully retractable $\rightarrow r_{uc} = 1$

Otherwise:

 $r_{\rm uc} = \begin{cases} 1.35 - \text{for fixed gear without streamlined wheel fairings} \\ 1.25 - \text{for fixed gear with streamlined wheel fairings} \\ 1.08 - \text{main gear retracted in streamlined fairings on the fuselage} \\ 1.03 - \text{main gear retracted in engine nacelles} \end{cases}$

Fairings

No wheel fairing

Wheel fairing

Fairings

Fuselage fairings

Engine nacelles

For <u>heavy aircraft</u> :

$$\frac{W_{\text{var}}}{W_{\text{to}}} = 0.2$$
$$W_{\text{fix}} = W_{\text{eng}} + 500 + \Delta W_{\text{e}}$$

with, W_{eng} = engine weight ΔW_e is a correction factor from the graph (see next slide)

 ΔW_{e}

- I_f = fuselage length
- b_f = fuselage width

h_f = fuselage height

(use metric units)

Weight estimates

For <u>heavy aircraft</u> (with turboprops):

W_f (fuel weight)

with,

C_p = specific fuel consumption for propeller aircraft

(use metric units)

Weight estimates

For heavy jet aircraft

 W_{f} (fuel weight)

with,

p = atm. pressure at cruise M = Mach number at cruise θ = T/T₀ cruise/stand. temp. $C_T/\sqrt{\theta}$ = corrected specific fuel consumption at cruise a_0 = speed of sound at sea level $\overline{C_F}$ = mean skin friction coefficient based on wetted area

Skin friction coefficient

- Gives an estimate of the drag force due to air friction over the full surface of the aircraft (= wetted area)
- Can be estimated by Prandtl-Schlichting theory as

$$C_F = \frac{0.455}{\left(\log_{10}(Re_{\rm cr})\right)^{2.58}}$$

where Re_{cr} is based on the cruise conditions and the fuselage length

Skin friction coefficient

17

 $r_{Re} = C_F (\mathrm{Re}) / C_F (10^8)$

Drag calculation

Aircraft has several sources of drag

 $C_D = C_{D_0} + \frac{C_L^2}{e\pi AR}$

It is usual to summarize them in the drag polar of the aircraft:

with,

 C_{D0} is the parasitic drag (independent of lift)

e is the Oswald efficiency factor

Drag polar

For high angles of attack, high lift and risk of stall

Drag figures for different aircrafts

Aircraft Type	<i>C</i> _{<i>D</i>0}	e
High-subsonic jet	0.014-0.020	0.75-0.85
Large turboprop	0.018-0.024	0.80-0.85
Twin-engine piston aircraft	0.022-0.028	0.75-0.80
Single-engine piston aircraft with fixed gear	0.020-0.030	0.75-0.80
Single-engine piston aircraft with retractable gear	0.025-0.040	0.65-0.75
Agricultural aircraft without spray system	0.060	0.65-0.75
Agricultural aircraft with spray system	0.070-0.080	0.65-0.75

Compressibility drag

Compressibility effects increase drag

At the early design stage

 \rightarrow Add ΔC_{D} to C_{D0}

 $\Delta C_D = 0.0005$ for long range cruise conditions $\Delta C_D = 0.002$ for high speed cruise conditions

Different flight phases

Take off \rightarrow Climb \rightarrow Turn \rightarrow Cruise ... \rightarrow Landing

Flight envelope

V-n diagram = load factor seen by the aircraft at a given speed

It gathers information about **manoeuvre** and **gust** It tells the pilot which flight configurations (speed/altitude) are safe

V_C = Design Cruising speed (resistance to gusts)

V_D = Design Diving speed (max speed the aircraft must resist)

V_A = Manoeuvre speed (max speed with full deflection of control surfaces)

