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Content of the course
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• Introduction to design performance
• Weight estimates
• Drag estimates
• Flight phases

– Cruise
– Take-off
– Climb
– Turning
– Landing

• Flow diagram



Design for performance
Main requirement for a new aircraft = fulfilment of the mission

àPerformance calculation at the design stage

At the design stage, we choose:
– Size of the wing
– Type and size of the engines

Flight points
– Cruise à first performance design for an airliner
– Take off
– Landing
– Climb
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Weight and drag
First step is the determination of the weight and drag

  Weight à Lift

  Drag à Thrust

Weight and drag must be known at several points in the 
flight envelope (= capabilities of an aircraft in terms of 
structural loads and speed)

Two methodologies:

– Carry out detailed simulations at the conceptual 
design stage (very costly)

– Use previous experience: statistical data
4



Statistics
Enormous amount of data on very similar aircrafts

5Source: www.a13x.com.au/aircraft-size-comparison/

Source: www.jethrojeff.com



Statistics
Enormous amount of data on very similar aircrafts

6Source: www.a13x.com.au/aircraft-size-comparison/



Weight estimates
Take off weight, Wto expressed as:

where, 
Wp = payload weight
Wf = fuel weight
Wfix = fixed empty weight (e.g. engines) ~ 5-6% of Wto
Wvar = variable empty weight

The total empty weight We, is simply  We = Wfix + Wvar
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Weight estimates
Statistic tools are shared between:

• Light aircraft (Wto<5670kg)  (5670kg=12500lb) 
• Heavy aircraft (Wto>5670kg)

For light aircraft (from 100 different types):

with, R = aircraft’s range 
 AR = Aspect Ratio of the main wing
 ruc = 1.00-1.35 is the undercarriage drag correction 8



Undercarriage drag correction
This drag correction is used both in the calculation of:

- the fuel weight (Wf)

- the zero-lift drag (see later)

If the landing gear is fully retractable 
  à ruc = 1

Otherwise:
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Fairings
No wheel fairing

Wheel fairing
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Cessna 172

Cessna 180



Fairings
Fuselage fairings

Engine nacelles
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Antonov 225

Bombardier Dash8



Weight guesstimates
For heavy aircraft :

with, Weng = engine weight
 ∆ We is a correction factor
 from the graph (see next slide)
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∆ We

lf = fuselage length

bf = fuselage width

hf = fuselage height

(use metric units)
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Weight estimates
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For heavy aircraft (with turboprops):

Wf (fuel weight)

with, 

Cp = specific fuel 
consumption for 
propeller aircraft

(use metric units)



Weight estimates
For heavy jet aircraft

Wf (fuel weight)

with, 

p = atm. pressure at cruise 
M = Mach number at cruise
𝜭 = T/T0 cruise/stand. temp.
𝐶!/ 𝜃 = corrected specific fuel 
consumption at cruise
a0 = speed of sound at sea level
𝐶" = mean skin friction coefficient
based on wetted area

𝐶" = &
0.003
0.0035
0.004

 
for large, long range transporters
for small, short range transporters
for business and executive jets



Skin friction coefficient
• Gives an estimate of the drag force due to air friction 

over the full surface of the aircraft (= wetted area)

• Can be estimated by Prandtl-Schlichting theory as

where Recr is based on the cruise conditions and the 
fuselage length
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Skin friction coefficient
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Skin friction coefficient
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Cessna 172



Skin friction coefficient
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Cessna 172 Potez 840



Skin friction coefficient

20Caravelle

Boeing 707

Cessna 172 Potez 840



Skin friction coefficient

21Caravelle

Boeing 707

Cessna 172 Potez 840

C-5 Galaxy



Drag calculation
• Aircraft has several sources of drag

• It is usual to summarize them in the drag polar of the 
aircraft:

with, 
CD0 is the parasitic drag 
(independent of lift)
 
e is the Oswald efficiency factor
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Drag polar
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For high angles of attack, high lift and risk of stall



Drag figures for different aircrafts
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Compressibility drag
Compressibility effects increase drag

𝜟CD = 0.0005 for long range cruise conditions 
𝜟CD = 0.002 for high speed cruise conditions 