 V_{S} = Stall speed (min speed of the aircraft

Cruise

At cruise, flight speed is constant

Lift (L) = Weight (W) = Vertical balance

$$\rightarrow L = W = \frac{1}{2}\rho V^2 C_L S \rightarrow C_L = \frac{W}{\frac{1}{2}\rho V^2 S}$$

where, ρ is the cruise air density V is the cruise speed S is the wing area

Also, Thrust (T) = Drag (D) = Horizontal balance

$$\Rightarrow T = D = \frac{1}{2}\rho V^2 C_D S$$

where C_D is obtained from the drag polar

Cruise

Thrust to weight ratio

$$\frac{T}{W} = \frac{D}{W} = \frac{\frac{1}{2}\rho V^2 C_D S}{W} = \frac{1}{2W}\rho V^2 S \left(C_{D0} + \frac{C_L^2}{e\pi AR} \right)$$
$$= \frac{\rho V^2 C_{D0}}{2W/S} + \frac{2W}{e\pi AR\rho V^2 S}$$

The thrust here is the installed thrust, which is 4-8% lower than the un-installed thrust.

This equation can be used to choose an engine for the cruise condition

Minimum Thrust

The Thrust-to-weight ratio can be minimized as a function of W/S

 \rightarrow The minimum Thrust is required when

$$\frac{W}{S} = \frac{1}{2}\rho V^2 \sqrt{d_1 e \pi A R}$$

where, $d_1 = 0.008 - 0.010$ for an aircraft with retractable undercarriage

→ The minimum Thrust to weight ratio is: $\left(\frac{T}{W}\right)_{min} = \frac{C_{D0} + \sqrt{d_1}}{\sqrt{d_1 e \pi A R}}$

Engine Thrust

The thrust of an engine at cruise can be determined from:

- Manufacturer's data
- Approximate relationship to the take off thrust:

$$\frac{T}{T_{\rm to}} = 1 - \frac{0.454(1+\lambda)}{\sqrt{1+0.75\lambda}}M + \left(0.6 + \frac{0.13\lambda}{G}\right)M^2$$

where, λ is the bypass ratio M is the cruise Mach number G = 0.9 for low bypass engines G = 1.1 for high bypass engines

Range

The range of an aircraft can be estimated from the Bréguet equation:

$$R = \frac{V}{C_T} \frac{L}{D} \ln \left(\frac{W_{\rm i}}{W_{\rm i} - W_{\rm f}} \right)$$

which is applicable in cruise conditions only.

with, L/D = cruise Lift-to-Drag ratio V = the cruise airspeed [*m*/*s*] C_T = specific fuel consumption [1/*s*] W_i = weight of the aircraft at the beginning of cruise [*kg*] W_f = cruise fuel weight [*kg*]

Attention to units (imperial/SI) of C_T in reference books !

Maximizing range

The range equation can also be written as

$$\frac{R}{a_0} = \frac{ML/D}{C_T / \sqrt{\theta}} \ln \left(\frac{W_i}{W_i - W_f}\right)$$

where, *M* is the cruise Mach number a_0 is the speed of sound at sea level

The range can be maximized by maximizing L/D or ML/D

To maximize *L/D*:
$$C_L = \sqrt{C_{D_0} e \pi A R}$$

To maximize *ML/D*:
$$C_L = \sqrt{\frac{1}{3}C_{D_0}e\pi AR}$$

Lift-to-Drag ratio

Example of Lift-to-Drag ratio variation with Lift, Angle of attack and deployment of slats/flaps

Compressibility effects on range

Range design

At the early design stage, the designer must choose a **favourable combination** of:

- Speed
- Altitude
- Airplane geometry
- Engine

→ best range performance or fuel efficiency

Depending on the **objective**, most important consideration is:

Fuel efficiency \rightarrow for long-haul aircraft Engine weight \rightarrow for short-haul aircraft

Constraints: - Cruise fuel is only part of the fuel weight

- Engine thrust often determined by take off field
- Air traffic Controls decide the allowable cruise altitudes
- An aircraft can have more than one engine
Reserve fuel

ATA (Air Transport Association) regulation claims that the airliner must carry enough reserve fuel to :

- Continue flight for time equal to 10% of basic flight time at normal cruise conditions
- Execute missed approach and climb at the destination airport
- Fly to alternate airport 370km distant
- Hold at alternate airport for 30 min at 457m (1500ft) above the ground
- Descend and land at alternate airport

Approximate formula:

$$W_{\rm f_{res}} / W_{\rm to} = 0.18 C_T / \sqrt{\theta A R}$$

 $\boldsymbol{\theta}$ = T/T₀ cruise/stand. temp.