At the early design stage

à  Add 𝜟CD to CD0



Different flight phases

Take off à Climb à Turn à Cruise … à Landing
26
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Flight envelope
V-n diagram = load factor seen by the aircraft at a given speed

It gathers information about manoeuvre and gust
It tells the pilot which flight configurations (speed/altitude) are 
safe

VC = Design Cruising 
speed
(resistance to gusts)

VD = Design Diving speed
(max speed the aircraft 
must resist)

VA = Manoeuvre speed
(max speed with full 
deflection of control 
surfaces)

VS = Stall speed
(min speed of the aircraft



Cruise
At cruise, flight speed is constant

Lift (L) = Weight (W)  = Vertical balance

à 𝐿 = 𝑊 = ,
-
𝜌𝑉-𝐶.𝑆  à 𝐶. =

/
!
"01

"2

where, 𝝆 is the cruise air density
   V is the cruise speed
   S is the wing area

Also, Thrust (T) = Drag (D)  = Horizontal balance

à 𝑇 = 𝐷 = ,
-𝜌𝑉

-𝐶3𝑆

where CD is obtained from the drag polar 28



Cruise
Thrust to weight ratio

𝑇
𝑊
=
𝐷
𝑊
=
1
2𝜌𝑉

-𝐶3𝑆
𝑊

=
1
2𝑊

𝜌𝑉-𝑆 𝐶34 +
𝐶.-

𝑒𝜋𝐴𝑅

    = "#!$"#
%&/(

+ %&
)*+,"#!(

The thrust here is the installed thrust, which is 4-8% lower 
than the un-installed thrust.

This equation can be used to choose an engine for the 
cruise condition

29



Cruise
Minimum Thrust

The Thrust-to-weight ratio can be minimized as a function of 
W/S

àThe minimum Thrust is required when

  &
(
= -

%
𝜌𝑉% 𝑑-𝑒𝜋𝐴𝑅

where, d1 = 0.008 – 0.010 for an aircraft with retractable 
undercarriage

à The minimum Thrust to weight ratio is: .
& /01

= $"#2 3$
3$)*+,
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Cruise
Engine Thrust

The thrust of an engine at cruise can be determined from:

- Manufacturer’s data

- Approximate relationship to the take off thrust: 

where, 𝜆 is the bypass ratio
  M is the cruise Mach number 
  G = 0.9 for low bypass engines
  G = 1.1 for high bypass engines
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Range
The range of an aircraft can be estimated from the Bréguet 
equation:

which is applicable in cruise conditions only.

with, L/D = cruise Lift-to-Drag ratio
 V = the cruise airspeed [m/s]
 CT = specific fuel consumption [1/s]
 Wi = weight of the aircraft at the beginning of cruise [kg]
 Wf = cruise fuel weight [kg]

Attention to units (imperial/SI) of CT in reference books ! 
32



Maximizing range
The range equation can also be written as

where, M is the cruise Mach number
  a0 is the speed of sound at sea level

The range can be maximized by maximizing L/D or ML/D

To maximize L/D: 

To maximize ML/D: 
33



Lift-to-Drag ratio
Example of Lift-to-Drag ratio variation with Lift, Angle of 
attack and deployment of slats/flaps

34

Induced drag only

Best CL/CD 
for the clean configuration



Compressibility effects on range

35



Range design
At the early design stage, the designer must choose a 
favourable combination of:
- Speed
- Altitude
- Airplane geometry
- Engine

Depending on the objective, most important consideration is:

Fuel efficiency à for long-haul aircraft
Engine weight à for short-haul aircraft

Constraints: - Cruise fuel is only part of the fuel weight
  - Engine thrust often determined by take off field
  - Air traffic Controls decide the allowable cruise altitudes
  - An aircraft can have more than one engine
  - …  

à best range performance or fuel 
efficiency



Reserve fuel
ATA (Air Transport Association) regulation claims that
the airliner must carry enough reserve fuel to : 

• Continue flight for time equal to 10% of basic flight time 
at normal cruise conditions

• Execute missed approach and climb at the destination 
airport 

• Fly to alternate airport 370km distant
• Hold at alternate airport for 30 min at 457m (1500ft) 

above the ground
• Descend and land at alternate airport

Approximate formula: 

37

𝐶! = specific fuel consumption at cruise
𝜭 = T/T0 cruise/stand. temp.