 C_T = specific fuel consumption at cruise

Range for propeller aircraft

For propeller aircraft, the Bréguet range equation is

$$R = \frac{\eta_p}{C_p} \frac{L}{D} \ln \left(\frac{W_i}{W_i - W_f} \right)$$

where $\eta_{\rm P}$ is the propeller efficiency $C_{\rm P}$ is the specific fuel consumption

Range can be maximized by:

- Minimizing the airplane drag
- Minimizing the engine power

Payload-range diagram

40

Take off

- Take off starts at time t_0 , with airspeed V_0 and the runway may have an angle to horizontal of φ .
- Lift off occurs at time t_g , after a distance of x_g , usually at speed V_{LOF} .
- Take off is completed when the aircraft has reached sufficient height to clear an obstacle 35ft high (50ft for military aircraft)
- Finally, the climb out phase takes the aircraft to 500ft at the climb throttle setting.

Ground run

- Start at V₀ (equal to zero or not)
- Angle of attack is defined w.r.t. the thrust line

Tailwheel landing gear

Low AoA

High AoA

- \rightarrow For sufficient speed, nose is lifted up to the optimal AoA
- → Control surfaces (when effective) are used to decrease the angle of attack
 → Decrease of drag and increase of speed

Lift off

As seen in Lecture 1 of Aerodynamics:

Vertical balance:
$$L = \frac{1}{2} \rho_{\infty} V_{\infty}^2 S C_L = W$$

$$V_{\rm stall} = \sqrt{\frac{2W}{\rho_{\infty}SC_{L,\rm max}}}$$

In practice (for safety reasons), Lift off speed is defined as

$$V_{LOF} = k_1 V_{stall}$$

where,

 k_1 varies with the type of aircraft $k_1 = 1.1$ is an indicative value

Rotation and transition

→ Aircraft rotation = deflection of the velocity from nearly horizontal to a few degrees upward

very short stage (few seconds)

→ Transition stage follows up to obstacle clearance

speed at clearance: $V_2 = k_2 V_{stall}$ with k₂=1.2

$V_1 =$ **Decision speed** (for multi-engine aircraft)

For V < V₁, if one engine fails, take off is aborted \rightarrow The runway is long enough to stop the aircraft

For $V > V_1$, if one engine fails, take off is continued \rightarrow Decision will be taken in the air

Take off completed at ~ 500ft and once flaps are retracted

Equations of motion

Force balance parallel to the runway:

$$F = T - \mu R - D = ma$$

Aircraft acceleration,
$$a = \frac{dV}{dt}$$

Aircraft velocity,
$$v = \frac{dx}{dt}$$

Then,
$$\frac{V}{a} = \frac{dx}{dt}\frac{dt}{dV} = \frac{dx}{dV} \rightarrow \frac{dx}{dV} = \frac{V}{a}$$

The displacement is obtained by integration w.r.t. V:

$$x_g = \int_0^{V_{LOF}} \frac{V}{a} \, dV$$

Friction force

Friction force is proportional to the vertical force:

Friction =
$$\mu R$$
 with $R = W - L = W - \frac{1}{2}\rho V^2 S C_L$

(assuming the runway's inclination is small)

The total horizontal balance becomes:

$$ma = T - \mu W - \frac{1}{2}\rho V^2 S(C_D - \mu C_L)$$

Runway type	μ
Concrete, asphalt	0.02
Hard turf	0.04
Field with short grass	0.05
Field with long grass	0.1
Soft field, sand	0.1-0.3

47

Ground run x_g

$$x_g \approx \frac{V_{LOF}^2 / 2g}{\frac{\overline{T}}{W_{TO}} - \mu'}$$

where,
$$\overline{T}$$
 = Thrust at $\frac{V_{LOF}}{\sqrt{2}} \approx 0.75 \frac{5+\lambda}{4+\lambda} T_{TO}$
 $C_L = \mu e \pi A R$
 $\mu' = \mu + 0.72 \frac{C_{D0}}{C_{Lmax}}$

**Air run
$$x_a$$** $x_a \approx \frac{V_{LOF}^2}{g\sqrt{2}} + \frac{h}{\gamma_{LOF}}$

where,
$$\gamma_{LOF} = \left(\frac{T-D}{W}\right)_{LOF} \approx 0.9 \frac{\bar{T}}{W_{TO}} - \frac{0.3}{\sqrt{AR}}$$

Airspeed at take off. $V_2 = V_{LOF} \sqrt{1 + \gamma_{LOF} \sqrt{2}}$

Increases with

- Aircraft Weight (W_{TO})
- Altitude
- Temperature
- Rolling friction
- Positive runway slope

Decreases with

- Thrust
- High lift devices

- Immediately follows take off
- Objective: reach the cruising altitude
- Usually performed in a vertical plane \rightarrow no turning
- Short phase \rightarrow aircraft's weight is assumed constant
- Small variations of speed and flight path → constant speed climb

Climb

Climb performances:

- Operational requirements, e.g.
 - Rate of climb at sea level
 - Service ceiling altitude for a maximum rate of climb of 0.5m/s
- Airworthiness requirements
 - Minimum climb gradient at take off, in cruise, at landing
 - Rate of climb at a specified altitude with one engine inoperative

Climb diagram

- Thrust line is not necessarily aligned with flight path
- Constant speed V \rightarrow the aircraft cannot accelerate
- Thrust and lift equations: $T = \frac{1}{2}\rho SV^2 C_D + W \sin \gamma$ (assuming $\varepsilon = 0$) $W \cos \gamma = \frac{1}{2}\rho SV^2 C_L$

Thrust and Power

Thrust equation can be expressed in terms of Power

$$T = \frac{1}{2}\rho SV^2 C_D + W \sin \gamma \quad \rightarrow \quad TV = \frac{1}{2}\rho SV^3 C_D + WV \sin \gamma$$

Defining, the available power for Climb $P_a = TV$ the power required for level flight $P_r = \frac{1}{2}\rho SV^3 C_D$

the rate of climb $V_z = V \sin \gamma$

Then,
$$V_z = \frac{P_a - P_r}{W}$$
 and $\sin \gamma = \frac{P_a - P_r}{VW}$

For a jet aircraft :

- the power available for climb varied linearly with airspeed
 the power required for level flight varies non-linearly with airspeed
- \rightarrow There is an optimum airspeed to maximize the rate of climb

$$V_z = \frac{P_a - P_r}{W}$$

 \rightarrow Maximize $P_a - P_r$

This airspeed is not necessarily the one corresponding to the minimum value of P_r

Climb of a jet aircraft

Below V₂ and above V₁ \rightarrow Aircraft cannot climb

Maximum climb rate

Using the drag polar and assuming a small rate of climb

 \rightarrow Equation for the rate of climb can be written as

$$V_{z} = \frac{P_{a} - P_{r}}{W} = \frac{1}{W} \left(TV - \frac{1}{2}\rho SV^{3}C_{D0} - \frac{2kW^{2}}{\rho SV} \right)$$

where, $k = \frac{1}{e\pi AR}$

The maximum climb rate is found for $\frac{\partial V_z}{\partial V} = 0$

$$\rightarrow \frac{3\rho SC_D}{W} V^4 - 2\frac{T}{W} V^2 - \frac{4kW}{\rho S} = 0$$