Range for propeller aircraft
For propeller aircraft, the Bréguet range equation is

where  𝜼P is the propeller efficiency
  CP is the specific fuel consumption

Range can be maximized by:

- Minimizing the airplane drag

- Minimizing the engine power

38



Payload-range diagram
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A B

D

A = max payload with no fuel onboard
B = max range with maximum payload
C = max range with full fuel tanks with reduced payload
D = max range with no payload

Payload (kg)

Range (km)

Maximum payload
Trade-off
fuel/payload Trade-off

payload/range

C



Take off

40t0 tg

Lift off



Take off
• Take off starts at time t0, with airspeed V0 and the runway 

may have an angle to horizontal of φ. 
• Lift off occurs at time tg, after a distance of xg, usually at 

speed VLOF. 
• Take off is completed when the aircraft has reached 

sufficient height to clear an obstacle 35ft high (50ft for 
military aircraft) 

• Finally, the climb out phase takes the aircraft to 500ft at 
the climb throttle setting. 

41



Tricycle landing gear

Low AoA

à For sufficient speed, nose 
is lifted up to the optimal AoA

Tailwheel landing gear

High AoA

à Control surfaces (when effective) are used 
to decrease the angle of attack

à Decrease of drag and increase of speed

Ground run
• Start at V0 (equal to zero or not) 

• Angle of attack is defined w.r.t. the thrust line

42



Lift off
As seen in Lecture 1 of Aerodynamics:

Vertical balance:

In practice (for safety reasons), Lift off speed is defined as

𝑉.56 = 𝑘,𝑉789::
where, 
 k1 varies with the type of aircraft 
 k1 = 1.1 is an indicative value

43

L = 1
2
ρ
∞
V
∞
2S  CL =W

Vstall =
2W

ρ∞SCL,max



Rotation and transition
à Aircraft rotation = deflection of the velocity from nearly 
  horizontal to a few degrees upward

  very short stage (few seconds)

à Transition stage follows up to obstacle clearance

  speed at clearance: 𝑉- = 𝑘-𝑉789:: with k2=1.2
  

44



Take off details
V1 = Decision speed (for multi-engine aircraft)

For V < V1, if one engine fails, take off is aborted
à  The runway is long enough to stop the aircraft

For V > V1, if one engine fails, take off is continued
àDecision will be taken in the air

Take off completed at ~ 500ft and once flaps are retracted

Take off field length



Equations of motion
Force balance parallel to the runway: 

𝐹 = 𝑇 − 𝜇𝑅 − 𝐷 = 𝑚𝑎

Aircraft acceleration, 𝑎 = ;1
;8

Aircraft velocity, v = ;<
;8

Then, 19 =
;<
;8

;8
;1 =

;<
;1 à

;<
;1 =

1
9

The displacement is obtained by integration w.r.t. V:

𝑥= = =
4

1#$% 𝑉
𝑎
𝑑𝑉
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Friction force
Friction force is proportional to the vertical force: 

Friction = 𝜇𝑅 with 𝑅 = 𝑊 − 𝐿 = 𝑊 − ,
-𝜌𝑉

-𝑆𝐶.

(assuming the runway’s inclination is small)

The total horizontal balance becomes:

𝑚𝑎 = 𝑇 − 𝜇𝑊 −
1
2
𝜌𝑉-𝑆 𝐶3 − 𝜇𝐶.

47

Runway type 𝝁

Concrete, asphalt 0.02
Hard turf 0.04
Field with short grass 0.05
Field with long grass 0.1
Soft field, sand 0.1-0.3



Approximate solutions
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Ground run xg

𝑥! ≈
⁄𝑉"#$% 2𝑔

;𝑇
𝑊&#

− 𝜇′

where, ;𝑇 = Thrust at '!"#
%

  ≈ 0.75 ()*
+)*

𝑇&#
   𝐶" = 𝜇𝑒𝜋𝐴𝑅
   𝜇, = 𝜇 + 0.72 -$%

-!&'(

Air run xa 𝑥9≈
1#$%
"

= - +
?