Solving this quartic equation

$$\frac{3\rho SC_D}{W}V^4 - 2\frac{T}{W}V^2 - \frac{4kW}{\rho S} = 0$$

one gets,

$$\rightarrow \frac{V_{ZMAX}}{V} = \frac{1}{3E_{max}} \left(\tau + \sqrt{\tau^2 + 3} \right) - \frac{3}{E_{max} \left(\tau + \sqrt{\tau^2 + 3} \right)}$$

where,
$$\tau = E_{max} T/W$$
 and $E_{max} = \left(\frac{C_L}{C_D}\right)_{max}$

 \rightarrow The maximum climb rate depends on:

- Thrust available
- Weight
- Altitude
- Wing surface

Climb gradient vs. altitude

Climb rate requirements

PHASE OF FLIGHT		AIRPLANE CONFIGURATION					MINIMUM CLIMB GRADIEN				
		flap setting	u.c.	er thrus	ngine st (power	speed	altitude	N _e ≖2	N _e =3	N _e =4	
TAKEOFF CLIMB POTENTIAL ("first segment")		t.o.	+		t.o.	V _{LOF}	0+h_1)	0	. 3	.5	
TAKEOFF FLIGHT PATH	"second segment"	t.o.	+	engine out	t.o.	v ₂ ²⁾	h +400 ft uu	2.4	2.7	3.0	
	final takeoff ("third segment")	en route	t		max, cont.	V≥1.25V _S	400+1,500ft	1,2	1.5	1.7	
APPROACH CLIMB POTENTIAL ap		approach ³	i) +	one	t.o.	v≤1.5v _s	01)	2.1	2.4	2.7	
LANDING CLIMB POTENTIAL land		landing	÷	al] tak	engines ceoff ⁴⁾	V≼1.3V _S	01)	3.2	3.2	3.2	
Nomencla	ture:		1		of group	d affort		L			
LOF LOF			21	def	defined in Section 2 of Annandia 4						
v_2 - takeoff safety speed			3)	fla	flan setting such that $V \leq 1.10$ V for landing						
R - rotation speed			4)	mor	more precisely: the engine power (thrust) available						
S - stalling speed				8 s	8 seconds after throttle opening to take off ration						
u.c undercarriage position			5)	tak	takeoff requirements are at actual unight other						
uu neight at which u.c.			- /	rea	requirements at landing (touchdown) weight						
retraction is completed				4			B (couchdown)	, weign			
e - number of engines per a/c											

In a general turn :

- all angles (pitch, roll and yaw) are involved
- change of height

In the following, let's assume turns in a horizontal plane \rightarrow no change of height

- Horizontal turn $\rightarrow \gamma = 0$
- Constant speed $\rightarrow dV/dt = 0$

Assuming the thrust is aligned with the flight path

 \rightarrow Equilibrium equations are simply:

$$L\cos\phi = W$$
$$L\sin\phi = \frac{mV^2}{R}$$
$$T = D$$

 $L\sin\phi \qquad \phi \qquad \psi = mg \qquad nW$

 $L\cos\phi$

where, R is the radius of the circular turn

Load factor *n* is defined as the ratio,
$$n = \frac{L}{W}$$

During a turn, the load factor can be so high to :

- harm the pilot
- damage the aircraft's structure

From the balance equation in the vertical direction:

$$n = \frac{1}{\cos \phi}$$

During a turn, the lift must balance:

- the weight
- the centrifugal force

63

Turning radius

For a given load factor, the turning radius is expressed as

$$L\cos\phi = W \longrightarrow R = \frac{V^2}{g\tan\Phi} = \frac{V^2}{g\sqrt{n^2 - 1}}$$

Expressing the airspeed V in terms of the load factor and lift coefficient

$$nW = \frac{1}{2}\rho SV^2 C_L \longrightarrow V^2 = \frac{2nW}{\rho SC_L}$$
$$\longrightarrow R = \frac{2W}{\rho g SC_L} \frac{n}{\sqrt{n^2 - 1}}$$

Low turn radius R if : large C_L , low altitude, high load factor, low wing loading (W/S)