@#$%

where, 𝛾"#$ =
&./
0 "#$

≈ 0.9
1&

0)"
− 2.4

56

Airspeed at take off. 𝑉% = 𝑉"#$ 1 + 𝛾"#$ 2

Increases with
- Aircraft Weight (WTO)
- Altitude
- Temperature
- Rolling friction
- Positive runway slope
Decreases with
- Thrust
- High lift devices



Climb

• Immediately follows take off

• Objective: reach the cruising altitude

• Usually performed in a vertical plane à no turning

• Short phase à aircraft’s weight is assumed constant

• Small variations of speed and flight path à constant speed 
climb 49



Climb
Climb performances:

• Operational requirements, e.g.

– Rate of climb at sea level
– Service ceiling altitude for a maximum rate of climb of 0.5m/s

• Airworthiness requirements

– Minimum climb gradient at take off, in cruise, at landing
– Rate of climb at a specified altitude with one engine inoperative

50



Climb diagram

• Thrust line is not necessarily aligned with flight path

• Constant speed V à the aircraft cannot accelerate

• Thrust and lift equations:

(assuming 𝛆 = 0) 
51



Thrust and Power
Thrust equation can be expressed in terms of Power

𝑇 =
1
2
𝜌𝑆𝑉-𝐶3 +𝑊 sin 𝛾 → 𝑇𝑉 =

1
2
𝜌𝑆𝑉A𝐶3 +𝑊𝑉 sin 𝛾

Defining, the available power for Climb   𝑃9 = 𝑇𝑉
     the power required for level flight  𝑃B =

,
-𝜌𝑆𝑉

A𝐶3

     the rate of climb 𝑉C = 𝑉 sin 𝛾 

Then, 𝑉C =
D&ED'
/ and sin 𝛾 = D&ED'

1/

52



Climb of a jet aircraft
For a jet aircraft : 

- the power available for climb varied linearly with airspeed
- the power required for level flight varies non-linearly with 
airspeed

àThere is an optimum airspeed to maximize the rate of climb

𝑉C =
𝑃9 − 𝑃B
𝑊

à Maximize 𝑃9−𝑃B

53

This airspeed is not 
necessarily the one 
corresponding to the 
minimum value of 𝑃B



Climb of a jet aircraft

54

Below V2 and above V1 à Aircraft cannot climb



Maximum climb rate
Using the drag polar and assuming a small rate of climb

à Equation for the rate of climb can be written as

𝑉7 =
𝑃8 − 𝑃9
𝑊 =

1
𝑊 𝑇𝑉 −

1
2𝜌𝑆𝑉

4𝐶/2 −
2𝑘𝑊%

𝜌𝑆𝑉

where, 𝑘 = ,
FGHI  

The maximum climb rate is found for J1(J1 = 0

à
A02K)
/ 𝑉L − 2 M

/𝑉
- − LN/

02 = 0

55



Maximum climb rate
Solving this quartic equation

A02K)
/ 𝑉L − 2 M

/𝑉
- − LN/

02 = 0

one gets,

à
1(*+,
1 = ,

AO-&.
𝜏 + 𝜏- + 3 − A

O-&. PQ P"QA

where, 𝜏 = 𝐸R9< ⁄M / and     𝐸R9< =
K#
K) R9<

àThe maximum climb rate depends on:
- Thrust available
- Weight 
- Altitude
- Wing surface 56



Climb rate vs. altitude
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Climb gradient vs. altitude
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Climb rate requirements
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Turning

60

In a general turn : 
• all angles (pitch, roll and yaw) are involved
• change of height

In the following, let’s assume turns in a horizontal plane 
à no change of height



Turning
• Horizontal turn à 𝛾 = 0
• Constant speed à ⁄𝑑𝑉 𝑑𝑡 = 0

Assuming the thrust is aligned with the flight path

àEquilibrium equations are simply: 

𝐿 cos𝜙 = 𝑊

𝐿 sin𝜙 =
𝑚𝑉-

𝑅
𝑇 = 𝐷

where, R is the radius 
of the circular turn
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Turning
Load factor n is defined as the ratio, 𝑛 = S

&

During a turn, the load factor can be so high to : 
- harm the pilot
- damage the aircraft’s structure

From the balance equation in the vertical direction: 

𝑛 = Q1 cos𝜙

During a turn, the lift must balance: 
- the weight
- the centrifugal force 
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Turning radius
For a given load factor, the turning radius is expressed as

𝐿 cos𝜙 = 𝑊

𝐿 sin𝜙 = R1"

I
        ⟶ 𝑅 = #!