Maximum turning rate

The turning rate can be expressed as

$$\frac{d\psi}{dt} = g_{\sqrt{\frac{\rho S C_L}{2W} \left(\frac{n^2 - 1}{n}\right)}}$$

Note that:

- The lift coefficient cannot exceed C_{Lmax}
- The maximum load factor is n_{max}

Then, the maximum turning rate is

$$\left(\frac{d\psi}{dt}\right)_{max} = g \sqrt{\frac{\rho S C_{Lmax}}{2W} \left(\frac{n_{max}^2 - 1}{n_{max}}\right)}$$

High turn rate if large C_L , low altitude, high load factor, low wing loading (W/S), i.e. same than low turn radius

Rear View of Turn

Lift required for turning

From the turn diagram:

$$nW = \sqrt{(mg)^2 + \left(\frac{mV^2}{R}\right)^2}$$

Furthermore, L = nW

Hence the required lift is simply:

$$nW = \frac{1}{2}\rho SV^2 C_L$$

Thrust required for turning

From the drag polar:

$$C_D = C_{D0} + \frac{C_L^2}{e\pi AR} = C_{D0} + \frac{1}{e\pi AR} \left(\frac{2nW}{\rho SV^2}\right)^2$$

The require thrust is then given by

$$T = \frac{1}{2}\rho SV^{2}C_{D} = \frac{1}{2}\rho SV^{2}\left(C_{D0} + \frac{1}{e\pi AR}\left(\frac{2nW}{\rho SV^{2}}\right)^{2}\right)$$

Alternatively, $T = D = \frac{LD}{L} = nW\frac{C_D}{C_L}$

Assuming constant Lift/Drag ratio → Thrust proportional to load factor Load factor cannot exceed:

- The aircraft structural limits
- The user (pilot, passenger) limits

It must be verified that the turn radius R corresponds to a load factor lower than n_{max}

$$nW = \sqrt{(mg)^2 + \left(\frac{mV^2}{R}\right)^2} \quad \rightarrow \quad n_{max} = \frac{\sqrt{(mg)^2 + \left(\frac{mV^2}{R}\right)^2}}{W}$$

where, n_{max} is usually 2.5 for commercial transports n_{max} can be 6 or higher for aerobatic aircraft

Turn diagram

Landing consists in **two phases**:

- Approach above a hypothetical obstacle to touch-down

Approach

- Aircraft makes an approach along the axis of the runway
- A glide angle γ ranges between -2.5 $^\circ$ and -3.5 $^\circ$
- The speed is $V_2 = 1.2 V_{stall}$
- The height of the hypothetical object is h_{obj}
- The rotation height is h_r

• The approach distance is
$$x_3 = \frac{h_{obj} - h_r}{\tan \gamma}$$

• The approach time is $t_3 = \frac{x_3}{V_2 \cos \gamma}$

Rotation

• Similarly to take off,
$$R = \frac{V_2^2}{g(n-1)}$$

• The rotation distance is $x_2 = R \sin \gamma$

• The rotation time is
$$t_2 = \frac{\gamma V_2}{g(n-1)}$$

Ground run

- After touch-down, aircraft speed must drop from V_{TD} to 0
- Distance of ground run can be approximated by

$$x_g = \frac{V_{TD}^2}{2\bar{a}}$$

where \bar{a} is the mean deceleration

 $\overline{a} = \begin{cases} 0.30 - 0.35 \text{ for light aircraft with simple brakes} \\ 0.35 - 0.45 \text{ for turboprop aircraft without reverse propeller thrust} \\ 0.40 - 0.50 \text{ for jets with spoilers, anti-skid devices, speed brakes} \\ 0.50 - 0.60 \text{ as above, with nosewheel breaks} \end{cases}$

Design for performance is an **optimization process**

Objective: satisfy or exceed all performance requirements

How: by finding the optimal combination of **parameters**:

Powerplant

- Take off thrust
- number of engines
- engine type
- engine configuration

Wing

- Wing area
- Aspect ration
- High lift devices

Flow diagram