T UVW X
= #!

T 1!Y-

Expressing the airspeed V in terms of the load factor and 
lift coefficient 

𝑛𝑊 = ,
-𝜌𝑆𝑉

-𝐶. ⟶ 𝑉- = -S/
02K#

 

⟶ 𝑅 =
2𝑊
𝜌𝑔𝑆𝐶.

𝑛
𝑛- − 1

Low turn radius R if : large CL, low altitude, high load 
factor, low wing loading (W/S)
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Maximum turning rate
The turning rate can be expressed as

𝑑𝜓
𝑑𝑡

= 𝑔
𝜌𝑆𝐶"
2𝑊

𝑛% − 1
𝑛

Note that:
- The lift coefficient cannot exceed 𝐶.R9<
- The maximum load factor is 𝑛R9<

Then, the maximum turning rate is

𝑑𝜓
𝑑𝑡 :8;

= 𝑔
𝜌𝑆𝐶":8;
2𝑊

𝑛:8;% − 1
𝑛:8;

High turn rate if large CL, low altitude, high load factor, low 
wing loading (W/S), i.e. same than low turn radius
 



Turning
Lift required for turning

From the turn diagram: 

𝑛𝑊 = 𝑚𝑔 - +
𝑚𝑉-

𝑅

-

Furthermore, 𝐿 = 𝑛𝑊

Hence the required lift is simply:

𝑛𝑊 =
1
2
𝜌𝑆𝑉-𝐶.
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Turning
Thrust required for turning

From the drag polar:

𝐶3 = 𝐶34 +
𝐶.-

𝑒𝜋𝐴𝑅
= 𝐶34 +

1
𝑒𝜋𝐴𝑅

2𝑛𝑊
𝜌𝑆𝑉-

-

The require thrust is then given by

𝑇 =
1
2
𝜌𝑆𝑉-𝐶3 =

1
2
𝜌𝑆𝑉- 𝐶34 +

1
𝑒𝜋𝐴𝑅

2𝑛𝑊
𝜌𝑆𝑉-

-

Alternatively, 𝑇 = 𝐷 = .3
. = 𝑛𝑊 K)

K#

Assuming constant Lift/Drag ratio à Thrust proportional to 
      load factor



Maximum load factor
Load factor cannot exceed: 

- The aircraft structural limits

- The user (pilot, passenger) limits

It must be verified that the turn radius R corresponds to a 
load factor lower than nmax

𝑛𝑊 = 𝑚𝑔 % +
𝑚𝑉%

𝑅

%

→ 𝑛:8; =
𝑚𝑔 % + 𝑚𝑉%

𝑅
%

𝑊

where, nmax is usually 2.5 for commercial transports
   nmax can be 6 or higher for aerobatic aircraft
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Turn diagram



Landing
Landing consists in two phases:

- Approach above a hypothetical obstacle to touch-down

- Ground run to full stop

x3 x2 x1 xg



Landing
Approach

• Aircraft makes an approach along the axis of the runway

• A glide angle 𝛄 ranges between -2.5° and -3.5°

• The speed is 𝑉- = 1.2 𝑉789::

• The height of the hypothetical object is ℎTUV

• The rotation height is ℎB

• The approach distance is  𝑥A =
?/01E?'
WXY @

• The approach time is 𝑡A =
<2

1"Z[\ @ 70



Landing
Rotation

• Aircraft follows an arc with radius R

• Similarly to take off, 𝑅 = 1""

=(SE,)

• The rotation distance is  𝑥- = 𝑅 sin 𝛾

• The rotation time is 𝑡- =
@1"

=(SE,)
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Landing
Ground run

• After touch-down, aircraft speed must drop from VTD to 0

• Distance of ground run can be approximated by

𝑥= = Q𝑉M3-
2W𝑎

where W𝑎 is the mean deceleration
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Parametric design
Design for performance is an optimization process

Objective: satisfy or exceed all performance requirements

How: by finding the optimal combination of parameters:

• Powerplant 
 - Take off thrust
 - number of engines
 - engine type 
 - engine configuration

• Wing
 - Wing area
 - Aspect ration
 - High lift devices 73



Flow diagram
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